Министерство образования Российской Федерации
Руководитель работы
__________________ Аралбаева Г.Г.
“____”_____________ 2002г.
Исполнитель
студент гр.99 з/о ст
______________ .Чаплыгина О.Г.
“_____”____________ 2002г.
Оренбург 2002 г.
Объект исследования : Производственные предприятия, занимающиеся производственной деятельностью.
Предмет исследования : корреляционная связь между признаками.
1. По исходным данным построить классическую линейную модель множественной регрессии, оценить значимость полученного уравнения регрессии и его коэффициентов, для значимых параметров построить доверительный интервал.
Построим собственно-линейную функцию регрессии вида: , оценка
Параметры модели будем искать МНК:
Матрица Х имеет размерность 6х53, в первой строке стоят единицы.
Используя пакет STADIA оцениваем уравнение регрессии.
Получаем следующие результаты:
Таблица 1
Коэфф. a0 a1 a2 a3 a4 a5
Значение -14,9 14,4 4 0,906 0,174 0,237
Ст.ошиб. 18,4 19,8 2,91 0,992 0,188 0,216
Значим. 0,575 0,523 0,172 0,631 0,637 0,278
Источник Сум.квадр. Степ.св Средн.квадр.
Регресс. 37,2 5 7,44
Остаточн 292 47 6,22
Вся 330 52
Множеств R R^2 R^2прив Ст.ошиб. F Значим
0,33602 0,11291 0,01854 2,4942 1,2 0,325
Гипотеза 0: <Регрессионная модель неадекватна экспериментальным данным>
Оценка уравнения регрессии:
=-14,9+14,4х1+4,0х2+0,906х3 +0,174х4+0,237х5
(18,4) (19,8) (2,91) (0,992) (0.188) (0.216)
(внизу указаны стандартные ошибки каждого коэффициента регресии.)
Проверка значимости модели.
Проверим значимость построенной модели, выдвигаем гипотезу
H0: (модель незначима)
H1: (модель значима)
Строим статистику распределена по закону Фишера-Снедокора с числом ст. свободы n в числители и N-n-1 в знаменатели. (воспользуемся данными таблицы 1)
В нашем случае F=1,2, Fкр (0,05;5;47)=2,44 т.к Fн>Fкр,то гипотеза Н0 не отвергается и модель не является значимой.
Проверка значимости коэффициентов регрессии.
Проверим на значимость коэффициенты уравнения, выдвигаем гипотезу
Н0:
Н1:
Строим статистику t= распределена по закону Стьюдента с N-n-1 ст.свободы. (воспользуемся данными таблицы 1) (будем принимать коэффициенты регрессии по абсолютному значению)
tb0 =- 0,810 tb3 =0,913
tb1 =0,727 tb=0,926
tb2 =1,375 tb5 =1,097
tкр(0,05;47)=2,013
tb0 ->-tкр tb3 <tкр
tb1 < tкр tb4 < tкр
tb2 < tкр tb5 < tкр
Среди всех коэффициентов значимыми являются b0, по такой модели прогноз сделать не представляется возможным, поскольку все коэффициенты регрессии при переменных не значимы.
На этом регрессионный анализ можно завершить, так как значимых переменных не обнаружено.
2. Проанализировать матрицу парных коэффициентов корреляции на наличие мультиколинеарности, если мультиколлинеарность присутствует устранить методом пошагового отбора переменных, отобрать наиболее информативные переменные и с помощью них построить модель регрессии, оценить ее значимость.
Коэффициент ковариации нормированных случайных величин называется коэффициентом корреляции, или коэффициентом парной корреляции.
, (1)
где - средние квадратические отклонения случайных величин и
Для удобства расчета корреляционной матрицы, предварительно рассчитывают ковариационную матрицу .
Ковариационная матрица определяется как математическое ожидание произведения центрированного случайного вектора на этот транспонированный вектор
Матрица
(2)
где - центральный смешанный момент второго порядка, коэффициент ковариации i- й и j-й компонент вектора при
Рассмотрим матрицу исходных данных (см. Приложение 1)
1. Найдем центрированную матрицу
, где Х матрица исходных данных размерности 53*6
Найдем оценку вектора , т.е.
где , где n = 53 - объем выборки.
Используя пакет STADIA (Раздел описательная статистика), получаем вектор :
Согласно приведенной формуле рассчитываем центрированную матрицу (Приложение 2)
2. Рассчитываем матрицу
Используя пакет STADIA (меню преобразований), получаем:
=
Оценку ковариационной матрицы получим путем умножения матрицы на множитель
Обозначим оценку ковариационной матрицы S, используя пакет MathCad находим:
оценка ковариационной матрицы.
Для расчета ковариационной матрицы воспользуемся формулой (1) и определением ковариационной матрицы (2), получаем следующую оценку корреляционной матрицы:
Данный расчет можно провести на прямую, используя пакет STADIA, но наша цель бала показать весь процесс расчета корреляционной матрицы. Проанализируем корреляционную матрицу.
