Контрольная работа по предмету "Банковское дело"


Расчет процентов по кредитам и вкладам

1. Определить простую ставку процентов, при которой первоначальный капитал в размере 10000 руб. достигнет через 180 дней суммы 13000


Решение.


13000=10000∙(1+180∙p/365), где p – искомая процентная ставка.


3000=1800000∙p/365


p=3000∙365/1800000


p=0.6083


Следовательно, искомая процентная ставка – 60.83% годовых.


2. Кредит в размере 45000 выдан с 26.03 по 18.10 под простые 48% годовых. Определить размеры долга для различных вариантов начисления процентов


Решение.


«Английская практика»


tф
=6+30+31+30+31+31+30+18–1=206 дней.


FV=PV+I


I=PV∙i∙(t/T), где T – 365 дней.


I=45000∙0.48∙(206/365)=12190.68 руб.


FV=P+I=45000+12190.68=57190.68 руб.


«Французская практика»


tф
=206 дней, T=360 дней.


I=45000∙0.48∙(206/360)=12360 руб.


FV=P+I=45000+12360=57360 руб.


«Германская практика»


tф
=6+30+30+30+30+30+30+18–1=203 дней, T=360 дней.


I=45000∙0.48∙(203/360)=12180 руб.


FV=P+I=45000+12180=57180 руб.


3. Банк объявил следующие условия выдачи ссуды на год: за 1 квартал ссудный процент 48%, а в каждом последующем квартале процентная ставка по ссуде увеличивается на 3%. Определить сумму к возврату в банк, если ссуда выдана на год и составляет 45000 рублей (простые проценты)


Решение.


45000∙(1+(90∙0.48+91∙0.51+92∙0.54+ 92∙0.57)/365) = 68637.95 руб.


4. Договор вклада заключен на 8 лет и предусматривает начисление и капитализацию процентов по полугодиям. Сумма вклада 45000 руб., годовая ставка 28%. Рассчитать сумму на счете клиента к концу срока


Решение.


После первого полугодия сумма составит:


45000∙(1+0.14)=51300 руб.


Проведя аналогичное «начисление» 16 раз (по числу полугодий) мы получим сумму:


45000∙(1+0.14)16
= 366176.22 руб.


5. Владелец векселя номинальной стоимости 13000 руб. и сроком обращения 1 год предъявил его банку-эмитенту для учета за 60 дней до платежа. Банк учел его по ставке 30% годовых. Определить дисконтированную величину, то есть сумму, полученную владельцем векселя и величину дисконта


Решение.


Дисконт.


D=13000∙0.3∙60/360 = 650 руб.


Дисконтированная величина.


13000–650=12350 руб.


6. Определить значение годовой учетной ставки банка, эквивалентной ставке простых процентов 48% годовых (
n
=1)


Решение.



7. На вклады ежеквартально начисляются проценты по номинальной годовой ставке 28%. Определить сумму вклада для накопления через 1,5 года суммы 13000


Решение.


Искомая сумма равна


= = 8862.45 руб.



8. Банк предлагает долгосрочные кредиты под 48% годовых с ежеквартальным начислением процентов, 50% годовых с полугодовым начислением процентов и 44% с ежемесячным начислением процентов. Определить наиболее выгодный для банка вариант кредитования


Решение.


Рассчитаем сумму процентов за год на 1000 рублей кредита по всем трем вариантам.


1. = = 573.52 руб.


2. = = 562.5 руб.


3. = 540.53 руб.


Из приведенных расчетов видно, что наиболее выгодным для банка будет первый вид кредитования.


9. Банк выдает кредит под 48% годовых. Полугодовой индекс инфляции составил 0.09. Определить реальную годовую ставку процентов с учетом инфляции


Решение.


Искомая реальная ставка равна



10. Какую ставку процентов по вкладам нужно назначить, чтобы реальная доходность вклада с учетом инфляции 0.09 была 10% годовых


Решение.


Воспользуемся формулой И. Фишера


iα
=i+α+iα


Здесь iα
– ставка с учетом инфляции


α – уровень инфляции


i – ставка процентов


Т. е. искомая ставка равна 0.1∙0.09+0.1+0.09=0.199 = 19.9%


11. Рассчитать уровень инфляции за год при ежемесячном уровне инфляции 0.09


Возьмем индекс инфляции за год.


In
=(1+α)n
=(1+0.09)12
=2.81


Отсюда получаем:


In
=1+αг
→αг
=In
-1


αг
= 2.81–1=1.81 = 181%



12. Вклад 45000 положен в банк на полгода с ежемесячным начислением сложным начислением процентов по номинальной ставке 72% годовых. Определить реальный доход вкладчика если ожидаемый ежемесячный уровень инфляции составит 0.09


= 32193.26 руб.


Реальный доход вкладчика составит


32193.26–45000=–12806.74


13. Договор аренды имущества заключен на 5 лет. Аренда уплачивается суммами
S
1

=13000 руб.,
S
2

=14000 руб.,
S
3

=15000 руб. в конце 1 го, 3 го и 5 го годов. По новому графику платежей вносятся две суммы
S
4

=16000 руб. в конце 2 го года и
S
5

в конце 4 года. Ставка банковского процента 11%. Определить
S
5


Решение.


Соотношение платежей в первом и втором вариантах выглядит следующим образом


13000∙1.114
+14000∙1.112
+15000= 16∙1.113
+S5
∙1.11


19734.92+17249.4+15000=21882.1+S5
∙1.11


1.11∙S5
=30102.22


S5
=27199.12 руб.


14. Определить размер ежегодных платежей по сложной ставке 11% годовых для создания через 6 лет фонда в размере 13000000 руб


Решение.


Обозначим искомую сумму N. Получим соотношение


N∙(1+1.11+1.112
+1.113
+1.114
+1.115
) = 13000000


7.91286∙N=13000000


N=1642895.24 руб.


15. Рассчитать величину фонда, который может быть сформирован за 2 года путем внесения в конце каждого года сумм 13000. Проценты на вклад начисляются по ставке 11%


Решение.


Искомая сумма = 13000∙(1.11+1)=27430 руб.


16. Ежемесячная средняя плата за квартиру составляет 3000 руб. Срок платежа – начало месяца. Рассчитать величину равноценного платежа, взимаемого за год вперед. Ставка банковского депозита 48% годовых


Решение.


Искомая сумма = 3000∙9.385∙1.04 = 29281.2 руб.


17. Двухлетняя облигация номиналом 1000 руб. имеет 4 полугодовых купона доходностью 20% годовых каждый. Рассчитать цену ее первоначального размещения, приняв ставку сравнения 11%


Решение.


= = 100∙3.50515 + 1000∙0.807216 = 350.515+807.216 = 1157.73 руб.



18. Бескупонная облигация куплена по курсу 70 и продана по курсу 88 через 90 дней. Рассчитать доходность вложения по схеме сложных и простых процентов


Решение.


Для сложных процентов:




Для простых процентов:



19. Представить план амортизации пятилетнего займа в 4500000 руб., погашаемого 1) равными суммами; 2) равными срочными уплатами. Процентная ставка по займу 11%


Решение.


1) Обозначим сумму долга после К года Dк
, проценты – Iк
.


У – величина срочной уплаты


У=const+Iк


= 3.6 млн. руб. – долг после первого года.


I1
=Dic
=4.5∙0.11=0,495 млн. руб. – проценты


У1
= Dic
+=0.495+0.9=1,395 млн. руб.


Второй год:


=2,7 млн. руб.


= 0.396 млн. руб.


У2
=0,396+0.9=1,296


Третий год


=1,8 млн. руб.


= 0.297 млн. руб.


У3
=0,297+0.9=1,197


Четвертый год


=0,0 млн. руб.


= 0.198 млн. руб.


У3
=0,198+0.9=1,098


Пятый год


D5
=0


= 0.099 млн. руб.


У5
=0.099+0.9=0.999 млн. руб.


Сведем данные в таблицу:



































Год Уплата, млн. Проценты, млн. Долг, млн. руб.
0 4.5
1 1.395 0.495 3.6
2 1.296 0.396 2.7
3 1.197 0.297 1.8
4 1.098 0.198 0.9
5 0.999 0.099 0

2) Периодическая выплата постоянной суммы У при заданной процентной ставке ic
в течении n лет является аннуитетом.


Величина срочной уплаты:


У=, где D – сумма долга, ai,n
– коэффициент приведения ренты.


ai,n
=== 3,7


Величина срочной уплаты:


У= = 1,2162 млн. руб.


Обозначим сумму платежа в конце k года через Pk
, тогда:


= 0.7212 млн. руб.


I1
=У-P1
=1.2162–0.7212=0,495 млн. руб.


= 0.8005 млн. руб.


I2
=У-P2
=1.2162–0.8005=0,4157 млн. руб.


= 0.8886 млн. руб.


I2
=У-P2
=1.2162–0.8886=0,3276 млн. руб.


= 0.9863 млн. руб.


I2
=У-P2
=1.2162–0.9863=0,2229 млн. руб.


= 1.0948 млн. руб.


I2
=У-P2
=1.2162–1.0948=0,1214 млн. руб.


Сведем данные в таблицу:
































Год Величина срочной уплаты, млн. руб. Сумма платежа Проценты
1 1.2162 0.7212 0.495
2 1.2162 0.8005 0.4157
3 1.2162 0.8886 0.3276
4 1.2162 0.9863 0.2229
5 1.2162 1.0948 0.1214


Не сдавайте скачаную работу преподавателю!
Данную контрольную работу Вы можете использовать для выполнения своих заданий.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Сейчас смотрят :