§1 Основные определения
Определение 1: (интуитивное).
Арифметическая функция называется частично рекурсивной, если существует алгоритм для нахождения ее значений.
Определение 2:
Под начальными функциями будем понимать следующие функции:
1. функция следования S ;
2. функции выбора
,
3.
4. нулевая функция .
Определение 3: (оператор суперпозиции (подстановка)).
Говорят, что функция получена суперпозицией из функций и , если для всех значений выполняется равенство:
Определение 4: (оператор примитивной рекурсии ).
Говорят, что функция получена из двух функций и с помощью оператора примитивной рекурсии, если имеют место следующие равенства:
.
Это определение применимо и при n=0. Говорят, что функция получена из одноместной функции константы равной и функции , если при всех :
Определение 5: (-оператор или оператор минимизации).
Определим -оператор сначала для одноместных функций.
Будем говорить, что функция получена из частичной функции с помощью оператора, если,
.
В этом случае -оператор называется оператором обращения и -наименьшее .
Теперь определим -оператор в общем виде:
Определение 6:
Функция называется частично рекурсивной функцией (ЧРФ) ,если она может быть получена из начальных функций с помощью конечного числа применений трех операторов: суперпозиции, примитивной рекурсии, -оператора.
Определение 7:
Если - ЧРФ и всюду определена, то она называется рекурсивной функцией.
Определение 8:
Множество - рекурсивно перечислимо (РП), в интуитивном смысле, если существует эффективная процедура, которая выписывает элементы этого множества. Каждый элемент на некотором шаге будет выписан.
Определение 9:
Характеристической функцией множества называется функция
Определение 10:
Множество называется рекурсивным, если характеристическая функция является рекурсивной.
Определение 11:
Функция m-сводима к функции (), в точности тогда, когда существует рекурсивная функция , такая, что
Функция называется сводящей функцией.
Введем отношение m-эквивалентности на множестве .
Определение 12:
Введем понятие m-степени функции .
Определение 13:
Введем понятие m-сводимости множеств.
Определение 14:
Множество m-сводимо к множеству (обозначение ), если существует рекурсивная функция такая, что В этом случае говорят, что m-сводимо к посредством .
Аналогично вводится понятие m-степени множества .
Определение 15:
Частичная характеристическая функция для множества -функция
Определение 16:
ЧРФ - универсальная для множества , если (-рекурсивная функция ) где - ЧРФ с геделевым номером .
Определение 17:
Если на множестве определено бинарное отношение , удовлетворяющее условиям:
1. (рефлексивность);
2. (антисимметричность);
3. (транзитивность),
то множество называется частично упорядоченным, а отношение называется частичным порядком на . Отношение , удовлетворяющее только свойствам 1,3, называется предпорядком на . Если частичный порядок на удовлетворяет условию
4. то называется линейным порядком (или просто порядком), а -линейно упорядоченным множеством или цепью.
Определение 18:
Верхней (нижней) гранью подмножества называется такой элемент что () для любого . Элемент называется max (min) элементом , если () для всех
Если же () для любых ? ,то элемент называется наибольшим (наименьшим).
Определение 19.
Наименьшая (наибольшая) из верхних (нижних) граней множества называется точной верхней (нижней) гранью этого множества.
Определение 20.
Полурешеткой (точнее, верхней полурешеткой) назовем пару где - непустое множество, а -бинарная операция на , удовлетворяющая условиям: для любого
1.
2.
3.
Если - полурешетка, то зададим на частичный порядок следующим соотношением: для
Проверка того, что это частичный порядок, очевидна. Операция является для этого порядка операцией взятия точной верхней грани.
Определение 21:
Множество называется продуктивным, если существует рекурсивная функция , называемая продуктивной функцией для , такая, что
Ясно, что продуктивное множество не может быть р.п. Если бы то Ш, что невозможно.
Определение 22:
Множество называется креативным, если оно р.п. и продуктивно.
Заметим, что креативные множества по теореме Поста не могут быть рекурсивными. Примером креативного множества будет
Действительно
откуда рекурсивная функция является продуктивной функцией для .
Имеет место следующее утверждение: если В - р.п. множество, А -креативно, то - креативно. [1,5]
§2 Простейшие свойства m - степеней
Ведем отношение частного порядка на множестве m - степеней:
Обозначим через L частично упорядоченное множество m - степеней.
Утверждение 2.1: множество L является верхней полурешеткой.
Доказательство:
Рассмотрим , где
.
Докажем, что эта функция является точной верхней гранью для произвольных ЧРФ б и в.
Рассмотрим г:
для рекурсивных функций g, f.
Определим функцию .
Проверим следующие равенства: .
Пусть x=2t, тогда и .
Пусть x=2t+1, тогда и .
Таким образом, равенство справедливо.
Следовательно, функция является точной верхней гранью для произвольных ЧРФ б и в, ч.т.д.
Утверждение 2.2: .
Доказательство:
: Пусть , тогда посредством рекурсивной функции f, которая множество А m - сводит к В.
: Аналогично , ч.т.д.
Следствие: существует изоморфное вложение полурешетки m-степеней рекурсивно перечисляемых множеств в полурешетку m-степеней частичных характеристических функций: .
Утверждение 2.3: .