1 - я строка и 1 - столбец это признак у , как видим наибольшая связь наблюдается между признаками х7 и х14 очень тесная (-0,938) , если анализировать парную связь между факторными признаками, то можно заметить наибольшую связь между признаком х5 и х17 (-0,938).
Устранение мультиколлинеарности с помощью метода пошаговой регрессии
Устраним мультиколлинеарность методом пошаговой регрессии,
который предполагает, что на каждом шаге мы будем включать в уравнение регрессии тот признак, который будет вызывать наибольшее приращение коэффициента детерминации.
Шаг 1
Строим уравнения регрессии
Находим максимальный коэффициент детерминации (где k=1)
Вычисляем нижнюю границу коэффициента детерминации достигнет своего максимума.
Используя пакет STADIA определяем:
Переменная |
k |
|||
X17 |
0.191 |
0.7117 |
1 |
|
Шаг 2
Строим уравнения регрессии
Находим максимальный коэффициент детерминации (где k=1)
Вычисляем нижнюю границу коэффициента детерминации достигнет своего максимума.
Используя пакет STADIA определяем:
Переменная |
k |
|||
X7 |
0.7618 |
0.7117 |
1 |
|
Х7,Х9 |
0.8118 |
0.750 |
2 |
|
Шаг 3
Строим уравнения регрессии
Находим максимальный коэффициент детерминации (где k=1)
Вычисляем нижнюю границу коэффициента детерминации достигнет своего максимума.
Используя пакет STADIA определяем:
Переменная |
k |
|||
X7 |
0.7618 |
0.7117 |
1 |
|
Х7,Х9 |
0.8118 |
0.750 |
2 |
|
Х7,Х9,X3 |
0.80953 |
0.735 |
3 |
|
Процесс прекращаем поскольку, меньше таких коэффициентов для уравнений регрессии с двумя переменными.
Подробный анализ, выполненный с помощью программы “Stadia”, приведен в Приложении 1.
Граф.1
Подробные расчеты см. Приложение 1
Таким образом , из анализа исключаются все факторные признаки,
кроме Х7,X9
2. Проверить построенную модель на гетероскедастичность. Построить обобщенную модель множественной регрессии (случай гетероскедастичности остатков)
1.4 Построение и исследование новой модели регрессии.
1.4.1 Вычисление оценок коэффициентов регрессии
Регрессионная модель примет вид:
Вывод т.к. около 1, то можно считать , что связь тесная.
Проверка значимости и построение доверительных интервалов для коэффициентов регрессии
Проверим значимость уравнения регрессии:
H0:<регрессионная модель незначима>
H1:<регрессионная модель значима>
Fвычисленное=57.1
Fкритическое (0,05;2;24)=3,40 так как Fвычисленное > Fкритическое ,
то принимается гипотеза Н1 , следовательно в уравнении коэффициенты регрессии должны быть значимыми.
Проверим значимость коэффициентов регрессии
tкритическое =2.064
tвычисленное = .
коэффициент значим.
коэффициент значим
.
коэффициенты значимы, поскольку> tкритическое =2.064, < tкритическое ,
Построим доверительный интервал для коэффициентов по формуле:
где остаточная дисперсия
Используя пакет STADIA находим доверительный интервал для коэффициента при переменной Х7,Х9.
1.4.2 Построение доверительного интервала для результативного признака
Доверительный интервал для результативного признака будем строить , исходя из формулы:
,
где t-значение статистики Стьюдента при и
степенях свободы.
Построим доверительный интервал прогноза в точке , используя пакет STADIA ,находим:
|
rang xi |
rang ei |
Di |
Di2 |
|||
21.369.277.917.118.437.972.227.558.246.27443.518.859.552.265.160.22.638419.878.76210469.378.915.151.5 |
84.98 30.58 38.42 60.34 60.22 60.79 29.82 70.57 34.51 64.73 36.63 32.84 62.64 34.07 39.27 28.46 30.27 69.04 25.42 53.13 28.00 38.79 32.04 38.58 18.51 57.62 20.80 |
-0.917 2.18 0.808 -5 -7.52 -17.5 7.55 -10.2 11.5 -21.7 2.23 0.909 -7.49 19.7 4.75 -10.3 11.9 10.8 -4.14 -8.63 -6.32 -13.4 -3.89 -5.4 -1.42 19.6 32 |
2,5 19,5 24 4,5 2,5 8,5 18 8,5 14 11 21 10 7 12,5 12,5 16 19,5 4,5 26 6 22 16 27 23 25 1 16 |
15 18 16 11 7 2 21 5 23 1 19 17 8 26 20 4 24 22 12 6 9 3 13 10 14 25 27 |
-15 -18 8 -11 -7 -2 -3 -5 -9 10 2 -7 -1 -26 -20 12 -24 -22 14 0 13 13 14 13 11 -24 -11 |
225 324 64 121 49 4 9 25 81 100 4 49 1 676 400 144 576 484 196 0 169 169 196 169 121 576 121 |
|
|
rang xi |
rang ei |
Di |
Di2 |
|||
21.369.277.917.118.437.972.227.558.246.27443.518.859.552.265.160.22.638419.878.76210469.378.915.151.5 |
84.98 30.58 38.42 60.34 60.22 60.79 29.82 70.57 34.51 64.73 36.63 32.84 62.64 34.07 39.27 28.46 30.27 69.04 25.42 53.13 28.00 38.79 32.04 38.58 18.51 57.62 20.80 |
-0.917 2.18 0.808 -5 -7.52 -17.5 7.55 -10.2 11.5 -21.7 2.23 0.909 -7.49 19.7 4.75 -10.3 11.9 10.8 -4.14 -8.63 -6.32 -13.4 -3.89 -5.4 -1.42 19.6 32 |
21 10 5 25 22,5 20 2,5 26 11 15 4 16 24 6,5 13 2,5 18 27 6,5 22,5 1 8 14 12 9 17 19 |
15 18 16 11 7 2 21 5 23 1 19 17 8 26 20 4 24 22 12 6 9 3 13 10 14 25 27 |
6 -8 -11 14 -7 18 -21 21 -12 14 -15 -1 16 -26 -7 -4 -6 5 -12 -6 -8 5 1 2 -5 -8 -8 |
36 64 121 196 49 324 441 441 144 196 225 1 256 676 49 16 36 25 144 36 64 25 1 4 25 64 64 |
|
Поскольку гетероскедастичности нет ,то нет необходимости применения ОМНК.
Проверим наличие автокорреляции в модели. Составим расчетную таблицу:
|
||||
0.9172.180.808-5-7.52-17.57.55-10.211.5-21.72.230.909-7.4919.74.75-10.311.910.8-4.14-8.63-6.32-13.4-3.89-5.4-1.4219.6 |
2.180.808-5-7.52-17.57.55-10.211.5-21.72.230.909-7.4919.74.75-10.311.910.8-4.14-8.63-6.32-13.4-3.89-5.4-1.4219.632 |
9,591411,8823833,73296,350499,6004627,502315,063470,891102,24572,6451,7450470,5432739,296223,502226,503492,841,21223,20420,16015,336150,126490,44012,280115,8404441,84153,76 |
0,8408894,75240,6528642556,5504306,2557,0025104,04132,25470,894,97290,82628156,1001388,0922,5625106,09141,61116,6417,139674,476939,9424179,5615,132129,162,0164384,16 |
|
Приложение 1
№ п/п |
Y1 |
X5 |
X7 |
X10 |
X14 |
X17 |
|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253 |
9.269.3812.1110.819.359.878.179.125.886.306.225.496.506.614.327.377.028.258.158.726.648.105.529.3713.176.676.686.2210.028.166.786.4810.447.658.777.0011.069.0213.289.276.706.699.427.245.395.615.596.576.544.235.2218.0011.03 |
0.780.750.680.700.620.760.730.710.690.730.680.740.660.720.680.770.780.780.810.790.770.780.720.790.770.800.710.790.760.780.620.750.710.740.650.660.840.740.750.750.790.720.700.660.690.710.730.650.820.800.830.700.74 |
1.371.491.441.421.351.391.161.271.161.251.131.101.151.231.391.381.351.421.371.411.351.481.241.401.451.401.281.331.221.281.471.271.511.461.271.431.501.351.411.471.351.401.201.151.091.261.361.151.871.171.611.341.22 |
1.451.301.371.651.911.681.941.891.942.061.961.021.850.880.621.091.601.531.402.221.321.48 |
Контрольная работа | Концепция информатизации Российской Федерации |
Контрольная работа | Причины агрессивного поведения. Методы работы с агрессивными детьми |
Контрольная работа | Алгоритм выбора и реализации предпринимательской идеи |
Контрольная работа | Современные методы арт-терапии |
Контрольная работа | Системы управления взаимоотношения с клиентами |
Контрольная работа | Учет материальных затрат в бухгалтерском учете |
Контрольная работа | Геополитическое положение России |
Контрольная работа | Особенности вознаграждения работников в организации |
Контрольная работа | Виды запасов |
Контрольная работа | Психоанализ |
Контрольная работа | Контрольная работа по Морфологии |
Контрольная работа | Основные функции Центрального Банка |
Контрольная работа | Образ князя Олега в Повести временных лет и в Песни о Вещем Олеге |
Контрольная работа | Гештальтпсихология и бихевиоризм |
Контрольная работа | Причинение вреда при задержании лица, совершившего преступление |