Контрольная работа по предмету "Экономика и экономическая теория"


Относительные и средние величины, оценка их достоверности. Вариационные ряды. Методика анализа динамического ряда. Стандартизация



Контрольная работа № 1

ВАРИАНТ II

По теме: Относительные величины. Вариационные ряды. Средние величины. Оценка достоверности средних и относительных величин. Методика анализа динамического ряда. Стандартизация

1. Рассчитать интенсивные, экстенсивные показатели, показатели соотношения и наглядности. По полученным данным сделать соответствующие выводы

Численность города Н - 157 000 человек. В 2007 году зарегистрировано 490 случаев инфекционных заболеваний, в том числе воздушно-капельных инфекций - 230, острых кишечных инфекций - 210. прочих - 50. Всего в городе 30 инфекционных коек и 3 врача инфекциониста. Заболеваемость за предыдущие 3 года была следующей: 2004г.- 392,5 на 100 000 населения; 2005г. -361,9 на 100 000 населения; 2006г..-340,5 на 100 000 населения.

Экстенсивный показатель, или показатель распределения характеризует состав явления (структуру), часть целого. Он показывает, например, какую часть от общего числа всех заболеваний составляет то или иное заболевание. Показатель принято выражать в процентах.

1.

Интенсивный показатель характеризует частоту или распространенность данного явления в данной среде.

2.

Для более углубленного анализа явления рассчитываются специальные (групповые) показатели (по полу, возрасту, профессии и т.д.)

3. Показатель наглядности характеризует отношение различных показателей к одному принятому за 100.

Решение:

1. Экстенсивный показатель,

воздушно-капельные инфекции-230/490*100=46,9%

острые кишечные инфекции - 210/490*100=42,8%

прочие - 50/490*100=10,2%

Вывод: Среди зарегистрированных 490 случаев инфекционных заболеваний удельный вес инфекционных заболеваний распределился следующим образом: На 1 месте воздушно-капельные инфекции -46,9% На 2 месте острые кишечные инфекции -42,8% На 3 месте прочие заболевания -10,2% .

2.Интенсивный показатель

Заболеваемость в 2004г 392,5x100000% = 80102,04 %,

490

Заболеваемость в 2005г 361,9x100000% = 73857,14 %,

490

Заболеваемость в 2006г 340,5x100000% = 69489,79 %,

490

Вывод: Среди зарегистрированных 490 случаев инфекционных заболеваний частота заболеваний распределилась следующим образом:

Наибольшая частота заболеваний за предыдущие 3 года - 80102,04 % была в 2004 году На 2 месте -73857,14 %, в 2005 году и на 3 месте -69489,79 %,в 2006 году

3. Показатели соотношения

30x1000 = 0,19 %

157000

Вывод: В городе Н. на 1000 человек приходится 0,19% инфекционных коек

4. Показатель наглядности характеризует отношение различных показателей к одному принятому за 100.

Год

Показатель заболеваемости

Абсолютный

прирост

(+,-)

Темп роста

(%)

Темп прироста

(%, +,-)

Значение 1 %

Показатель наглядности %

2004

392,5

-

-

-

-

100,0

2005

361,9

-30,6

89

-3

0,13

88,5

2006

340,5

-21,4

73

-5,22

0.13

77,0

Вывод: Среди зарегистрированных 490 случаев инфекционных заболеваний удельный вес инфекционных заболеваний распределился следующим образом: На 1 месте воздушно-капельные инфекции -46,9% На 2 месте острые кишечные инфекции -42,8% На 3 месте прочие заболевания -10,2% .

Среди зарегистрированных 490 случаев инфекционных заболеваний частота заболеваний распределилась следующим образом:

Наибольшая частота заболеваний за предыдущие 3 года - 80102,04 % была в 2004 году На 2 месте -73857,14 %, в 2005 году и на 3 месте -69489,79 %,в 2006 году с 2004 года идет снижение заболеваемости инфекционными заболеваниями.

2. На основе имеющихся данных рассчитать; 1) среднюю арифметическую сгруппированного ряда по способу моментов; 2) среднее квадратическое отклонение; 3) ошибку средней арифметической; 4) используя таблицу Стьюдента, исчислить доверительные интервалы с 95% вероятностью.

При изучении веса 326 призывников (в кг) материал распределился следующим образом: 50-53.9 (8 чел), 54-57.9 (32 чел), 58-61.9 (49 чел), 62-65.9 (65 чел), 66-69.9 (62 чел), 70-73.9 (48 чел), 74-77.9 (19 чел), 78-81.9 (16 чел), 82-85.9 (14 чел), 86-89.9 (8 чел), 90-93.9 (5 чел).

