23
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ
КАФЕДРА ФИЗИКИ ПОЛУПРОВОДНИКОВ И МИКРОЭЛЕКТРОНИКИ
КУРСОВАЯ РАБОТА
Синхронизация как механизм самоорганизации в системе связанных осцилляторов
Руководитель: доцент
_____Хухрянский М.Ю.
Исполнитель: студентка
3 курса
Группы микроэлектроники
_____Машкова А. С.
Воронеж 2006
РЕФЕРАТ
Курсовая работа: 23 страницы, 6 иллюстраций, 17 формул, 7 источников.
Ключевые слова: синхронизация, самоорганизация, автоколебательная система, осциллятор.
В данной работе дается объяснение таких понятий, как синхронизация, самоорганизация, автоколебательная система. Приводится классификация явлений синхронизации, а также рассматривается синхронизация в цепочке N связанных осцилляторов и образование кластеров в дискретной цепочке осцилляторов и в непрерывной колебательной среде.
Оглавление
7. 1. Синхронизация внешней силой
Синхронизация была открыта Гюйгенсом как побочный результат его усилий по созданию высокоточных часов. В наши дни этот эффект используется для точного и недорогого измерения времени с помощью радиоуправляемых часов. В этом случае передаваемый по радио слабый сигнал от центральных высокоточных часов ежеми-нутно подстраивает ритм других часов, тем самым захватывая.
Похожая схема синхронизации была «реализована» природой для подстройки биологических часов, которые регулируют суточные (циркадные) и сезонные ритмы живых систем, от бактерии до че-ловека.
7. 2. Ансамбли осцилляторов и колебательные среды
Во многих естественных ситуациях взаимодействуют более двух объектов. Если два осциллятора способны к подстройке ритмов, то можно ожидать такой способности и от большого числа осцилляторов. Такая система называется ансамблем взаимно связанных осцилляторов. При этом можно гово-рить о глобальной (каждый с каждым) связи. Бывают и другие ситуации, когда осцилляторы упорядочены в цепочки или решет-ки, где каждый элемент взаимодействует с несколькими соседями. Такие структуры типичны для созданных человеком систем, напри-мер, для решеток лазеров, но могут также встречаться и в природе. Эксперименты показывают, что соседние осцилляторы в цепочке часто подстраивают свои частоты и формируют син-хронные кластеры.
Достаточно часто мы не можем выделить отдельный колебатель-ный элемент внутри естественного объекта. Вместо этого мы долж-ны рассматривать систему как непрерывную колебательную среду, где также возможна синхронизация.
7. 3. Фазовая и полная синхронизация хаотических осцилляторов
В наши дни широко известно, что автоколебательные системы, на-пример нелинейные электронные цепи, могут генерировать довольно сложные, хаотические сигналы. Многие естественные системы также демонстрируют сложное поведение. Недавние исследования показывают, что при наличии связи такие системы также могут синхронизоваться. Конечно же, в этом случае нам необходимо уточ-нить понятие синхронизации, потому что совершенно не очевидно, как характеризовать ритм хаотического осциллятора. Иногда хаотические сигналы относительно просты, как, например, показанный на рисунке 3. Такой сигнал -- «почти пе-риодический». Можно считать, что он состоит из похожих циклов с изменяющейся амплитудой и периодом (который может быть гру-бо определен как интервал между соседними максимумами). Выбрав большой интервал времени ф, мы можем сосчитать число циклов в этом интервале Nф, вычислить среднюю частоту
(4)
и взять ее в качестве характеристики хаотического колебательного процесса [4].
Рис.3. Пример хаотических колебаний.
С помощью средних частот мы можем описать коллективное поведение взаимодействующих хаотических систем точно так же, как и периодических. Если связь достаточно велика (например, для резистивно связанных электрических цепей это означает, что со-противление должно быть достаточно мало), средние частоты двух осцилляторов становятся равными. Важно отметить, что совпадение средних частот не означает, что сигналы также совпадают. Оказывается, что слабая связь не оказывает влияния на хаотическую природу обоих осцилляторов, их амплитуды остаются нерегулярными и некоррелированными, в то время как частоты подстраиваются таким образом, что мы можем говорить о фазовом сдвиге между сигналами. Такой режим называется фазовой синхронизацией хаотических систем.
Очень сильная связь стремится сделать состояния обоих осцил-ляторов идентичными. Она влияет не только на средние частоты, но также и на хаотические амплитуды. В результате, сигналы со-впадают (или почти совпадают) и наступает режим полной син-хронизации.
Явление синхронизации может также наблюдаться в больших ан-самблях взаимно связанных хаотических систем и в сформирован-ных ими пространственных структурах [1].
8. 1. Синхронизация N связанных осцилляторов
Рассмотрим синхронизацию N связанных осцилляторов на примере электронных генераторов, связанных через емкость, индуктивность и сопротивление. Уравнения колебаний в такой системе имеют вид:
(i=1,2,...,N). (5)
Здесь xi - напряжения на входах усилителей, щi - собственные частоты колебательных контуров, мi - превышения над порогом генерации, вij(1) - коэффициенты индуктивной связи, вi j(2) - коэффициенты емкостной связи, вij(3) - коэффициенты связи через сопротивление, (1 - гixi2) - функции, характеризующие нелинейные свойства усилителей.
Будем считать, что частоты автономных генераторов близки друг к другу, тогда решение уравнения (5) можно искать в виде:
xi=Аicos(щt+цi), = - Аiщsin(щt+цi), (6)
где щ=(1/N).
Для амплитуд и фаз получаем следующие уравнения:
(7)
(8)
где Ai0 - амплитуда колебаний i-го генератора в отсутствии связи, Цij=цi - цj, (9)
Дi=щi - щ, (10)
mij=[(вij(1)щ2 - вij(3))2 + вij(2)2]1/2, (11)
(12)
Рассмотрим случай слабой связи между генераторами, когда в уравнениях для фаз (8) можно положить Ai=Ai0. В синхронном режиме, когда , получим следующую систему уравнений для определения стационарных разностей фаз:
(13)
где i=1,2,...,N - 1, Дi,i+1=щi - щi+1=Дi - Дi+1.
Система уравнений (13) аналитически может быть решена лишь для частного случая полностью идентичных генераторов, когда Ai0=A0, mij=m, чij=ч, щi=щ для всех i и j. В этом случае уравнения (13) примут вид:
(i=1,...,N - 1). (15)
Уравнение (15) имеет два частных решения:
Цij = 0, (16)
Цi j= ± (j - i) (17)
Частота синхронных колебаний в случае синфазного режима работы генераторов равна щс = щ + (N - 1)mcosч, а во втором случае щс = щ - mcosч [3].
8. 2. Пример: цепочка лазеров
Синхронизация в цепочке лазеров часто используется для получе-ния излучения большой интенсивности. Этого можно достигнуть, расположив лазеры в линию, так, что каждый взаимодействует с ближайшими соседями или со всеми другими лазерами. Добиться взаимодействия каждого лазера с остальными можно с помощью специального пространственного фильтра. При такой конфигурации каждый лазер взаи-модействует с остальными, но сила связи зависит от рас-стояния между лазерами. Результаты, представленные на рисунке 4, четко указывают на синхронизацию. Действительно, если бы лазеры были не синхронизованы, то излучение в дальней зоне представляло бы собой сумму некогерентных колебаний, и по-тому было бы пространственно однородным. Неоднородность распределения на рисунке 4 появляется из-за захвата фаз, это типичная интерференционная картина.
Рис. 4. Интенсивность излучения в дальней зоне при слабой связи лазеров.
9. 1. Кластеры в дискретной цепочке осцилляторов
Если в дискретной цепочке осцилляторы взаимодействуют очень слабо, то синхронизации не будет, и каждая система будет колебаться со своей частотой. При достаточно сильной связи будет наблюдаться синхронизация всей цепочки. В промежуточном случае можно ожидать появление частично синхронизированных режимов, с несколькими различными частотами. Поскольку связь стремится синхронизировать ближайших соседей, образуются кластеры синхронизированных осцилляторов [1].
Рис. 5. Зависимость наблюдаемых частот Щk от параметра связи е в цепочке из пяти осцилляторов. Собственные частоты равны -1.8, -1.1, 0.1, 0.9, 1.9, функция связи выбрана в виде q(x)=sinx. С увеличением связи сначала осцилляторы 1 и 2 образуют кластер при е?0.4. Затем при е?0.6 появляется кластер из осцилляторов 4 и 5. При е?1.4 к нему присоединяется осциллятор 3. Наконец, при е?3 все осцилляторы синхронизируются.
9. 1. Кластеры в непрерывной колебательной среде
Образование кластеров в непрерывной колебательной среде является результатом двух противоположных факторов: неоднородности распределения собственных частот и связи, которая старается уравнять состоя-ния систем. Такая связь часто возникает вследствие диффузии, и поэтому называется диффузионной. Рассмотрим, что происходит на границе двух кластеров, имеющих разные частоты. Здесь важно различать случал дискретной цепочки и непрерывной среды.
