Контрольная работа по предмету "Программирование, компьютеры и кибернетика, ИТ технологии"


Решение задач линейного программирования различными методами


Контрольная работа

Задание 1

Решение задач линейного программирования графическим методом

Цель задания: приобрести практические навыки решения задач линейного программирования графическим методом.

Индивидуальное задание

Найти максимум и минимум линейной формы графическим методом по исходным данным задачи ЛП (таблица 1).

Таблица 1

Номер варианта

Целевая функция

Ограничения задачи линейного программирования

6

Решение задачи

Построим область L допустимых решений. Заменим в каждом неравенстве задачи знак неравенства на знак равенства. Получим уравнения прямых:

x1+4x2=8, 2x1-x2=4, x1+x2-=1,x1=0,x2=0.

Область L определяется как общая часть полуплоскостей, соответствующих неравенствам ограничений (рисунок 1).

Рисунок 1. Графическое решение задачи ЛП

В данной задаче она составляет многоугольник ABCD. Для нахождения экстремума функции Z=-2x1+4x2 , строим разрешающую прямую, приравнивая линейную форму нулю:Z=0. Строим градиент целевой функции C(2;4).

Минимальное значение функция принимает в точке D(4,5;0,7) , а максимальное в точке B.

Анализ решения задачи линейного программирования

В результате решения задачи линейного программирования были получены минимум и максимум рассматриваемой функции, вследствие того, что область ограничений представляет собой замкнутый многоугольник, если бы фигура области ограничений была не замкнута, функция могла бы не иметь одного или обоих экстремумов в заданной области.

Задание 2

Решение задач ЛП симплексным методом с использованием симплекс-таблиц

Цель задания: закрепить теоретические сведения и приобрести практические навыки решения задач ЛП симплекс-методом.

Индивидуальное задание

Найти максимум линейной формы

Z=c1x1+c2x2

при условиях:

Данные представлены в таблице 2.

Номер варианта

A11

A12

A21

A22

A31

A32

B1

B2

B3

C1

C2

6

4

1

3

6

8

7

43

74

76

7

4

Приведем задачу ЛП к каноническому виду:

-Z= -Z = -7x1 -4x2

при ограничениях

x3, x4, x5 -- дополнительные переменные.

Во втором уравнении дополнительная переменная введена с коэффициентом -1 и уравнение умножено на -1.

Постановка задачи в виде матрицы системы ограничений

Решение задачи ЛП с составленными симплекс-таблицами

Единичные векторы A3, A4, A5 образуют базис трехмерного пространства (m=3). Решать эту задачу алгоритмом симплекс-метода можно, поскольку переменные x3, x4, x5 входят с коэффициентом +1 соответственно в первое, второе и третье ограничения. Таким образом, x3, x4, x5 - базисные переменные, а остальные небазисные. Полагая небазисные переменные в ограничениях равными нулю, получим исходное допустимое базисное решение:

X0=(0,0,43,-74,76).

Заполняем исходную симплекс-таблицу (таблица 2)

Таблица 2. Нулевая симплекс-таблица

i

Бx

Сб

A0

-7

-4

0

0

0

T

A1

A2

A3

A4

A5

1

A3

0

43

4

1

1

0

0

2

A4

0

74

-3

-6

0

1

0

3

A5

0

76

-8

7

0

0

1

4

0

7

4

0

0

0

Так как среди разностей есть положительные, то X0 не является оптимальным решением. Строим новое базисное решение.

.

Выводим из базиса вектор A3,так как

.

Разрешающий элемент таблицы x12 выделим кругом, а разрешающий столбец и строку стрелками.

Таблица 3. Первая симплекс-таблица

i

Бx

Cб

A0

-7

-4

0

0

0

T

A1

A2

A3

A4

A5

1

A1

-7

1

0

0

2

A4

0

0

1

0

3

A5

0

162

0

9

2

0

1

4

0

0

0

Так как среди разностей есть положительные, то оптимальное решение не получено. Строим новое базисное решение.

.

Выводим из базиса вектор A4,так как

.

Таблица 4. Вторая симплекс-таблица

i

Бx

Cб

A0

-7

-4

0

0

0

T

A1

A2

A3

A4

A5

1

A2

-4

43

4

1

4

0

0

2

A4

0

736

21

0

1

0

3

A5

0

-225

-36

0

-34

0

1

4

-9

0

0

0

Так как все разности во второй таблице (таблица 4) неположительны: , т получено оптимальное решение:

min(-Z)= -225.

Тогда max(Z)= -min(-Z)= 225

Анализ оптимального плана.

Использование переменной x1 нецелесообразно.

Задание 3

Моделирование и решение задач ЛП на ЭВМ

Цель задания: приобрести практические навыки моделирования задач ЛП и их решения симплекс-методом с использованием прикладной программы SIMC.

Индивидуальное задание

Предприятие может работать по 5-ти технологическим процессам, причем кол-во единиц выпускаемой продукции по разным ТП за ед. времени соответственно равны 300, 260, 320, 400, 450 шт. затраты производственных факторов в гривнах при работе по разным ТП в течение 1 ед. времени и располагаемые ресурсы этих факторов в табл.5.

Найти программу максимального выпуска продукции.

Таблица 5.

факторы

Способ производства

Ресурсы,

грн

1

2

3

4

5

Сырье

12

15

10

12

11

1300

Эл.энергия

0,2

0,1

0,2

0,25

0,3

30

Зарплата

3

4

5

4

2

400

Накладные расходы

6

5

4

6

4

800

Математическая интерпретация задачи

Исходные массивы, записанные в виде, пригодном для решения задачи по программе SIMC

5

4

12.000 15.000 10.000 12.000 11.000 < 1300.000

0.200 0.100 0.200 0.250 0.300 < 30.000

3.000 4.000 5.000 4.000 2.000 < 400.000

6.000 5.000 4.000 6.000 4.000 < 800.000

300.000 260.000 320.000 400.000 450.000

Распечатка ЭВМ в результатом решения

ИТЕРАЦИЯ N=1 РЕШЕНИЕ НАЙДЕНО !!!

