Курсовая работа по предмету "Физика и энергетика"


Разработка механического привода электродвигателя редуктора



26

Московский государственный университет

путей сообщения (МИИТ)

Курсовой проект по дисциплине

Детали машин и основы конструирования

Разработка механического привода электродвигателя редуктора

Студент гр. ТДМ 311

Хряков К.С

2009 г.

Введение

Механический привод разрабатывается в соответствии со схемой, приведенной на рисунке 1.

1 - электродвигатель;

2 - муфта;

3 - редуктор;

4 - муфта;

5 - исполнительный механизм

Рисунок 1 - Схема привода

Механический привод работает по следующей схеме: вращающий момент с электродвигателя 1 через муфту 2 передаётся на быстроходный вал редуктора 3. Редуктор понижает число оборотов и увеличивает вращающий момент, который через муфту 4 передается на исполнительный механизм 5. Редуктор состоит из двух ступеней. Первая ступень выполнена в виде шевронной цилиндрической передачи, а вторая - в виде прямозубой.

Достоинством данной схемы привода являются малые обороты и большой момент на выходном валу редуктора. Привод может использоваться на электромеханических машинах и конвейерах.

Исходные данные для расчёта:

1. Синхронная частота вращения электродвигателя nсх= 3000 мин-1;

2. Частота вращения на входе nu= 150 мин-1;

3. Вращающий момент на входе Tu= 400 Нм;

4. Срок службы привода Lг= 6000 ч;

Переменный характер нагружения привода задан гистограммой, изображённой на рисунке 2.

Рисунок 2 -Гистограмма нагружения привода.

Относительная нагрузка: k1=1 ; k2=0,3 ; k3=0,1 .

Относительное время работы: l1=0,25 ; l2=0,25 ; l3=0,5 .

Характер нагрузки: толчки.

1. Кинематический и силовой расчёты привода

1.1 Определяем КПД привода

зпр = зМ1 · зред · зМ2,

где зпр - КПД привода;

зМ1 - КПД упругой муфты;

зред - КПД редуктора;

зМ2 - КПД соединительной муфты.

Принимаем: зМ1 = 0,95;

зМ2 = 0,98;[1]

Определяем КПД редуктора:

где з1ст, з2ст - КПД первой и второй ступени редуктора.

з1ст = з2ст = 0,98 [1]

зn - КПД пары подшипников; зn = 0,99 [1]

z = 3 - число пар подшипников.

зред = 0,993 · 0,98 · 0,98 = 0,93.

зпр = 0,95 · 0,98 · 0,93 = 0,87.

1.2 Находим требуемую мощность электродвигателя.

1.3 Выбор электродвигателя.

nсх = 3000 мин-1

Выбираем электродвигатель 4А112М2 ГОСТ 19523-81 [2], мощность которого Рдв = 7,5 кВт

Величина скольжения

S = 2,5%

nдв =2925 мин-1 - частота вращения вала двигателя.

1.4 Вычисляем требуемое передаточное отношение редуктора

1.5 Производим разбивку передаточного отношения по ступеням

Согласно рекомендации книги [1], принимаем

1.6 Вычисляем частоты вращения валов

· Быстроходный вал:

· Промежуточный вал:

· Тихоходный вал:

1.7 Вычисляем вращающие моменты на валах

· Быстроходный вал:

· Промежуточный вал:

· Тихоходный вал:

2. Расчёт зубчатых передач

2.1 Расчёт зубчатой передачи тихоходной ступени редуктора

2.1.1 Выбор материалов

Принимаем для изготовления среднеуглеродистую конструкционную сталь с термообработкой нормализация и улучшение, что позволяет производить чистовое нарезание зубьев с высокой точностью после термообработки.

Такие колеса хорошо прирабатываются и не подвержены хрупкому разрушению при динамических нагрузках. Такой тип колес наиболее приемлем в условиях индивидуального и мелкосерийного производства.

Шестерня - сталь 45, термообработка - улучшение;

(192…240) НВ,НВср1=215 ;

Н12 + (10…15)НВ;[3]

Колесо - сталь 45, термообработка - нормализация;

(170…217)НВ,НВср2=195.

2.2 Определяем базовое число циклов перемены напряжений

а) по контактным напряжениям:

NН0 = 30 · НВ2,4;

для шестерни N01 = ;

для колеса N02 = ;

б) по напряжениям изгиба:

NF0 = 4 · 106.

2.3 Определяем фактическое число циклов перемены напряжений

а) по контактным напряжениям:

б) по напряжениям изгиба:

где m - показатель степени кривой усталости. При твёрдости меньше 350НВ m = 6.

Тогда,

;

2.4 Вычисляем коэффициент долговечности

а) по контактным напряжениям.

;

Для шестерни:

;

Так как NНЕ1> NН01, то принимаем KHL1=1;

Для колеса:

;

Так как NНЕ2> NН02, то принимаем KHL2=1.

б) по напряжениям изгиба.

Так как NFE1 > 4•106 и NFE2 > 4•106, то принимаем KFL1=1 и KFL2=1.

2.5 Вычисляем базовое значение предела выносливости

а) для контактных напряжений

Для термообработки улучшения

у0нlimb=2·HB+70 [2]

Для шестерни:

у0нlimb1 = 2·215 + 70 = 500 МПа.

Для колеса:

у0нlimb2 = 2·195 + 70 = 460 МПа.

б) для напряжений изгиба

Для термообработки улучшение и нормализация:

у0Flimb= 1,8 НВ;[2]

у0Flimb1= 1,8 · 215 = 387 МПа;

у0Flimb2= 1,8 · 195 = 351 МПа.

2.6 Определяем допускаемые контактные напряжения:

;

- коэффициент запаса.

При термообработке нормализация и улучшение принимаем [2]

МПа;

МПа;

- расчет ведем по наименьшему значению.

2.7 Определяем допускаемые напряжения изгиба

где - коэффициент, зависящий от вероятности безотказной работы. Принимаем = 1,75 [2]

- коэффициент, зависящий от способа изготовления заготовки, Для проката = 1,15[2]

МПа;

МПа.

2.8 Проектный расчет цилиндрической прямозубой передачи.

2.8.1 Определяем межосевое расстояние из условия обеспечения контактной прочности зуба

;

Предварительно принимаем КНв = 1,2[2]

Шba-ширина зубчатого венца;

Принимаем для прямозубой передачи Шba= 0,25 и Ка = 49,5 [2]

мм;

Принимаем ближайшее стандартное значение аW ГОСТ=250 мм [2]

2.8.2 Определяем модуль зацепления:

mn=(0,01…0,02)·аW=(0,01…0,02)·250=2,5…5 мм

принимаем mn=2,5 мм [2]

2.8.3 Определяем основные параметры зубчатых колес:

а) суммарное число зубьев:

Z?=

Z1= Z?/(u+1)=200/(3,89+1)=40;

Z2= Z? - Z1 =200 - 40 = 160;

б) диаметры делительных окружностей

d = mn · z;

d1 = 2,5 · 40 = 100 мм;

d2 = 2,5 · 160 = 400 мм;

Проверка: аW = (d1 + d2)/2;

250 = (100 + 400)/2;

250 = 250.

в) диаметры окружностей вершин:

da1 = d1 + 2·mn = 100 + 2·2,5 = 105 мм;

da2 = d2 + 2·mn = 400 + 2·2,5 = 405 мм;

г) диаметры окружностей впадин:

df1 = d1 - 2,5·mn = 100 - 2,5·2,5 = 93,75 мм;

df2 = d2 - 2,5·mn = 400 - 2,5·2,5 = 393,75 мм;

д) ширина колеса и шестерни:

b2 = Шba · aW = 0,25 · 250 = 62 мм;

b1 = b2 + 4…8 = 62 + 4…8 = 66…70 мм;

Принимаем b1 = 66 мм.

2.9 Проверочный расчет цилиндрической прямозубой передачи.

2.9.1 Уточняем коэффициент нагрузки:

Для отношения Шbd = b2/d1 = 62/100 = 0,62 , при несимметричном расположении колес относительно опор, КНв = 1,06[2]

2.9.2 Определение окружной скорости колес и степени точности передачи:

м/с;

Принимаем 8-ю степень точности по ГОСТ 1643-81[2]

2.9.3 Определяем коэффициент нагрузки:

KH=K·K·KHV = 1,06·1·1,05 = 1,11 ;

где K- коэффициент неравномерности нагрузки между зубьями;

K=1; [2]

KHV- коэффициент динамической нагрузки,

KHV=1,05 [2]

2.9.4 Вычисляем фактические контактные напряжения

МПа ;

Принимаем b2 = 45 мм, тогда

МПа

Принимаем b1 = 50 мм и уточняем Шbd = b2/d1 = 45/100 = 0,45 .

2.9.5 Проверяем зубья на выносливость по напряжениям изгиба

Уточняем коэффициент нагрузки:

КF = КFв · КFх = 1,08 · 1,45 = 1,57 ;

Принимаем:

К = 1,08[2]

КFх = 1,45[2]

YF - коэффициент, учитывающий форму зуба;

YF1 = 3,7[2]

YF2 = 3,6[2]

Вычисляем напряжения изгиба:

;

МПа < [у] F1 ;

МПа < [у] F2 ;

2.9.6 Выполняем проверочный расчет на статическую прочность от действия перегрузок.

;

Определяем коэффициент перегрузки:

;

Находим контактное напряжение:

уHmax = уH · = 387 · = 585 МПа ;

Находим изгибные напряжения:

уFmax1= уF1· Кmax = 105 · 2,285 = 240 МПа ;

уFmax2= уF2· Кmax = 114 · 2,285 = 260 МПа .

Для термообработки улучшение и нормализация:

[у]Hmax = 2,8 · уТ[3]

[у]Fmax = 0,8 · уТ

где уТ - предел текучести материала.

Для колеса уТ = 340 МПа ;

[у]H2max = 2,8 · 340 = 952 МПа > уHmax ;

[у]F2max = 0,8 · 340 = 272 МПа > уF2max ;

Условие статической прочности выполняется.

3. Расчёт зубчатой передачи быстроходной ступени редуктора

3.1 Выбор материалов

Принимаем для изготовления зубчатых колес быстроходной ступени редуктора тот же материал и термообработку, что и для тихоходной ступени. Такой выбор уменьшает номенклатуру материалов.

Шестерня - сталь 45, термообработка - улучшение;

(192…240) НВ,НВср1=215 ;

Н12 + (10…15)НВ;[3]

Колесо - сталь 45, термообработка - нормализация;

(170…217)НВ,НВср2=195.

3.2 Определяем базовое число циклов перемены напряжений.

а) по контактным напряжениям:

NН0 = 30 · НВ2,4;

для шестерни N01 = ;

для колеса N02 = ;

б) по напряжениям изгиба:

NF0 = 4 · 106.

3.3 Определяем фактическое число циклов перемены напряжений.

а) по контактным напряжениям:

б) по напряжениям изгиба:

где m - показатель степени кривой усталости. При твёрдости меньше 350НВ m = 6.

Тогда,

;

3.4 Вычисляем коэффициент долговечности

а) по контактным напряжениям.

;

Для шестерни:

;

Так как NНЕ1> NН01, то принимаем KHL1=1;

Для колеса:

;

Так как NНЕ2> NН02, то принимаем KHL2=1.

б) по напряжениям изгиба.

Так как NFE1 > 4•106 и NFE2 > 4•106, то принимаем KFL1=1 и KFL2=1.

3.5 Вычисляем базовое значение предела выносливости:

а) для контактных напряжений

Для термообработки улучшения

у0нlimb=2·HB+70 [2]

Для шестерни:

у0нlimb1 = 2·215 + 70 = 500 МПа.

Для колеса:

у0нlimb2 = 2·195 + 70 = 460 МПа.

б) для напряжений изгиба

Для термообработки улучшение и нормализация:

у0Flimb= 1,8 НВ;[2]

у0Flimb1= 1,8 · 215 = 387 МПа;

у0Flimb2= 1,8 · 195 = 351 МПа.

3.6 Определяем допускаемые контактные напряжения:

;

- коэффициент запаса.

При термообработке нормализация и улучшение принимаем [2]

МПа;

МПа;

Для шевронных передач, согласно рекомендации книги [2]

МПа ;

[2]

МПа > 393 МПа ;

Так как , то принимаем МПа .

3.7 Определяем допускаемые напряжения изгиба:

где - коэффициент, зависящий от вероятности безотказной работы. Принимаем = 1,75 [2]

- коэффициент, зависящий от способа изготовления заготовки, Для проката = 1,15[2]

МПа;

МПа.

3.8 Проектный расчет цилиндрической прямозубой передачи.

3.8.1 Определяем межосевое расстояние из условия обеспечения контактной прочности зуба.

;

Предварительно принимаем КНв = 1,1[2]

Шba-ширина зубчатого венца;

Принимаем для прямозубой передачи Шba= 0,4 и Ка = 43 [2]

мм;

Принимаем ближайшее стандартное значение аW ГОСТ=125 мм [2]

3.8.2 Определяем модуль зацепления:

mn=(0,01…0,02)·аW=(0,01…0,02)·125=1,25…2,5 мм

принимаем mn=2 мм [2]

3.8.3 Определяем основные параметры зубчатых колес:

а) назначаем угол наклона зубьев

в = 30є[2]

б) определяем значение торцевого модуля

мм ;

в) суммарное число зубьев:

Z?=

г) уточняем значение mt и в:

мм ;

вє = 30,23066є

д) число зубьев шестерни:

Z1= Z?/(u+1)=108/(5,01+1)=18;

число зубьев колеса:

Z2= Z? - Z1 =108 - 18 = 90;

Проверка: аW = (Z1 + Z2) · mt /2 ;

125 = (18 + 90) · 2,3148/2 ;

125 =125 ;

е) диаметры делительных окружностей

d = mt · z;

d1 = 2,3148 · 18 = 41,666 мм;

d2 = 2,3148 · 90 = 208,332 мм;

ж) диаметры окружностей вершин:

da1 = d1 + 2·mn = 41,666 + 2·2 = 45,666 мм;

da2 = d2 + 2·mn = 208,332 + 2·2 = 212,332 мм;

з) диаметры окружностей впадин:

df1 = d1 - 2,5·mn = 41,666 - 2,5·2 = 36,666 мм;

df2 = d2 - 2,5·mn = 208,332 - 2,5·2 = 203,332 мм;

и) ширина колеса и шестерни:

b2 = Шba · aW = 0,4 · 125 = 50 мм;

b1 = b2 + 4…8 = 50 + 4…8 = 54…58 мм;

Принимаем b1 = 55 мм.

3.9 Проверочный расчет шевронной зубчатой передачи.

3.9.1 Уточняем коэффициент нагрузки:

Для отношения Шbd = b2/d1 = 50/41,666 = 1,2 , при несимметричном расположении колес относительно опор, КНв = 1,15[2]

3.9.2 Определение окружной скорости колес и степени точности передачи:

м/с;

Принимаем 8-ю степень точности по ГОСТ 1643-81[2]

3.9.3 Определяем коэффициент нагрузки:

KH=K·K·KHV = 1,15·1,13·1,01 = 1,31 ;

где K- коэффициент неравномерности нагрузки между зубьями;

K=1,13 [2]

KHV- коэффициент динамической нагрузки,

KHV=1,01 [2]

3.9.4 Вычисляем фактические контактные напряжения

МПа ;

Принимаем b2 = 45 мм, тогда

МПа

Принимаем b1 = 50 мм и уточняем Шbd = b2/d1 = 45/41,666 = 1,08 .

3.9.5 Проверяем зубья на выносливость по напряжениям изгиба

Уточняем коэффициент нагрузки:

КF = КFв · КFх = 1,26 · 1,3 = 1,64 ;

Принимаем:

К = 1,26[2]

КFх = 1,3 [2]

Вычисляем коэффициент торцового перекрытия еб :

Определяем коэффициент, учитывающий многопарность зацепления

Определяем коэффициент, учитывающий наклон контактной линии:

;

Определяем эквивалентное число зубьев:

;

;

YF - коэффициент, учитывающий форму зуба;

YF1 = 3,85[2]

YF2 = 3,6[2]

Вычисляем напряжения изгиба:

;

МПа < [у] F1 ;

МПа < [у] F2 ;

3.9.6 Выполняем проверочный расчет на статическую прочность от действия перегрузок

;

Определяем коэффициент перегрузки:

;

Находим контактное напряжение:

уHmax = уH · = 386 · = 583 МПа ;

Находим изгибные напряжения:

уFmax1= уF1· Кmax = 42 · 2,285 = 96 МПа ;

уFmax2= уF2· Кmax = 44 · 2,285 = 101 МПа .

Для термообработки улучшение и нормализация:

[у]Hmax = 2,8 · уТ[3]

[у]Fmax = 0,8 · уТ

где уТ - предел текучести материала.

Для колеса уТ = 340 МПа ;

[у]H2max = 2,8 · 340 = 952 МПа > уHmax ;

[у]F2max = 0,8 · 340 = 272 МПа > уF2max ;

Условие статической прочности выполняется




Не сдавайте скачаную работу преподавателю!
Данную курсовую работу Вы можете использовать для написания своего курсового проекта.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем курсовую работу самостоятельно:
! Как писать курсовую работу Практические советы по написанию семестровых и курсовых работ.
! Схема написания курсовой Из каких частей состоит курсовик. С чего начать и как правильно закончить работу.
! Формулировка проблемы Описываем цель курсовой, что анализируем, разрабатываем, какого результата хотим добиться.
! План курсовой работы Нумерованным списком описывается порядок и структура будующей работы.
! Введение курсовой работы Что пишется в введении, какой объем вводной части?
! Задачи курсовой работы Правильно начинать любую работу с постановки задач, описания того что необходимо сделать.
! Источники информации Какими источниками следует пользоваться. Почему не стоит доверять бесплатно скачанным работа.
! Заключение курсовой работы Подведение итогов проведенных мероприятий, достигнута ли цель, решена ли проблема.
! Оригинальность текстов Каким образом можно повысить оригинальность текстов чтобы пройти проверку антиплагиатом.
! Оформление курсовика Требования и методические рекомендации по оформлению работы по ГОСТ.

Читайте также:
Разновидности курсовых Какие курсовые бывают в чем их особенности и принципиальные отличия.
Отличие курсового проекта от работы Чем принципиально отличается по структуре и подходу разработка курсового проекта.
Типичные недостатки На что чаще всего обращают внимание преподаватели и какие ошибки допускают студенты.
Защита курсовой работы Как подготовиться к защите курсовой работы и как ее провести.
Доклад на защиту Как подготовить доклад чтобы он был не скучным, интересным и информативным для преподавателя.
Оценка курсовой работы Каким образом преподаватели оценивают качества подготовленного курсовика.

Сейчас смотрят :

Курсовая работа Политический лидер в современной России
Курсовая работа Особенностьи проявления самооценки у детей старшего дошкольного возраста
Курсовая работа Виды и составы преступлений
Курсовая работа Организация банкета-чая на 20 человек
Курсовая работа Оценка стоимости предприятия
Курсовая работа Социальная защита инвалидов
Курсовая работа Организация административно-хозяйственной службы гостиницы
Курсовая работа Цех разлива пива под давлением
Курсовая работа Педагогические условия развития детей раннего возраста
Курсовая работа Анализ себестоимости продукции
Курсовая работа Социальная работа с малоимущими
Курсовая работа Бухгалтерский учет расчетов с поставщиками и подрядчиками (на примере ООО "МПС системы")
Курсовая работа Конкурентоспособность организации и методы ее оценки
Курсовая работа Особенности адаптации персонала в организациях
Курсовая работа Способы содержания птицы