Решение:

1. Вычисляем среднюю арифметическую сгруппированного ряда по способу моментов / х / по следующей формуле:

Х1=50+53,9/2=51,95кг

Х2=54+57,9/2=55,95 кг

Х3=58+61,9/2=59,95 кг

Х4=62+65,9/2=63,95 кг

Х5=66+69,9/2=67,95 кг

Х6=70+73,9/2=71,95 кг

Х7=74+77,9/2=75,95 кг

Х8=78+81,9/2=79,95 кг

Х9=82+85,9/2=83,95 кг

Х10=86+89,9/2=87,95 кг

Х11=90+93,9/2=91,95 кг

Х=51,95+55,95+59,95+63,95+67,95+71,95+75,95+79,95+83,95+87,95+91,95/ 326 = 2,43

2. Вычисляем среднее (квадратическое) отклонение () по формуле:

- наибольший показатель;

- наименьший показатель;

K - табличный коэффициент;

д=91,95-51,95/3,64=10,99

3. Вычисляем стандартную ошибку среднего арифметического значения (m) по формуле:

, когда n > 30

m=10,99/=209,09

4. Вычисляем среднюю ошибку разности по формуле:

t=х12/m=91,95-51,95/209,09=0,19 - находим по таблице Стьюдента граничное значение t 0,19 при f 34

Критические значения коэффициента Стьюдента (t-критерия) для различной доверительной вероятности p и числа степеней свободы f:

f

p

0.80

0.90

0.95

0.98

0.99

0.995

0.998

0.999

1

3.0770

6.3130

12.7060

31.820

63.656

127.656

318.306

636.619

2

1.8850

2.9200

4.3020

6.964

9.924

14.089

22.327

31.599

3

1.6377

2.35340

3.182

4.540

5.840

7.458

10.214

12.924

4

1.5332

2.13180

2.776

3.746

4.604

5.597

7.173

8.610

5

1.4759

2.01500

2.570

3.649

4.0321

4.773

5.893

6.863

6

1.4390

1.943

2.4460

3.1420

3.7070

4.316

5.2070

5.958

7

1.4149

1.8946

2.3646

2.998

3.4995

4.2293

4.785

5.4079

8

1.3968

1.8596

2.3060

2.8965

3.3554

3.832

4.5008

5.0413

9

1.3830

1.8331

2.2622

2.8214

3.2498

3.6897

4.2968

4.780

10

1.3720

1.8125

2.2281

2.7638

3.1693

3.5814

4.1437

4.5869

11

1.363

1.795

2.201

2.718

3.105

3.496

4.024

4.437

12

1.3562

1.7823

2.1788

2.6810

3.0845

3.4284

3.929

4.178

13

1.3502

1.7709

2.1604

2.6503

3.1123

3.3725

3.852

4.220

14

1.3450

1.7613

2.1448

2.6245

2.976

3.3257

3.787

4.140

15

1.3406

1.7530

2.1314

2.6025

2.9467

3.2860

3.732

4.072

16

1.3360

1.7450

2.1190

2.5830

2.9200

3.2520

3.6860

4.0150

17

1.3334

1.7396

2.1098

2.5668

2.8982

3.2224

3.6458

3.965

18

1.3304

1.7341

2.1009

2.5514

2.8784

3.1966

3.6105

3.9216

19

1.3277

1.7291

2.0930

2.5395

2.8609

3.1737

3.5794

3.8834

20

1.3253

1.7247

2.08600

2.5280

2.8453

3.1534

3.5518

3.8495

21

1.3230

1.7200

2.2.0790

2.5170

2.8310

3.1350

3.5270

3.8190

22

1.3212

1.7117

2.0739

2.5083

2.8188

3.1188

3.5050

3.7921

23

1.3195

1.7139

2.0687

2.4999

2.8073

3.1040

3.4850

3.7676

24

1.3178

1.7109

2.0639

2.4922

2.7969

3.0905

3.4668

3.7454

25

1.3163

1.7081

2.0595

2.4851

2.7874

3.0782

3.4502

3.7251

26

1.315

1.705

2.059

2.478

2.778

3.0660

3.4360

3.7060

27

1.3137

1.7033

2.0518

2.4727

2.7707

3.0565

3.4210

3.6896

28

1.3125

1.7011

2.0484

2.4671

2.7633

3.0469

3.4082

3.6739

29

1.3114

1.6991

2.0452

2.4620

2.7564

3.0360

3.3962

3.8494

30

1.3104

1.6973

2.0423

2.4573

2.7500

3.0298

3.3852

3.6460

32

1.3080

1.6930

2.0360

2.4480

2.7380

3.0140

3.3650

3.6210

34

1.3070

1.6909

2.0322

2.4411

2.7284

3.9520

3.3479

3.6007

36

1.3050

1.6883

2.0281

2.4345

2.7195

9.490

3.3326

3.5821

38

1.3042

1.6860

2.0244

2.4286

2.7116

3.9808

3.3190

3.5657

40

1.303

1.6839

2.0211

2.4233

2.7045

3.9712

3.3069

3.5510

42

1.320

1.682

2.018

2.418

2.6980

2.6930

3.2960

3.5370

44

1.301

1.6802

2.0154

2.4141

2.6923

3.9555

3.2861

3.5258

46

1.300

1.6767

2.0129

2.4102

2.6870

3.9488

3.2771

3.5150

48

1.299

1.6772

2.0106

2.4056

2.6822

3.9426

3.2689

3.5051

50

1.298

1.6759

2.0086

2.4033

2.6778

3.9370

3.2614

3.4060

55

1.2997

1.673

2.0040

2.3960

2.6680

2.9240

3.2560

3.4760

60

1.2958

1.6706

2.0003

2.3901

2.6603

3.9146

3.2317

3.4602

65

1.2947

1.6686

1.997

2.3851

2.6536

3.9060

3.2204

3.4466

70

1.2938

1.6689

1.9944

2.3808

2.6479

3.8987

3.2108

3.4350

80

1.2820

1.6640

1.9900

2.3730

2.6380

2.8870

3.1950

3.4160

90

1.2910

1.6620

1.9867

2.3885

2.6316

2.8779

3.1833

3.4019

100

1.2901

1.6602

1.9840

2.3642

2.6259

2.8707

3.1737

3.3905

120

1.2888

1.6577

1.9719

2.3578

2.6174

2.8598

3.1595

3.3735

150

1.2872

1.6551

1.9759

2.3515

2.6090

2.8482

3.1455

3.3566

200

1.2858

1.6525

1.9719

2.3451

2.6006

2.8385

3.1315

3.3398

250

1.2849

1.6510

1.9695

2.3414

2.5966

2.8222

3.1232

3.3299

300

1.2844

1.6499

1.9679

2.3388

2.5923

2.8279

3.1176

3.3233

400

1.2837

1.6487

1.9659

2.3357

2.5882

2.8227

3.1107

3.3150

500

1.2830

1.6470

1.9640

2.3330

2.7850

2.8190

3.1060

3.3100

Вывод: Табличное значение, t 0,05=2.04 сравним это значение с вычисленным t , которое равно 3,19, то есть больше граничного значения (2,04).

Следовательно, различия между средними арифметическими значениями двух контрольных испытаний считаются достоверными при 5%-ом уровне значимости.

Значит, у нас достаточно оснований говорить о том, что данная методика изучения веса является эффективной.

Изучалось изменение показателей функций внешнего дыхания у 42 больных с хронической пневмонией до и после лечения. Частота дыхания в минуту до лечения была Mj + m2» 21;5 + 1.0, а после лечения М2± m2 = 18.2_+ O,8. Рассчитать коэффициент достоверности различий, оценить по таблице Стьюдента

Решение:

Как объясняется в разделе Элементарные понятия статистики, степень различия между средними в двух группах зависит от внутригрупповой вариации (дисперсии) переменных. В зависимости от того, насколько различны эти значения для каждой группы, "грубая разность" между групповыми средними показывает более сильную или более слабую степень зависимости между независимой (группирующей) и зависимой переменными.

В нашем случае, частота дыхания в минуту до лечения была равна 21;5 и 18,2 после лечения, то разность внутригрупповых средних только на величину 21,5-18,2=3,3 будет чрезвычайно важной, когда все значения частоты дыхания в минуту до лечения лежат в интервале от 20.5 до 22,5, а все значения частоты дыхания в минуту после лечения - в интервале 17,4-19,0. В этом случае можно довольно хорошо предсказать (значение зависимой переменной) исходя из значения до лечения (независимой переменной).

Изучалось качество диагностики и лечебной тактики при язвенной болезни у подростков за ряд лет

За 2001-2003 гг. из 130 больных было прооперированно 12, за 2005-2007 гг. из 205 больных прооперированно 6.

Есть ли на самом деле снижение частоты операций?

Решение:

Определяем снижение частоты операций:

За 2001-2003 гг.

12*100/130=9,2%

за 2005-2007 гг.

6*100/205=2,92%

9,2/2,92=3,15

Ответ: За 2005-2007 гг. произошло снижение операций более чем в 3 раза

Определить тип динамического ряда. Провести преобразование динамического ряда: путем определения групповой средней, путем определения скользящей средней, Рассчитать основные показатели динамического ряда, оформив в виде таблицы. Изобразить графически динамику явления до и после преобразования. Провести анализ, сделать соответствующие выводы

Общая смертность по Башкирии (на 1000 населения)

Годы

2000

2001

2002

2003

2004

2005

2006

2007

Показатель смертности

13,0

13,4

14,1

14,2

14,1

14,2

13,6

13,6

Динамический ряд представляет собой перечень числовых значений однородных сопоставимых статистических показателей в последовательные моменты или периоды времени.

Величины динамического ряда принято называть уровнем ряда. Уровни динамического ряда могут быть представлены абсолютными величинами, относительными величинами (интенсивными, экстенсивными показателями), средними величинами.

Динамические ряды могут быть двух видов:

моментный динамический ряд (характеризует явление на какой-то момент времени, например, число родившихся на 1.01.04)

интервальный динамический ряд (характеризует явление на определенный промежуток времени - интервал, например, рождаемость за 2003 год)

В нашем случае ряд интервальный

Абсолютный прирост (2000 г.) = 13,0-13,4 = -0,4;

Темп роста (2000 г.) = 13,4*100/13,0 = 103 %;

Темп прироста (2000 г.) = (-0,4)*100/13 % (или 103 - 100,0 = -3)

Значение 1% (2000 г.) = -0,4/3 = +0,13

Год

Показатель смертности

Абсолютный прирост (+,-)

Темп роста (%)

Темп прироста (%,+,-)

Значение 1%

Показатель наглядности, %0

2000

13,0

-

-

-

-

100,0

2001

13.4

-0,4

103

3

0,13

88,5

2002

14.1

-0,7

105,22

5,22

0.13

77,0

2003

14,2

-0,1

100,7

0,7

0,14

79,1

2004

14.1

0,1

99,29

-0,71

0,14

77,0

2005

14,2

-0,1

105,22

5,22

0,019

77,0

2006

13,6

0,6

95,77

-4,23

0,14

79,1

2007

13,6

0

100

0

0

77,0

Вывод: показатель смертности то увеличивался, то снижался. Наибольший темп снижения показателя наблюдался в 2006г., когда он достиг 13,6%, по сравнению с предыдущим 2005г.

Вычислить стандартизированные показатели заболеваемости с временной утратой трудоспособности в двух цехах. Сравнить их с интенсивными показателями. Стандартизацию провести прямым методом. За стандарт принять состав рабочих по возрасту в цехе №2

Профессия

ЦЕХ 1

ЦЕХ2

число рабочих

число случаев заболеваний

число рабочих

число случаев заболеваний

до 20

250

200

400

400

20-39

750

800

100

120

40-49

800

1600

150

160

50 и старше

200

400

50

70

ВСЕГО:

2000

3000

700

750

Прямой метод стандартизации:
Расчеты проводят в следующей последовательности:
Вычисление специальных (групповых) показателей (по полу, возрасту, профессии и т.д.)
Выбор стандарта и исчисление его.
Вычисление «ожидаемого» числа заболевших по стандарту. Получение стандартизованных показателей.
Обычные показатели : Показатели заболеваний на 100 раб. I цех - 150 на 100 работающих II цех - 107.14
Стандартизованные показатели: : I период - 12,1 на 100 работающих
II период - 10,2

Профессия

Число

рабочих

число случаев заболеваний

Показатели заболеваний на 100 раб.

Число рабочих в двух цехах

I

II

I

II

I

II

1

2

3

4

5

6

7

8

до 20

250

400

200

400

80

100

650

20-39

750

100

800

120

106,6

120

850

40-49

800

150

1600

160

200

106.6

950

50 и старше

200

50

400

70

200

140

600

ВСЕГО:

2000

700

3000

750

150

107,14

2700

Вывод: показатели заболеваемости в II цехе ниже. Более высокий обычный показатель заболеваний в I и II цехах у рабочих от 50 лет и выше.

Использованная литература

Ю.П. Лисицын Социальная гигиена (медицина) и организация здравоохранения Казань 2000г.

B.C. Лучкевич. Основы социальной медицины и управления здравоохранением, Санкт-Петербург, 1997г.

B.C. Лучкевич, И.В. Поляков. Основы медицинского страхования в России. Санкт-Петербург, 1995г

D.A. Миняев Общественное здоровье и здравоохранение Москва «Мед пресс - информ» 2002г.

А.Ф. Серенко Социальная гигиена и организация здравоохранения М.Медицина 1982г.

Л.Ю. Трушкина, А.Г Трушкин. Экономика и управление здравоохранением Ростов-на-Дону .Феникс 2003

И.М.Харисова, Н.Х. Шарафутдинова Статистические методы в медицине и здравоохранении Уфа-1999г




Не сдавайте скачаную работу преподавателю!
Данную контрольную работу Вы можете использовать для выполнения своих заданий.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :