Курсовая работа по предмету "Математика"


Знаходження власних значеннь лінійого оператора



4

Міністерство освіти і науки України

ФАКУЛЬТЕТ ІНФОРМАТИКИ

КАФЕДРА ІНФОРМАЦІЙНИХ УПРАВЛЯЮЧИХ СИСТЕМ ТА ТЕХНОЛОГІЙ

Реєстраційний №________

Дата ___________________

КУРСОВА РОБОТА

Тема:

Знаходження власних значень лінійного оператора

Рекомендована до захисту

“____” __________ 2008р.

Робота захищена

“____” __________ 2008р.

з оцінкою

_____________________

Підписи членів комісії

Зміст

Вступ

Теоретична частина

1. Означення і найпростіші властивості лінійних операторів

2. Матриця лінійного оператора

3. Власні вектори й власні значення лінійного оператора

Практична частина

1. Опис програми

2. Текст програми

3. Контрольний приклад

Висновок

Список літератури

Вступ

Власні значення грають при вивченні лінійних операторів дуже велику роль.

Нехай в дійсному лінійному просторі задан лінійний оператор . Якщо вектор , відмінний від нуля, переводиться оператором у вектор, пропорційний самому ,

,

де - деяке дійсне число, то вектор називається власним вектором оператора , а число - власним значенням цього оператора, причому, власний вектор відноситься до власного значення .

Обертання евклідової площини навколо початку координат на кут, що не являється кратним , є прикладом лінійного оператора, що не має власних векторів. Прикладом іншого випадку є розтягнення площини, при якому всі вектори, що виходять з початку координат, причому всі нульові вектори площини будуть для нього власними; всі вони відносяться до власного значення 5.

Теоретична частина

1. Означення і найпростіші властивості лінійних операторів

В теорії лінійних просторів та її застосування важливу роль відіграють лінійні оператори, які інакше називають лінійними перетвореннями.

Нехай - деякий векторний простір над полем .

Означення 1. Вважають, що у векторному просторі задано оператор, якщо вказано правило (закон), за яким кожному вектору простору ставиться у відповідність деякий вектор цього ж простору. Про цьому вектор називають образом вектора , а називають прообразом вектора .

Як бачимо, оператор у векторному просторі - це функція, множиною відправлення і множиною прибуття якої є простір .

Означення 2. Оператор у векторному просторі називається лінійним, якщо він задовольняє такі умови:

Лінійні оператори в просторі називають також лінійним перетворенням простору .

З означення 2 випливають безпосередньо такі властивості лінійних операторів:

1. Будь-який лінійний оператор у просторі залишає нерухомим нульовий вектор цього простору, тобто .

2. Всякий лінійний оператор у просторі протилежному вектору - будь-якого вектора , ставить у відповідність вектор, протилежний образу вектора , тобто .

3. Кожен лінійний оператор у просторі будь-який лінійний комбінації довільно вибраних векторів простору ставить у відповідність лінійну комбінацію (з тими самими коефіцієнтами) образів цих векторів, тобто .

2. Матриця лінійного оператора

Нехай - деякий лінійний оператор у просторі . Виберемо в який-небудь базис . Оператор відображає вектори цього базису в деякі вектори . Кожен вектор єдиним способом лінійно виражається через вектори базису . Припустимо, що

Складемо з коефіціентів матрицю . Рядками матриці є координатні рядки векторів в базисі . Оскльки координатні рядки векторів визначені однозначно, то й матриця визначається оператором в базисі .

Будемо вважати, що в базисі лінійний оператор задається матрицею .

Отже, при зафіксованому базисі кожному лінійному оператору простору відповідає певна квадратна матриця -го порядку - матриця цього оператора.

3. Власні вектори й власні значення лінійного оператора

Означення 1. Підпростір лінійного простору називається інваріантним відносно оператора , якщо , тобто якщо образ будь-якого вектора із міститься в .

Нехай -одновимірний підпростір простору , а -деякий лінійний оператор цього простору. Підпростір , як відомо, породжується будь-яким своїм вектором , тобто є сукупністю всіх векторів виду , де - будь яке число з поля Р. Якщо підпростір інваріантний відносно оператора , то , тобто , де --деяке число з поля Р. Тоді й для будь-якого вектора підпростору , бо , і тому .

Означення 2. Вектор , що заддовільняє співвідношення , де називається власним вектором оператора , а число - власним значенням оператора , що відповідає власному вектору .

Отже, якщо одглвимірний підпростір простору інваріантний відносно лінійного оператора , то всі вектори цього підпростору є власними векторами оператора з тим самим власним значенням оператора .

Практична частина

1. Опис програми

n - вимірність матриці;

m - максимальне допустиме число ітерацій;

e - точність;

a - на вході - двовимірний масив елементів матриці А, на виході матриця А блочно-діагональна, причому блоки розміри 1х1 містять дійсні власні значення, блоки розміру 2х2 містять комплексні власні значення, записані в стовпцях (рядках) для правих (лівих) власних векторів;

t - двовимірний масив власних векторів А;

b - цілочислова змінна.

Лінійний оператор потрібно задати за допомогою матриці.

2. Текст програми

uses crt;

const dim=10;

type ar=array[1..dim,1..dim]of real;

var ff:text;

i100,j100,n100,b,m:integer;

e:real;

a,t:ar;

procedure eigen(n,m:integer;e:real;var a,t:ar;var b:integer);

var c,c1,c2,co,ch,d,e1,f,g,h,p,r,s,s1,s2,si,sh,x,y:real;

i,j,k,n1,q:integer;

u,v,w,z:boolean;

function zn(x:real):integer;

begin if x<0 then zn:=-1 else zn:=1; end;

begin

u:=false;v:=u;w:=u;n1:=n-1;e1:=sqrt(e);

if b<>0 then

begin

if b<0 then v:=true else w:=true;

for i:=1 to n do

for j:=1 to n do

if i=j then t[i,j]:=1 else t[i,j]:=0;

end;

for q:=1 to m do

begin

if u then begin b:=1-q; exit; end;

i:=1; z:=false;

repeat

j:=i+1;

repeat

if(abs(a[i,j]+a[j,i])>e1) or

(abs(a[i,j]-a[j,i])>e1) and

(abs(a[i,i]-a[j,j])>e1) then z:=true;

j:=j+1;

until (j>n) or z;

i:=i+1;

until (i>n1) or z;

if not z then begin b:=q-1; exit; end;

u:=true;

for k:=1 to n1 do

for j:=k+1 to n do

begin

h:=0; g:=0; f:=0; y:=0;

for i:=1 to n do

begin

x:=sqr(a[i,k]);d:=sqr(a[i,j]); y:=y+x-d;

if (i<>k) and (i<>j) then

begin

h:=h+a[k,i]*a[j,i]-a[i,k]*a[i,j];

p:=x+sqr(a[j,i]); r:=d+sqr(a[k,i]);

g:=g+p+r; f:=f-p+r;

end;

end;

h:=2*h; d:=a[k,k]-a[j,j];

p:=a[k,j]+a[j,k]; r:=a[k,j]-a[j,k];

if abs(p)<=e then begin c:=1; s:=0; end

else

begin

x:=d/p; c:=x+zn(x)*sqrt(1+x*x);

s:=zn(x)/sqrt(1+c*c); c:=s*c;

end;

if y<0 then begin x:=c; c:=s; s:=-x; end;

co:=c*c-s*s; si:=2*s*c; d:=d*co+p*si;

h:=h*co-f*si; x:=(r*d-h/2)/(g+2*(r*r+d*d));

if abs(x)<=e

then begin ch:=1; sh:=0; end

else begin ch:=1/sqrt(1-x*x); sh:=ch*x; end;

c1:=ch*c-sh*s; c2:=ch*c+sh*s;

s1:=ch*s+sh*c; s2:=-ch*s+sh*c;

if (abs(s1)>e)or(abs(s2)>e) then

begin

u:=false;

for i:=1 to n do

begin

p:=a[k,i];a[k,i]:=c1*p+s1*a[j,i];

a[j,i]:=s2*p+c2*a[j,i];

if v then

begin

p:=t[k,i]; t[k,i]:=c1*p+s1*t[j,i];

t[j,i]:=s2*p+c2*t[j,i];

end;

end;

for i:=1 to n do

begin

p:=a[i,k];a[i,k]:=c2*p-s2*a[i,j];

a[i,j]:=-s1*p+c1*a[i,j];

if w then

begin

p:=t[i,k];t[i,k]:=c2*p-s2*t[i,j];

t[i,j]:=-s1*p+c1*t[i,j];

end;

end;

end;

end;

end;

b:=m;

end;

begin clrscr;

write(введите максимальное количество итераций);read(m);

write(введите точность);read(e);

assign(ff,vlasn.dat);

reset(ff);

read(ff,n100);

for i100:=1 to n100 do

for j100:=1 to n100 do

read(ff,a[i100,j100]);

b:=0;

eigen(n100,m,e,a,t,b);

for i100:=1 to n100 do begin

for j100:=1 to n100 do

write(a[i100,j100], );

writeln; end;

writeln;

writeln(b);

readkey;

end.

3. Контрольний приклад

При e=10-8 і m=50 для матриці

за 7 ітерацій знайдено власні значення

Тобо отримали такі власні значення , ,

Висновок

Таким чином, задача знаходження інваріантних відносно оператора одновимірних підпросторів простору рівнозначна задачі згаходження власних векторів оператора .

Список літератури

1. А. Г. Курош «Курс высшей алгебры», «Наука», Москва 1975

2. С. Т. Завало, В. М. Костарчук, Б. И. Хацет «Алгебра и теория чисел», Том 1,«Высшая школа», Киев 1974

3. С. Т. Завало, В. М. Костарчук, Б. И. Хацет «Алгебра и теория чисел», Том 2,«Высшая школа», Киев 1976




Не сдавайте скачаную работу преподавателю!
Данную курсовую работу Вы можете использовать для написания своего курсового проекта.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем курсовую работу самостоятельно:
! Как писать курсовую работу Практические советы по написанию семестровых и курсовых работ.
! Схема написания курсовой Из каких частей состоит курсовик. С чего начать и как правильно закончить работу.
! Формулировка проблемы Описываем цель курсовой, что анализируем, разрабатываем, какого результата хотим добиться.
! План курсовой работы Нумерованным списком описывается порядок и структура будующей работы.
! Введение курсовой работы Что пишется в введении, какой объем вводной части?
! Задачи курсовой работы Правильно начинать любую работу с постановки задач, описания того что необходимо сделать.
! Источники информации Какими источниками следует пользоваться. Почему не стоит доверять бесплатно скачанным работа.
! Заключение курсовой работы Подведение итогов проведенных мероприятий, достигнута ли цель, решена ли проблема.
! Оригинальность текстов Каким образом можно повысить оригинальность текстов чтобы пройти проверку антиплагиатом.
! Оформление курсовика Требования и методические рекомендации по оформлению работы по ГОСТ.

Читайте также:
Разновидности курсовых Какие курсовые бывают в чем их особенности и принципиальные отличия.
Отличие курсового проекта от работы Чем принципиально отличается по структуре и подходу разработка курсового проекта.
Типичные недостатки На что чаще всего обращают внимание преподаватели и какие ошибки допускают студенты.
Защита курсовой работы Как подготовиться к защите курсовой работы и как ее провести.
Доклад на защиту Как подготовить доклад чтобы он был не скучным, интересным и информативным для преподавателя.
Оценка курсовой работы Каким образом преподаватели оценивают качества подготовленного курсовика.

Сейчас смотрят :

Курсовая работа Финансы коммерческих организаций
Курсовая работа Банковская система и ее роль в экономике.
Курсовая работа Бизнес планирование
Курсовая работа Анализ финансово-хозяйственной деятельности фирмы "Лойтер"
Курсовая работа Понятие и характеристика соучастия в преступлении
Курсовая работа Способы обеспечения законности в государственном управлении
Курсовая работа Планування та організація діяльності аграрного підприємства
Курсовая работа Диалекты Англии. Диахронический анализ
Курсовая работа Роль кредитных отношений в современной рыночной экономике
Курсовая работа Воспитание культуры поведения детей старшего дошкольного возраста средствами художественной литературы
Курсовая работа Развитие международной торговли на современном этапе
Курсовая работа Дознание как форма предварительного расследования
Курсовая работа Исследование методов организации рекламы в Интернете
Курсовая работа Содержание, анализ и управление финансовой устойчивостью предприятия
Курсовая работа Система применения удобрений в севообороте