В дискретной цепочке граница между двумя кластерами есть граница между двумя осцилляторами, имеющими разные частоты. Это просто означает, что они не захвачены: каждый колеблется со своей частотой. В отличие от этого, если в сплошной среде два ос-циллятора в двух пространственных точках имеют разные часто-ты, то между ними должен быть непрерывный переход. На пер-вый взгляд, можно просто провести непрерывный профиль частот, соединяющий эти точки. Более детальное рассмотрение показыва-ет, что это невозможно. Действительно, разные частоты отвечают разным скоростям вращения фазы. Поэтому разность фаз между точками, принадлежащими к двум кластерам, растет во времени со скоростью, пропорциональной разности частот. Следовательно, профиль фазы становится все более наклонным. С другой стороны, непрерывный крутой профиль фазы означает, что в среде образу-ются волновые структуры с все меньшей и меньшей длиной волны. Рост разности фаз между кластерами приводит к укорочению дли-ны волны со временем. Ясно, что этот процесс долго продолжаться не может -- и действительно, среда находит выход из этой ситуации. Увеличивающийся градиент фазы уменьша-ется за счет пространственно-временного дефекта. Дефект обра-зуется, когда амплитуда колебаний обращается в ноль, он позволяет сохранить градиент фазы конечным.
Чтобы продемонстрировать, как возникает пространственно-временной дефект, предположим, что разность фаз между точка-ми 1 и 2, принадлежащими разным кластерам, достигла значения ?2р. Если бы между 1 и 2 не было среды, то мы бы просто счи-тали состояния в этих точках почти идентичными. В среде, одна-ко, существует непрерывный профиль фазы между этими точками. Представляя как амплитуду, так и фазу в полярных координатах, мы можем изобразить поле окружностью. (рис. 6).
Рис. 6. Иллюстрация пространственно-временного дефекта. Начальный профиль фазы и амплитуды между точками 1 и 2 показан жирной сплошной линией. С течением времени амплитуда уменьшается и профиль меняется, как показано стрелками. В конечном состоянии (пунктирная линия) раз-ность фаз между точками 1 и 2 близка к нулю.
Рассмотрим теперь влияние связи в среде на профиль амплитуды и фазы. Ти-пичная связь -- диффузионная, или, по крайней мере, имеет диф-фузионную компоненту; она стремится уменьшить разность между состояниями ближайших соседей, т.е. уменьшить разность между состояниями в точках 1 и 2. Единственная возможность добиться этого -- это уменьшить амплитуду колебаний. Из рисунка 6 видно, что такое уменьшение амплитуды действительно превраща-ет профиль фазы между 1 и 2 из окружности в почти точку. В ко-нечном состоянии фазы в точках 1 и 2 почти равны, хотя изна-чально они различались на 2р [1]. После амплитуда снова нарастает, и процесс повторяется, т. е. наблюдаются биения.
! | Как писать курсовую работу Практические советы по написанию семестровых и курсовых работ. |
! | Схема написания курсовой Из каких частей состоит курсовик. С чего начать и как правильно закончить работу. |
! | Формулировка проблемы Описываем цель курсовой, что анализируем, разрабатываем, какого результата хотим добиться. |
! | План курсовой работы Нумерованным списком описывается порядок и структура будующей работы. |
! | Введение курсовой работы Что пишется в введении, какой объем вводной части? |
! | Задачи курсовой работы Правильно начинать любую работу с постановки задач, описания того что необходимо сделать. |
! | Источники информации Какими источниками следует пользоваться. Почему не стоит доверять бесплатно скачанным работа. |
! | Заключение курсовой работы Подведение итогов проведенных мероприятий, достигнута ли цель, решена ли проблема. |
! | Оригинальность текстов Каким образом можно повысить оригинальность текстов чтобы пройти проверку антиплагиатом. |
! | Оформление курсовика Требования и методические рекомендации по оформлению работы по ГОСТ. |
→ | Разновидности курсовых Какие курсовые бывают в чем их особенности и принципиальные отличия. |
→ | Отличие курсового проекта от работы Чем принципиально отличается по структуре и подходу разработка курсового проекта. |
→ | Типичные недостатки На что чаще всего обращают внимание преподаватели и какие ошибки допускают студенты. |
→ | Защита курсовой работы Как подготовиться к защите курсовой работы и как ее провести. |
→ | Доклад на защиту Как подготовить доклад чтобы он был не скучным, интересным и информативным для преподавателя. |
→ | Оценка курсовой работы Каким образом преподаватели оценивают качества подготовленного курсовика. |
Курсовая работа | Деятельность Движения Харе Кришна в свете трансформационных процессов современности |
Курсовая работа | Маркетинговая деятельность предприятия (на примере ООО СФ "Контакт Плюс") |
Курсовая работа | Политический маркетинг |
Курсовая работа | Создание и внедрение мембранного аппарата |
Курсовая работа | Социальные услуги |
Курсовая работа | Педагогические условия нравственного воспитания младших школьников |
Курсовая работа | Деятельность социального педагога по решению проблемы злоупотребления алкоголем среди школьников |
Курсовая работа | Карибский кризис |
Курсовая работа | Сахарный диабет |
Курсовая работа | Разработка оптимизированных систем аспирации процессов переработки и дробления руд в цехе среднего и мелкого дробления Стойленского ГОКа |