Доказательство:
Если Ш, то утверждение справедливо.
Пусть Ш. Возьмем , откуда для некоторого ; а так как для некоторой рекурсивной функции f, то и .
Таким образом, , ч.т.д.
Следствие: функции, принадлежащие одной и той же m-степени, имеют одинаковую область значений.
Утверждение 2.4: Пусть f, g - рекурсивные функции, тогда .
Доказательство:
: Следует из следствия к 2.3.
: Пусть : покажем, что , то есть .
Строим таким образом: допустим , начинаем последовательно вычислять g(0), g(1), …, пока не получим, что g(n)=i, а такое n обязательно появится, так как .
Полагаем, что , тогда очевидно, что .
Аналогично строим функцию , такую, что . Отсюда получим, что .
Таким образом, так как и , ч.т.д. [1]
§3 Минимальные элементы верхней полурешетки m-степеней
Утверждение 3.1: Наименьшего элемента в L нет.
Доказательство:
Допустим противное, то есть пусть - наименьший в L элемент. Тогда Ш), где сШ - нигде неопределенная функция.
Следовательно, Ш и (сШ).
Возьмем всюду определенную функцию h. Ясно, что сШ?mh.
С одной стороны, (сШ) - наименьший элемент, то есть сШ?mh; с другой стороны сШ?mh.
Получили противоречие, то есть в L наименьшего элемента нет. Ч.т.д.
Утверждение 3.2: m-степень, содержащая универсальную функцию, является наибольшей в L.
Доказательство:
Пусть Ш - универсальная функция, а б - произвольная ЧРФ. Так как б - ЧРФ, то найдется такое число х0, что б=ц0.
Покажем, что . В качестве сводящей возмем функцию f(x0,y). Тогда из определения Ш вытекает, что , где , то есть .
Таким образом, - наибольшая в L. Ч.т.д.
Введем обозначение: .
Ясно, что .
Утверждение 3.3: сШ и множество всех функций вида cn(x) и только они образуют множество минимальных в L элементов.
Доказательство.
Из утверждения 3.1. следует, что сШ - минимальный в L элемент.
Возьмем произвольную функцию cn(x).
Пусть .
Ясно, что {}, кроме того б - всюду определенная функция, так как иначе , следовательно, .
Пусть теперь минимальный в L элемент, отличный от сШ и от всех сn, тогда определена в некоторой точке х0; пусть , имеем , где , то есть, . Получили противоречие. Ч.т.д. [1,2]
§1. Идеалы полурешетки m-степеней частично рекурсивных функций
Определение:
Идеалом полурешетки L назовем всякое подмножество I отличное от Ш, удовлетворяющее следующим условиям:
1. ;
2. .
Идеал называется главным, если он содержит наибольший элемент.
Рассмотрим множество всех m-степеней частичных характеристических функций, то есть:
Н={}.
Предположение 4.1:
Множество Н является главным идеалом полурешетки L.
Доказательство:
1. Берем две степени для некоторых р.п. множеств А и В. точной верхней гранью будет степень, содержащая функцию .
Определим множество АВ:
{}.
Докажем, что .
Будем пользоваться определением 15 для доказательства данного равенства.
Рассмотрим 4 случая.
1) если x=2t,
И если x=2t,
2) Если x=2t,
И если x=2t,
3) Если x=2t+1,
И если x=2t+1,
4) Если x=2t+1,
И если x=2t+1,
Следовательно, равенство справедливо во всех четырех случаях, т.к. обе его части равносильны в рассмотренных случаях.
.
2. Пусть . По определению m-сводимости из следует, что существует рекурсивная функция f такая, что: , откуда . Из утверждения 2.2 и того, что всякое р.п. множество m-сводимо к креативному следует, что: - наибольший элемент в Н, где k - креативно.
Тогда Н - главный идеал полурешетки L. Ч.т.д.
Рассмотрим множество всех m-степеней рекурсивных функций, то есть:
М={}.
Предположение 4.2: Данное множество М является главным идеалом полурешетки L.
Доказательство:
1. Берем две степени рекурсивных функций, их точной верхней гранью будет , где также рекурсивная функция.
2. Если , откуда существует рекурсивная функция h, такая, что , где также рекурсивная функция. Далее, посредством f(x) для любой рекурсивной функции f(x), отсюда - наибольший элемент в М.
М - главный идеал полурешетки L. Ч.т.д.
Контрольная работа | Концепция информатизации Российской Федерации |
Контрольная работа | Причины агрессивного поведения. Методы работы с агрессивными детьми |
Контрольная работа | Алгоритм выбора и реализации предпринимательской идеи |
Контрольная работа | Современные методы арт-терапии |
Контрольная работа | Системы управления взаимоотношения с клиентами |
Контрольная работа | Учет материальных затрат в бухгалтерском учете |
Контрольная работа | Геополитическое положение России |
Контрольная работа | Особенности вознаграждения работников в организации |
Контрольная работа | Виды запасов |
Контрольная работа | Психоанализ |
Контрольная работа | Становление и развитие педагогической мысли в России |
Контрольная работа | Политическая система общества |
Контрольная работа | Денежно-кредитная политика государства |
Контрольная работа | Игра дошкольника |
Контрольная работа | Система линейных уравнений |