ТЕКУЩАЯ СИМПЛЕКС-ТАБЛИЦА ЗАДАЧА НЕ ВЫРОЖДЕНА

Бx Cб Po 1 2 3 4 5

6 0.000 1300.000 12.000 15.000 10.000 12.000 11.000

7 0.000 30.000 0.200 0.100 0.200 0.250 0.300

8 0.000 400.000 3.000 4.000 5.000 4.000 2.000

9 0.000 800.000 6.000 5.000 4.000 6.000 4.000

0.000 300.000 260.000 320.000 400.000 450.000

КОД ОШИБКИ=0

ОПТИМАЛЬНОЕ ЗНАЧЕНИЕ БАЗИС-ВЕКТОРА И РЕШЕНИЕ

ОПТИМУМ ЦЕЛЕВОЙ ФУНКЦИИ = 0.0000

ИТЕРАЦИЯ N=1 ПРОДОЛЖЕНИЕ РЕШЕНИЯ ТЕКУЩАЯ СИМПЛЕКС-ТАБЛИЦА ЗАДАЧА НЕ ВЫРОЖДЕНА

Бx Cб Po 1 2 3 4 5

6 0.000 1300.000 12.000 15.000 10.000 12.000 11.000

7 0.000 30.000 0.200 0.100 0.200 0.250 0.300

8 0.000 400.000 3.000 4.000 5.000 4.000 2.000

9 0.000 800.000 6.000 5.000 4.000 6.000 4.000

0.000 -300.000 -260.000 -320.000 -400.000 -450.000

В БАЗИС ВВОДИТСЯ 5 СТОЛБЕЦ

ИЗ БАЗИСА ВЫВОДИТСЯ 7 СТОЛБЕЦ

ИТЕРАЦИЯ N=2 ПРОДОЛЖЕНИЕ РЕШЕНИЯ ТЕКУЩАЯ СИМПЛЕКС-ТАБЛИЦА ЗАДАЧА НЕ ВЫРОЖДЕНА

Бx Cб Po 1 2 3 4 7

6 0.000 200.000 4.667 11.333 2.667 2.833 -36.667

5 450.000 100.000 0.667 0.333 0.667 0.833 3.333

8 0.000 200.000 1.667 3.333 3.667 2.333 -6.667

9 0.000 400.000 3.333 3.667 1.333 2.667 -13.333

45000.000 -0.000 -110.000 -20.000 -25.000 1500.000

В БАЗИС ВВОДИТСЯ 2 СТОЛБЕЦ

ИЗ БАЗИСА ВЫВОДИТСЯ 6 СТОЛБЕЦ

ИТЕРАЦИЯ N=3 ПРОДОЛЖЕНИЕ РЕШЕНИЯ ТЕКУЩАЯ СИМПЛЕКС-ТАБЛИЦА ЗАДАЧА НЕ ВЫРОЖДЕНА

Бx Cб Po 1 3 4 6 7

2 260.000 17.647 0.412 0.235 0.250 0.088 -3.235

5 450.000 94.118 0.529 0.588 0.750 -0.029 4.412

8 0.000 141.176 0.294 2.882 1.500 -0.294 4.118

9 0.000 335.294 1.824 0.471 1.750 -0.324 -1.471

46941.176 45.294 5.882 2.500 9.706 1144.118

КОД ОШИБКИ=0

ОПТИМАЛЬНОЕ ЗНАЧЕНИЕ БАЗИС-ВЕКТОРА И РЕШЕНИЕ

X2=17.6471

X5=94.1176

ОПТИМУМ ЦЕЛЕВОЙ ФУНКЦИИ = 46941.1765

РЕШЕНИЕ НАЙДЕНО !!!

Оптимальный план. Экономическая интерпретация оптимального решения. В соответствии с полученным результатом выпуск продукции по 1,3 и 4 технологическим процессам нецелесообразен.

Задание 4

Моделирование транспортных задач и их решение методом потенциалов

Цель задания: приобрести практические навыки моделирования и решения транспортной задачи ЛП методом потенциалов.

Индивидуальное задание

Составить оптимальное распределение трех видов механизмов на четырех участках работ, обеспечивающих минимальную себестоимость выполнения всей работы. Количество единиц механизмов, потребности участков в механизмах и себестоимость выполнения единицы работы каждым механизмом на соответствующем участке приведены в таблице 6.

Таблица 6. 06 вариант транспортной задачи

Вид механизма

Себестоимость выполнения единицы работы механизма ,гр.

Количество единиц ai механизмов

B1

B2

B3

B4

A1

11

4

3

1

15

A2

6

8

9

7

10

A3

4

8

4

2

35

Потребности bj участков в механизмах

25

20

10

5

Математическая формулировка транспортной задачи

Пусть xij - количество единиц работы, выполненной механизмом вида ai, на участке работы bj.Требуется определить план распределения механизмов, минимизирующий себестоимость выполнения всей работы:

при ограничениях:

1) ; - все механизмы должны быть задействованы;

2); - все участки должны быть загружены;

3) ; - количество единиц работы не может быть отрицательным

Условие разрешимости задачи выполняется:

25+20+10+5=15+10+35; 60=60.

Исходный опорный план, составленный по методу северо-западного угла

Таблица 7

I

ai

B1

B2

B3

B4

A1

11

4

15

3

1

15

A2

6

5

8

5

9

7

10

A3

4

20

8

4

10

2

5

35

bj

25

20

10

5

Решение транспортной задачи методом потенциалов

Итак, видно что в число занятых клеток следует ввести клетку (2,1).

Получим новый улучшенный план - таблица 8.

Таблица 8

I

ai

B1

B2

B3

B4

A1

11

4

15

3

1

15

A2

6

5

8

5

9

7

10

A3

4

20

8

4

10

5

5

35

bj

25

20

10

5

Введём в число занятых клетку (1,4) . Получим новый улучшенный план - Таблица 9.

Таблица 9

I

ai

B1

B2

B3

B4

A1

11

4

10

3

5

1

15

A2

6

8

10

9

7

10

A3

4

25

8

4

5

2

5

35

bj

25

20

10

5

Так как, - то данный план является оптимальным и значение себестоимости по данному плану.

x12=15; x-21=5; x22=5; x-31=20;x33=10; x-34=5.

Z=15*4+5*6+5*8+20*4+10*4+5*2=260.

Анализ оптимального плана

Данный оптимальный план показывает, как нужно распределить механизмы по участкам для получения минимальной себестоимости выполненной работы.

Задание 5

Решение транспортной задачи на ЭВМ

Цель задания: приобрести практические навыки решения транспортной задачи на ЭВМ с использованием прикладной программы TRAN2.

Индивидуальное задание:

Составить оптимальное распределение трех видов механизмов на четырех участках работ, обеспечивающих минимальную себестоимость выполнения всей работы. Количество единиц механизмов, потребности участков в механизмах и себестоимость выполнения единицы работы каждым механизмом на соответствующем участке приведены в таблице 6.

Таблица 10. 06 вариант транспортной задачи

Вид механизма

Себестоимость выполнения единицы работы механизма ,гр.

Количество единиц ai механизмов

B1

B2

B3

B4

A1

11

4

3

1

15

A2

6

8

9

7

10

A3

4

8

4

2

35

Потребности bj участков в механизмах

25

20

10

5

Исходные массивы для решения транспортной задачи по программе TRAN2

Распечатка с ЭВМ с результатом решения

Оптимальный план транспортной задачи

x12=15; x-21=5; x22=5; x31=20;x33=10; x-34=5.

Z=15*4+5*6+5*8+20*4+10*4+5*2=260.

Анализ результатов и выводы

Решение транспортной задачи на ЭВМ автоматизирует работу по вычислению решений транспортных задач и на тестируемом входном условие получается за 3 итерации, как и при ручном вычислении.

Задание 6

Решение многоэтапных задач методом динамического программирования

Цель задания: приобрести практические навыки решения многоэтапных задач методом динамического программирования.

Индивидуальное задание.

В таблице 11 приведены значения gi(x) возможного прироста продукции на четырех предприятиях в зависимости от выделенной на реконструкцию и модернизацию производства суммы x.

Распределить между предприятиями имеющиеся 100 тыс. гр., чтобы общий прирост f4(100) выпуска продукции был максимальным. Для упрощения вычислений значения x принимать кратными 20 тыс. гр.

Таблица 11

Предприятие

Прирост выпуска продукции, тыс. гр.

Средства c, тыс. гр.

Номер варианта

20

40

60

80

100

1

G1(x)

11

21

40

54

62

6

2

G2(x)

13

20

42

45

61

3

G3(x)

12

22

34

55

60

4

G4(x)

10

27

33

57

69

Функциональное уравнение Беллмана для рассматриваемой задачи

f1(x)=max[g1(x)]=g1(x) - для первого предприятия;

- для остальных предприятий.

Решение задачи оптимального распределения средств между предприятиями методом динамического программирования

Таблица 12

Средства с, тыс. гр.

Предприятие

1

2

3

4

G1(x)

G2(x)

G3(x)

G4(x)

20

11

13

12

10

40

21

20

22

27

60

40

42

34

33

80

54

45

55

57

100

62

62

60

69

Таблица 13

X1*(c)

20

40

60

80

100

F1(c)

11

21

40

54

62

Таблица 14

x

С

0

20

40

60

80

100

F2(c)

X2*(c)

20

0+13

12+0

13

0

40

0+24

12+13

22+0

25

20

60

0+42

12+24

22+13

34+0

42

0

80

0+45

12+42

22+24

34+13

55+0

55

80

100

0+67

12+45

22+42

34+24

55+3

60+0

68

80

Таблица 15

x

С

0

20

40

60

80

100

F3(c)

X3*(c)

20

0+13

10+0

13

0

40

0+29

10+13

27+0

27

40

60

0+42

10+25

27+13

33+0

42

0

80

0+55

10+42

27+25

33+13

57+0

57

80

100

0+68

10+55

27+42

33+25

52+13

69+0

69

40

Таблица 16

С

X1*(c)

F1(c)

X2*(c)

F2(c)

X3*(c)

F3(c)

X4*(c)

F4(c)

0

0

0

0

0

0

0

0

0

20

20

11

20

13

0

13

0

13

40

40

21

20

24

20

25

40

27

60

60

40

60

42

0

42

0

42

80

80

54

80

45

80

55

80





Не сдавайте скачаную работу преподавателю!
Данную контрольную работу Вы можете использовать для выполнения своих заданий.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :