Сборник задач и расчетно-графических работ по технологии переработки полимеров
Содержание
1. Формование изделий (1,2,3,4,5,6,7)
2. Характеристики волокнистых наполнителей (8,9,10)
3. Отверждение термореактивных связующих (11,12,13,14,15,16)
4. Физико-химическое взаимодействие между связующим и наполнителем в переходных слоях(17,18,19,20,21,22,23,24,25,26,27,28,29,30)
5. Диффузионные процессы в системе «связующее-наполнитель» (31,32,33,34,35,36,37,38,39,40,41,42,43)
6. Структура и свойства сетчатых полимеров (44,45)
7. Материальные расчеты (46,47)
8. Статистическая обработка результатов измерений (48)
1. Рассчитать массовую скорость m , г / мин истечения расплавленного поликапроамида при линейной скорости формования v=700 м/ мин капроновой нити метрического номера N=10,7 , если плотность капрона ?=1,14 г/ см3. Рассчитав эффективное сечение нити S,мкм2 по соотношению
S=106 / N? , определите условный радиус нити r.
Решение:
Толщина нити в текстах Т=1000/N=93,4 г/1000м
S=?82000 мкм2=8,2·10-4см2.
Объёмная скорость V истечения расплава V=v·S=7·104cм/мин·8,2·104см2=57,4 см3/мин
Массовая скорость истечения расплава
m=V·?=57,4 cм3/мин·1,14 г/см3=65,4 г/мин=1,09·10-3 кг/с
S=?r2; r=vS/?=v82000/3,14=160 мкм
Ответ: m=65,4 г/мин; r=160 мкм
2. Пользуясь законом Пуазейля m=, определить поправку q, характеризующую отклонение реального полимера от ньютоновской жидкости. Принять : m=65,4 г/мин =1,09·10-3кг/с. ?P=10кгс/см2=1,02·106Па; r=160мкм; ?=1,14 г/см3; ?=1см ; ?=8 Па·с
Подсчитать, во сколько раз понизилась вязкость при течении? Какова причина этого явления?
Решение:
Для расчёта величины q из указанного соотношения все входящие в него величины необходимо выразить в единицах системы СИ:
?P=10кгс/см2=10/9,8 МПа=1,02 МПа=1,02·106Па
r=160 мкм=160·10-6м=1,6·10-4м; ?=1,14 г/см3=1,14·10-3кг/см3=1140 кг/м3; ?=1см=10-2м;
q=;
В начальном состоянии : ?1=?н
В конечном состоянии : ?2=?к=0,0275?н
Ответ: q=2,75·10-2; вязкость полимера понизилась в 36 раз.
3. Найти показатель степени m в обобщённом законе течения жидкостей ?=?·?m, если при увеличении напряжения ? в 2 раза скорость деформирования ? увеличилась в 12 раз, а вязкость ? жидкого полимера понизилась в 5 раз. О каких структурных изменениях в полимере свидетельствует полученное значение m?
Решение
Записываем обобщённый закон течения в начальном и конечном состояниях рассматриваемой системы:
?1=?1?1m
2?1=0,2?1·12m?1m
Почленно логарифмируем эти соотношения:
?g?1=?g?1+m?g?1
?g2+?g?1=?g0,2+?g?1+m?g12+m?g?1
и вычитаем одно из другого:
?g?1-?g2-?g?1=?g?1+m?g?1-?g0,2-?g?1-m?g12-m?g?1
После взаимного уничтожения некоторых слагаемых получаем алгебраическое уравнение:
+?g2=+m?g12+?g0,2;откуда m=?0,92
Ответ: m=0,92; значение m‹1 свидетельствует об уменьшении размера надмолекулярных структур в процессе переработки полимера.
4.Найти напряжение ?, при котором вязкость расплава поликапроамида составляет ?=9 Па·с при скорости деформирования ?=0,3 мин-1, если показатель степени в обобщённом законе течения ?=??m m=0,92.
Решение:
?=0,3 мин-1=с-1=0,005 с-1
Применяем обобщённый закон течения:
?=9·0,0050,92;
?g?=?g9+0,92?g(5·10-3)=?g9+0,92?g5-2,760=0,954+0,92·0,699- 2,76=0,954+0,643-2,760=-1,163. Следовательно ?=10-1,163?0,07 Па
Ответ: ?=0,07 Па
5. Вычислить среднюю массу межузловых цепей в сетчатом полимере, если модуль упругости при растяжении Ер=109 Па. Расчёт проводить по соотношению где Т=393 К, ?=1200 кг/м3, R=8,31 Дж/моль·К. Каково соотношение между модулями упругости при растяжении и межслоевом сдвиге?
Решение
=
Полученное среднее значение массы межузловых цепей Мс=12 г/моль соответствует физическим узлам ветвления (перепутывания), поскольку физические сетки значительно более частые, чем химические сетки.
Ответ: Мс=0,012 кг/моль=12 г/моль
6. Вычислить среднюю толщину d прослойки связующего при равномерном распределении однонаправленных элементарных волоконец в материале. В качестве наполнителя используется техническая нить капрон с линейной плотностью Т=90.Масса прессованного образца 40 г при массовом соотношении связующего и наполнителя 1:1. Плотность эпоксидного связующего ?св.=1,2 г/см3, плотность капрона ?капр =1,14 г/см3.Для расчёта применить соотношение
d =
где mсв.и mнап.- масса связующего и наполнителя в образце, г, соответственно.
Указанное соотношение получено для модели равномерного распределения армирующих волоконец в поперечном сечении образца ПКМ. При этом суммарная площадь промежуточных слоёв определяется как разность общей площади поперечного сечения образца и суммарной площади поперечных сечений армирующих волоконец.
Решение
Ответ: d?0,07 мм=0,007 см=70 мкм
7. Определить объём V, см3, децинормального (0,1 н) раствора соляной кислоты, пошедшего на нейтрализацию основных групп, содержащихся в 1 см3 смеси эпоксидная смола ЭД-20 -отвердитель полиэтиленполиамин (ПЭПА) по соотношению
V=N(1-xэп)vэп+(N-xэпN)vотв ,
где v =1,4•10-20; vотв=3•10-20 объём кислоты на нейтрализацию одной функциональной группы смолы и отвердителя, см3;
N=3,6•1020 част/см3, N=1,8•1020 част/см3 - начальные концентрации эпоксидных групп и аминогрупп отвердителя;
xэп=0,8 - степень превращения эпоксидных групп в процессе отверждения;
n?2 - среднее количество эпоксидных групп, связываемых одной аминогруппой отвердителя.
Решение:
Расходующаяся при титровании хлористоводородная (соляная) кислота затрачивается главным образом на нейтрализацию эпоксидных групп смолы (первое слагаемое главного соотношения) и на нейтрализацию первичных аминогрупп отвердителя (второе слагаемое).Количество подлежащих нейтрализации кислотой основных групп определяется разностью начальных количеств и прореагировавших количеств указанных функциональных групп:
V=3,6•10200,2•1,4•10-20(1,8•1020- 0,4•3,6•1020)?
?3•10-20=1,008+1,08=2,088
Ответ: V=2,088
8.Вычислить продолжительность ,с заполнения глухих пор наполнителя эпоксидным связующим вязкостью =7 Па•с. Средняя длина пор =10 мкм, глубина заполнения =7 мкм, внешнее давление P1=8 МПа=8•106 Па, начальное давление внутри поры P2=105 Па (атмосферное давление), радиус пор R=1 нм. Расчёт провести по соотношению
Что является движущей силой процесса заполнения пор, закрытых с одного конца (глухих пор)? Сформулируйте закон, который выражается используемым соотношением.
Решение:
Относительное заполнение поры < 1,поэтому n< 0 есть
величина отрицательная, поэтому есть разность давлений внешнего и внутри поры, то есть движущая сила процесса заполнения поры. Таким образом, продолжительность заполнения поры пропорциональна вязкости жидкого полимера и обратно пропорциональна движущей силе процесса. Для заполнения поры на 7 мкм (70% полной глубины) потребуется
Ответ: ?=43 с
9.Вычислить толщину переходного слоя ? в системе, содержащей mсв=13 г фенольного связующего при содержании наполнителя (лавсан) 60% масс., если массовая доля переходного слоя ?=0,34.Удельная поверхность наполнителя Sуд=6 м2/г, плотность связующего ?=1,2 г/см3. Расчёт вести по соотношению
?= ,
где m- масса связующего на 1 г наполнителя.
Что такое переходный слой и где он локализуется?
Решение:
Среднюю толщину переходного слоя ? определяют как отношение объёма V переходного слоя к его поверхности, принимаемой равной поверхности наполнителя S=Sуд•mнап (1).
Масса наполнителя mнап=(2)
Величина V=(3). С учетом соотношений (1-3) получаем:
?=
Ответ: ?=0,03•10-4 см=0,03 мкм
10. Методом обращенной газовой хроматографии (ОГХ) получено, что время удерживания ? паров этанола вискозной стренговой нитью (ВСН), помещенной в колонну хроматографа, составляет ?=50,5 с. Объемная скорость газа-носителя Vг=0,3 мл/с. Объем V сорбированного нитью пара этанола вычислить по соотношению V=Vг•(?-?о)=Vг•?? (1), где ?о=15 с - время удерживания несорбируемого компонента (“мёртвое” время колонки).
Считая пары этанола идеальным газом, следует найти количество молей и количество частиц в объёме V. При расчете суммарной поверхности S волокон принять, что сорбированный этанол покрыл поверхность мономолекулярным слоем, а площадь, занимаемая одной молекулой этанола, составляет ?=20•10-20 м2. Найти удельную поверхность ВСН Sуд= (2) при массе нити m=4,618 г.
Что называют молем? Что такое удельная поверхность твердого материала?
Назовите основные части и принцип работы газового хроматографа.
Решение:
Количество молей n сорбированных паров находим с использованием объема одного моля идеального газа 22400 мл/моль: n=
Количество сорбированных молекул N определяем через число Авогадро А=6,02•1023 частиц/моль:
N=n•A
Поверхность сорбции S определяем как площадь мономолекулярного слоя:
S=?N=?nA.
Отсюда удельная поверхность Sуд:
Sуд=====?12,13 м2/г
Ответ: S=56 м2; Sуд?12 м2/г
11. Рассматривается процесс отверждения эпоксидной смолы ЭД-20.
Температурная зависимость изобарной мольной теплоёмкости этой смолы Сролиг, Дж/моль•К, определяется соотношением
Сролиг=595+0,47Т+0,0002Т2 (1),
а температурная зависимость изобарной мольной теплоёмкости продукта с молекулярной массой 800 (димера) имеет вид
Српрод=7019-37,9Т+0,0607Т2 (2), то же для продукта с молекулярной массой 2000: Српрод 2000=17290-93,4Т+0,15Т2 (3).
Вычислить тепловой эффект отверждения при 100°С, если при 30°С он составляет -122 кДж/моль, по соотношению:
Q373=Q303+??o(373-303)+??1(3732-3032)+??2(3733-3033) (4)
Решение:
В данной задаче рассматриваются две модельные реакции
2 Ол.Прод 800 (I)
5 Ол.Прод2000 (II),
где Ол.- исходный олигомер со средней молекулярной массой 400.
В соответствии с правилами термодинамики величины ??i рассчитываются по соотношениям:
??i=?i прод 800- 2?iдля реакции (I) и
??i=?i прод 2000- 2?iдля реакции (II)
1.Расчёт теплового эффекта реакции (I) при 373К:
??o=7019-2•595=5829
??1=-37,9-2•0,466=-38,832
??2=0,061- 0,00042=0,0605,
При этом обязателен учет знака коэффициентов ?i:
Q373=-122000+5829•70-19,416•47320+0,02•24076990=- 122000Дж/моль-29195 Дж/2 моль = -122000 Дж/моль -14597 Дж/моль ?-137 кДж/моль
2.Расчёт теплового эффекта реакции (II) при 373 К:
??o=17290-5•595=17290-2975=14315
??1=-93,36-5•0,466=-93,36-2,33=-95,69
??2=0,15- 0,00021•5=0,15-0,00105=0,14895
Q373=-122000+(14317•70-0,5•95,69•47320+0,33•0,14895•24076990)=-122000+(1002190-2264025+1177112)=-122000+(2179302-2264025)=-122000-
-84723Дж/5моль=-122000 Дж-16945Дж ?139 кДж/моль
Ответ: Q373=-122-15=-137 кДж/моль
Q373=-122-17=-139 кДж/моль
13. Найти поверхность S наполнителя в образце массой m=21,6 г при соотношении связующего и наполнителя 3:2 по массе, если в качестве наполнителя использована капроновая нить с удельной поверхностью Sуд=10 м2/г
Решение:
Материал содержит две массовые части из пяти, то есть 40% масс.
Следовательно , масса наполнителя mнап=21,6•0,4=8,64 г.Суммарная поверхность S всех макрочастиц наполнителя
S=mнап•Sуд=8,642•10=86,4 м2
Ответ: S=86,4 м2
14. Найти во сколько раз кажущаяся поверхность Sрасч капроновой нити толщиной Т=2 текс, состоящей из 50 элементарных волокон, отличается от удельной поверхности Sуд=10 м2/г, плотность капрона ?=1,14 г/см3. Элементарные волокна считать круглыми цилиндрами с поперечным сечением F= мкм2.Почему удельная (истинная) поверхность значительно больше кажущейся (расчётной) поверхности?
Решение:
Общее сечение нити F===1754 мкм2
Сечение элементарного волокна Fвол==35 мкм2
Условный радиус элементарного волокна r =3,34 мкм=
=3,34•10-6 м.
Из сущности определения толщины в тексах: 2 г - 1000 м
1 г - 500 м =
Поверхность круглого элементарного волокна определяется в основном как поверхность круглого цилиндра: S==6,28•3,34•10-6 м•500 м =
=21•500•10-6 м2=10488•10-6 м2=0,0104876 м2?0,0105 м2
Sрасч=nS=0,0104 м2•50=0,52 м2/г
Искомое отношение Sуд/Sрасч=?19
Большое отличие Sуд от Sрасч обусловлено тем, что при вычислении Sрасч не учитывали дефекты поверхности.
Ответ: ?19
15. Исходя из выражений для средней степени превращения связующего в композиции x=xсв(1-?)+y? (1) и степени превращения связующего в переходном слое y=xсв+? (2), вывести соотношение для вычисления параметра влияния ? (xсв- степень превращения связующего в объёме, ?- массовая доля связующего,образовавшего переходный слой).
Решение:
Подставив соотношение (2) в соотношение (1), получаем:
X=xсв-?xсв+?xсв+??
Отсюда ?=
Ответ: ?=
17. Степень превращения связующего y в переходном слое больше степени превращения связующего в объёме xсв на 0,18: y-xсв=?=0,18. Пользуясь соотношением ?=(x-xсв)/?=?x/?, найти массовую долю ? связующего, образовавшего переходный слой, если из кинетических результатов получено ?x=0,10 (x-средняя степень превращения связующего в материале).Каково в этом случае влияние наполнителя на кинетику отверждения?
Решение:
Из соотношения ?=(x-xсв)/? получаем : ?==0,55.
Из соотношений y>xсв, ?=y-xсв>0 видно, что степень превращения в переходном слое выше, чем в объёме, то есть наполнитель ускоряет отверждение.
Ответ: ?=0,55. Наполнитель ускоряет отверждение.
16. Найти скорость диффузии U=?x/? олигомерных молекул фенолоформальдегидной смолы к поверхности наполнителя по кинетическим данным:
?,мин |
x,масс. доли |
xсв,масс. доли |
?x=x-xсв |
(U,с-1)• •105 |
? |
?= |
|
30 |
0,33 |
0,30 |
|||||
60 |
0,67 |
0,60 |
|||||
90 |
0,90 |
0,80 |
|||||
120 |
0,92 |
0,84 |
|||||
150 |
0,94 |
0,88 |
|||||
180 |
0,95 |
0,91 |
|||||
210 |
0,96 |
0,94 |
|||||
240 |
0,97 |
0,96 |
|||||
Принято, что отверждение протекает в диффузионной области.Построить на миллиметровой бумаге график зависимости U(?).Путем графического интегрирования графика U(?) найти значения ?:
??= и вычислить значение параметра влияния ?.Заполните таблицу.
Решение:
Величина U= есть по существу скорость физико-химического взаимодействия между наполнителем и связующим.Для вычисления U продолжительность отверждения ? следует выразить в секундах. Величины ?x и U проходят через максимум, поэтому график U(?) имеет экстремальную форму. Для графического интегрирования графика U(?) необходимо:
1) определить количество массовых долей, приходящихся на 1 см2 площади графика - найти “цену” С одного квадратного сантиметра площади, ограниченной данным графиком;
2) выразить в квадратных сантиметрах площади Si полос, соответствующих продолжительности процесса 30;60;90;120;150;180;210;240 минут;
3) величина ?1=СS1; ?2=C(S1+S2); ?3=C(S1+S2+S3)…. ?8=C
Значения параметра влияния ? >1 не имеет реального смысла и обусловлены погрешностью данного метода расчёта.
Ответ: ?max=0,14; ?max=0,70
17. Определить среднюю толщину ? переходного слоя, образованного фенолоформальдегидным связующим массой m=12,96 г на поверхности S=86,4 м2 при массовой доле ? связующего, образовавшего переходный слой, ?=0,56. Плотность фенолоформальдегидного связующего ?=1,2 г/см3.
Решение:
Средняя толщина переходного слоя определяется отношением объёма ? переходного слоя к его площади S:
?=0,07•10-4 см=0,07 мкм
Фенолформальдегидная смола образует на поверхности волокнистых наполнителей сравнительно тонкие переходные слои: 0,03 мкм - на поверхности лавсана (задача 9), 0,07 мкм - на поверхности капрона (задача 17).
Ответ: ?=0,07 мкм
18.Определить концентрации непрореагировавших олигомеров в объёме связующего С1 и в переходном слое С2, а также их разность ?С=С2-С1 (движущую силу диффузии), если xсв=0,80; ?=0,17;?=0,56.Общая масса связующего m=12,96 г. Расчет вести по модели 1 (см. рис.1):
Рис.1 Схема переходного слоя по модели 1
Плотность связующего ?=1,2 г/см3.
В какую сторону диффундируют олигомерные молекулы в соответствии с полученными результатами ? Найти движущую силу диффузии ?С=С2-С1.
Решение:
С1~ (1), С2~ (2), где V- объём связующего, ?- объём переходного слоя.
V= (3), ?= (4), y=xсв+? (5).
Подставляя (3), (4), (5) в (1) и (2), получаем:
C1=масс. доли/см3=см-3
С2==0,00280 см-3
?С=С2-С1=0,00280-0,04209=-0,03929?-0,0393 см-3
Ответ: ?С=-0,0393 см-3; олигомерные молекулы диффундируют из объёма связующего к поверхности наполнителя, т.к наполнитель ускоряет отверждение.
19. Определить среднюю толщину ? переходного слоя, образованного эпоксидным связующим массой m=12,96 г на поверхности наполнителя S=86,4 м2 при массовой доле связующего,образовавшего переходный слой,?=0,90.Плотность эпоксидного связующего ?=1,2 г/см3.
Решение:
Среднюю толщину переходного слоя можно оценить как отношение объёма переходного слоя ? к его поверхности S:
?=0,1125•10-4 см=0,1125 мкм
Ответ: ?=0,1125•10-4 см=0,1125 мкм
20. Вычислить коэффициент диффузии D, олигомерных молекул фенолоформальдегидного связующего к поверхности волокна капрон используя соотношение U=-DS(?C/?) (первый закон Фика), где скорость диффузии U=1,85•10-5 с-1, движущая сила диффузии ?С=-0,0393 см-3, толщина переходного слоя ?=0,07 мкм, площадь переходного слоя (поверхность диффузии) S=86,4 м2. S выразить в см2, ?- в см
Решение:
Из данного выражения первого закона Фика в конечных приращениях следует :
D1=-0,0382•10-13=3,82•10-15 см2/с.
Порядок полученной величины D1 соответствует известным значениям коэффициентов диффузии молекул низкомолекулярных веществ в твёрдых полимерах.
Ответ: D1=3,82•10-15 см2/с
21. Вычислить коэффициент диффузии D2 олигомерных молекул фенолоформальдегидного связующего к поверхности волокна капрон, используя соотношение (второй закон Фика), где толщина переходного слоя (путь диффузии) ?=0,07 мкм, продолжительность процесса ??=90 мин. (необходимо ?? выразить в секундах).
Решение:
Величины движущей силы диффузии ?С=С2-С1 в левой и правой частях выражения для второго закона Фика в конечных приращениях сокращаются, поэтому указанное выражение принимает вид ,
откуда D2=.
Порядок величины D2 совпадает с порядком коэффициента диффузии D1, полученного в задаче 20 с использованием первого закона Фика. В принципе коэффициент диффузии D в обоих законах Фика - одна и та же величина.
Ответ: D2=8,98•10-15 см2/с
22. Вычислить коэффициент диффузии D1 олигомерных молекул фенолоформальдегидного связующего к поверхности волокна капрон, используя соотношение U=-D1S(?C/?) (первый закон Фика),где скорость диффузии U=1,85•10-5 с-1, движущая сила диффузии ?С=0,0377 см-3, толщина переходного слоя ?=0,07 мкм, площадь переходного слоя (поверхность диффузии) S=86,4 м2. S выразить в см2, ?- в см.
В данной задаче величина ?С определена на основе модели 2 переходного слоя (рис.2)
Рис.2 Схема переходного слоя по модели 2
Решение:
D1=3,98•10-15
Ответ: D1=3,98•10-15 см2/с
23. Вычислить коэффициент диффузии D2 олигомерных молекул фенолоформальдегидного связующего к поверхности волокна капрон,используя соотношение (второй закон Фика), где ?С - движущая сила диффузии, ?=0,07 мкм - толщина переходного слоя (путь диффузии), ??=90 мин. - продолжительность диффузии.
Следует ? выразить в см, ?- в секундах.
Решение:
Из данного выражения второго закона Фика в конечных приращениях получаем:
D2=
Из сравнения задач 21 и 23 следует, что при нахождении коэффициента диффузии с использованием второго закона Фика получаемое значение D не зависит от того, по какой модели переходного слоя рассчитывают величину ?С, т.е величина ?С в этом случае не имеет большого значения.
Ответ:D2=8,97•10-15 см2/с
24. Используя приведённые кинетические данные зависимости степени превращения xсв ненаполненного эпоксидного связующего и степени превращения такого же связующего в смеси с волокнистым наполнителем (нить лавсан) от продолжительности отверждения ?, найти скорость U= взаимодействия между наполнителем и связующим. Графическим интегрированием зависимости U(?) найти массовые доли ? связующего,образовавшего переходные слои ?=:
?,мин |
x,масс. доли |
xсв,масс. доли |
?x=x-xсв |
(U,с-1)• •105 |
? |
?= |
|
30 |
0,51 |
0,30 |
|||||
60 |
0,72 |
0,47 |
|||||
90 |
0,80 |
0,64 |
|||||
120 |
0,86 |
0,70 |
|||||
150 |
0,90 |
0,75 |
|||||
180 |
0,93 |
0,80 |
|||||
210 |
0,94 |
0,84 |
|||||
240 |
0,94 |
0,86 |
|||||
Вычислить также параметр влияния ? и указать, чему равна скорость диффузии олигомерных молекул связующего к поверхности элементов наполнителя, если отверждение протекает в диффузионной области.
Решение:
Для вычисления и U продолжительность отверждения ? следует выразить в секундах. Величины ?x и U проходят через максимум, поэтому график U(?) имеет экстремальную форму. Для графического интегрирования графика U(?) необходимо:
1) определить количество массовых долей, приходящихся на 1 см2 площади графика - найти “цену” С одного квадратного сантиметра площади, ограниченной данным графиком;
2) выразить в квадратных сантиметрах площади Si полос, соответствующих шагу ??=30 мин. при изменении ? от 0 до 240 минут (рис.3);
3) величина ?1=CS1, ?2=С(S1+S2), ?3=C(S1+S2+S3), ….. ?8=С=
Значения параметра влияния ?>1 не изменяют реального смысла и обусловлены погрешностью данного метода расчёта.
Сравнение результатов задач 24 и 16 показывает, что эпоксидное связующее образует более толстые (массивные) переходные слои, чем феноло-формальдегидное связующее (значения ?max составляют 0,63 и 0,14 соответственно). При этом в переходных слоях эпоксидного связующего выше роль химического взаимодействия между связующим и наполнителем (?max составляет 0,96 и 0,70 соответственно).
Скорость диффузии олигомерных молекул связующего равны скорости U взаимодействия между связующим и наполнителем, если отверждение протекает в диффузионной области.
Ответ: ?max=0,63 ?max=0,96
25. Определить концентрации (массовые доли/см3) непрореагировавших олигомеров в объёме связующего С1 и в переходном слое С2, если степень превращения в объёме xсв=0,64; ?=0,35; ?=0,34. Общая масса связующнго m=12,96 г. Расчёт вести по модели 1 (то есть всё связующее, находящееся вблизи поверхности наполнителя, считать относящимся к переходному слою). Плотность связующего ?=1,2 г/см3.
Найти движущую силу ?С диффузии олигомерных молекул связующего в системе связующее-наполнитель. В какую сторону диффундируют олигомерные молекулы в данной задаче?
Решение:
Концентрацию С1 олигомеров в объёме связующего V можно оценить как массовую долю олигомеров в единице объёма: С~.
Аналогично концентрация в олигомеров в переходном слое С2~,
где степень превращения связующего в переходном слое y=xсв+?=0,99.
Принимая плотности связующего в объёме и в переходном слое равными, можно вычислить объёмы:
V==7,128 см3;
? ==3,672 см3
Используя приведённые соотношения, получаем:
C1==0,05050 см-3
С2=0,000926 см-3;
?C=C2-C1=-0,004957 см-3
Самодиффузия протекает в направлении от большей концентрации к меньшей, то есть из объёма к поверхности наполнителя, ускоряющего отверждение.
Ответ: С1=0,005050 см-3, С2=0,000926 см-3, ?С=С2-С1=-0,04957 см-3
26. Определить концентрации (массовые доли/см3) непрореагировавших олигомеров в объёме связующего С1 и в переходном слое С2,если степень превращения в объёме xсв=0,64; ?=0,35; ?=0,34. Общая масса связующего m=12,96 г.Расчёт вести по модели 2 (то есть к переходному слою относить только отвержденные участки, находящиеся вблизи поверхности элементов наполнителя), при этом объём переходного слоя ?=my?/? несколько сократится по сравнению с расчётом по модели 1 (y=xcв+? - cтепень превращения олигомеров в переходном слое). Плотность связующего ?=1,2 г/см3.
Найти движущую силу ?С диффузии олигомерных молекул связующего в системе связующее-наполнитель.В какую сторону диффундируют олигомерные молекулы в данной задаче?
Решение:
По аналогии с задачей 25 концентрацию С1 олигомеров в объёме связующего V можно оценить как массовую долю олигомеров в единице объёма: C1~, концентрацию С2 олигомеров в переходном слое объёмом ? : С2~, где степень превращения связующего в переходном слое y=xсв+?=0,99.
Принимая плотности связующего в объёме и в переходном слое равными, можно вычислить объёмы, исключив из переходных слоев неотвержденные участки (в соответствии с моделью 2):
V==7,165 см3;
?==3,635 см3
Используя вышеуказанные соотношения, получаем:
C1==0,0524 см-3
С2==0,000935 см-3
?С=0,000935-0,05024=-0,04931 см-3
Таким образом, различие между величинами ?С, рассчитанными при использовании моделей 1 и 2, невелико (см. задачу 25), так как при y1 различие между моделями 1 и 2 сглаживается.
Ответ: С1=0,05024 см-3; С2=0,000935 см-3; ?С=С2-С1=-0,04931 см-3.
27. Вычислить коэффициент диффузии D1 олигомерных молекул эпоксидного связующего к поверхности волокна лавсан в процессе отверждения, используя соотношение U=-D1S(?C/?) (первый закон Фика), где U=3,00•10-5 масс. доли/с- скорость диффузии олигомеров, численно равная скорости взаимодействия связующего и наполнителя в диффузионной области; ?С=-0,04957 масс.доли/см3- движущая сила диффузии, рассчитанная по модели 1 переходного слоя; масса полимерного образца m=21,6 г.; содержание наполнителя Снап=40 масс.%, удельная поверхность волокнистого наполнителя Sуд=6 м2/г; толщина переходного слоя ?=2 мкм.
Решение:
Величину коэффициента диффузии D1 находим из данного выражения для первого закона Фика:
D1=-, где S- поверхность диффузии, которую принимаем равной поверхности наполнителя:
S=mCнапSуд=21,6 г •0,4•6 м2/г=51,84•104 см2.
Используя полученное значение S, имеем:
D1=?2,33•10-13 см2/с
Ответ: D1=2,33•10-13 см2/с
28. Вычислить коэффициент диффузии D2 олигомерных молекул эпоксидного связующего к поверхности волокна - наполнителя лавсан в процессе отверждения, используя соотношение (второй закон Фика), где движущая сила диффузии ?С=-0,04957 масс. доли/см3 рассчитана по модели 1 переходного слоя, толщина переходного слоя (путь диффузии) ?=2 мкм; продолжительность отверждения ??=90 мин. при атмосферном давлении.
Решение:
В соответствии с данным выражением второго закона Фика величина движущей силы ?С не играет существенной роли при вычислении D2:
D2==7,40•10-12 см2/с=74•10-13 см2/с
Получено ,что D2 примерно в 30 раз больше, чем D1 (cм. Задачу 27):
=31,8
Ответ: D2=7,40•10-12 см2/с
29. Вычислить коэффициент диффузии D1 олигомерных молекул эпоксидного связующего к поверхности волокна лавсан в процессе отверждения, используя соотношение U=-D1S(?C/?) (первый закон Фика), где U=3,00•10-5 масс. доли/с - скорость диффузии олигомеров, численно равная скорости взаимодействия связующего и наполнителя в диффузионной области;?С=-0,04931 масс.доли/см3 - движущая сила диффузии, рассчитанная по модели 2 переходного слоя; масса полимерного образца m=21,6 г; содержание наполнителя Снап=40% масс., удельная поверхность волокнистого наполнителя Sуд=6 м2/ч; толщина переходного слоя ?=2 мкм.
Решение:
Величину коэффициента диффузии D1 находим из данного в условии выражения для первого закона Фика:
D1=-, где S - поверхность диффузии, которую принимаем равной поверхности наполнителя: S=m•Cнап•Sуд=21,6 г•0,4•6=51,8•104 м2 используя полученное значение S, имеем:
D1=?2,35•10-13 см2/с
При использовании ?С, рассчитанной по модели 1 переходного слоя, имели незначительное отличие величины D1 (cм. Задачу 27):
D1=2,33•10-13 см2/с.
Ответ: D1=2,35•10-13 см2/с.
30. Вычислить коэффициент диффузии D2 олигомерных молекул эпоксидного связующего к поверхности волокна - наполнителя лавсан в процессе отверждения, используя соотношение (второй закон Фика), где движущая сила диффузии ?С=-0,04931 масс.доли/см3 рассчитана по модели 2 переходного слоя, толщина переходного слоя (путь диффузии) ?=2 мкм; продолжительность отверждения при атмосферном давлении ??=90 мин.
Решение:
Из данного в условии задачи соотношения получаем: D2==7,34•10-12 см2/с
Сравнение результатов расчетов коэффициентов диффузии в задачах 27-30 по моделям 1,2 переходных слоёв:
D11=2,33•10-13 см2/с; D12=2,35•10-13 см2/с
D21=7,40•10-12 см2/с; D22=7,34•10-12 см2/с
показывает,что использование различных моделей переходных слоёв обусловливает меньшее различие в величине коэффициентов диффузии, чем использование различных законов диффузии.
Решение: D2=7,34•10-12 см2/с.
31. Определить среднюю толщину прослойки эпоксидного связующего между волокнами, зная путь диффундирующих молекул в момент времени ?1, когда разбавляющее и замедляющее влияние волокнистого наполнителя компенсировано физико-химическим взаимодействием между связующим и наполнителем:
Х 1 1- с наполнителем; 2 - без наполнителя;
2
?
(x- cтепень превращения олигомерной термореактивной смолы в сетчатый продукт)
При расчёте исходить из того, что 2=d, и использовать соотношение D=•, где D=6,0•10-12 см2/с - коэффициент диффузии олигомерных молекул смолы, =10-7 см/с - средняя линейная скорость диффундирующих олигомерных молекул в рассматриваемом направлении.
Решение:
Из данного в условии задачи соотношения D=•=• cледует:
==36•10-5 см=3,6•10-4 см=3,6 мкм
Ответ: =3,6•10-4 см=3,6 мкм
32. Вывести в общем виде выражение для движущей силы ?С диффузии олигомерных молекул в системе связующее-наполнитель, используя модель 1 переходного слоя, через параметры y,?,? (y-cтепень превращения связующего в сетчатый продукт в переходном слое); ?-массовая доля связующего, образовавшего переходный слой; y=xсв+?, где xсв- cтепень превращения связующего в объёме; ?-параметр влияния. При выводе исходить из того, что ?С=С2-С1 - движущая сила диффузии определяется разностью концентраций олигомеров в переходном слое С2 и в объёме С1.Концентрации определяются как отношение массовых долей олигомеров в переходном слое и в объёме связующего к соответствующим объёмам ? и V (?(1-y)-количество олигомеров в переходном слое по модели 1).
Решение:
?С=С2-С1=
Учитывая, что =V, получаем:
?С=
Используя соотношение y=xсв+?, окончательно имеем:
?C=
Ответ: ?С=-
33. Вывести в общем виде выражение для движущей силы ?С диффузии олигомерных молекул в системе связующее с массой и плотностью ? - наполнитель, используя модель 2 переходного слоя, через параметры y,?,? (y-степень превращения связующего в сетчатый продукт в переходном слое; ?- массовая доля связующего, образовавшего переходный слой; y=xсв+?, где xсв- степень превращения связующего в объёме; ?-параметр влияния. При выводе исходить из того, что ?С=С2-С1 - движущая сила диффузии определяется разностью концентраций олигомеров в переходном слое С2 и в объёме С1. Концентрация определяется как отношение массовых долей олигомеров в переходном слое и в объёме связующего к соответствующим объёмам ? и V (?(1-y?)- количество олигомеров в переходном слое по модели 2).Общий объём связующего V определяется его массой m и плотностью ?: V=m/?.
Решение:
?С=С2-С1=
Учитывая соотношение ?/?=V, y=xсв+?, получаем:
?C=
Ответ: ?С==
34. Используя аддитивность тепловых эффектов отверждения ненаполненного эпоксидного связующего Q и взаимодействие Qдоп эпоксидного связующего с лавсаном, из которых складывается тепловой эффект суммарного процесса Qсумм=?Qдоп+(1-?)Q, найти величину Qдоп, если Qсумм=104 кДж/моль, Q=122 кДж/моль; массовая доля связующего, образовавшего переходный слой, ?=0,63.
Решение:
Выразив аддитивность тепловых эффектов отверждения ненаполненного эпоксидного связующего Q и взаимодействии Qдоп эпоксидного связующего с лавсаном, из которых складывается тепловой эффект суммарного процесса Qсумм=?Qдоп+(1-?)Q, найти величину Qдоп, если Qсумм=104 кДж/моль, Q=122 кДж/моль; массовая доля связующего, образовавшего переходный слой , ?=0,63.
Выразив Qдоп из соотношения, приведённого в условии задачи, и подставив численные значения величин, получаем:
Qдоп=
Ответ: Qдоп=94 кДж/моль
35. На основании известных экспериментальных значений тепловых эффектов отверждения эпоксидной смолы без наполнителя
Q=-122 кДж/моль, отверждения эпоксидной смолы с полипропиленовой нитью Qсумм=-132 кДж/моль и эффективных энергий активации, кДж/моль, отверждения эпоксидной смолы без наполнителя Е=27, эпоксидной смолы с полипропиленовой нитью Есумм=100 найти значения параметров А и В соотношения Е=А+В|Q|, считая, что значения А и В одинаковы для отверждения ненаполненных и наполненных систем.
Решение:
Применив зависимость Е от |Q| для ненаполненной и наполненной эпоксидной смолы, получаем систему двух линейных уравнений с двумя неизвестными:
27=А+122В
100=А+132В,
Откуда имеем: А=27-122В; 100=27-122В+132В;
10В=73; В=7,3
А=27-122•7,3=-863,6?-864 кДж/моль
Ответ: А=-864 кДж/моль; В=7,3.
36. Из соотношения Qдоп=200?+20(1-?) найти значения параметра влияния ? на основании известных значений теплового эффекта Qдоп взаимодействия между связующим и наполнителем для систем: эпоксидная смола ЭД-20 и полипропиленовая нить (ППН), анилино-фенолоформальдегидная смола СФ-342А и ППН-180 и 50 кДж/моль соответственно.
Решение:
Из данного в условии задачи соотношения следует, что тепловой эффект взаимодействия между связующим и наполнителем аддитивно складывается из теплоты химического (первое слагаемое) и физического (второе слагаемое) взаимодействия. Из этого соотношения следует: 180?=Qдоп-20; ?=.
Применив последнее соотношение к смолам ЭД-20 и СФ-342А, получаем соответственно: ?1==0,89; ?2==0,17
Из полученных значений ?1>?2 следует, что при взаимодействии наполнителя ППН со смолой ЭД-20 преобладают химические процессы, а при взаимодействии ППН со смолой СФ-342А- физические.
Ответ: ?1=0,89; ?2=0,17
37. Используя аддитивность тепловых эффектов отверждения ненаполненного связующего Q и взаимодействия Qдоп связующего с полипропиленовым наполнителем (ППН)
Qсумм=?Qдоп+(1-?)Q, вычислить массовые доли ? переходных слоев в системах эпоксидная смола+ППН (Q=122; Qcумм=132; Qдоп=180 кДж/моль) и фенолоформальдегидная смола+ППН (Q=21; Qсумм=23; Qдоп=50 кДж/моль) и толщину переходных слоёв ?= в тех же системах
(m=32 г- масса смолы на 1 г. наполнителя, ?=1,2 г/см3- плотность связующего, она практически одинакова для обеих рассматриваемых смол; Sуд=5 м2/г- удельная поверхность полипропиленовой нити, используемой в качестве наполнителя).
С каким связующим ППН образует более толстые и прочные переходные слои?
Решение:
Из данного в условии соотношения аддитивности тепловых эффектов выражаем величину ?:
? =
Подставляя в это соотношение численные значения тепловых эффектов, получаем для двух связующих:
?1 ==0,172
?2==0,069
Затем вычисляем соответственно среднюю толщину переходных слоёв
?1 ==0,92•10-4 см=0,92 мкм
?2 = =0,37•10-4 см=0,37 мкм
При взаимодействии ППН с эпоксидной смолой выделяется больше теплоты, чем при взаимодействии ППН с фенолоформальдегидной смолой:
180>50 кДж/моль. Таким образом, эпоксидная смола образует более толстые 0,92>0,37 мкм и прочные переходные слои.
Ответ: ?1=0,172; ?1=0,92 мкм;
?2=0,069; ?2=0,37 мкм.
38. Используя аддитивность тепловых эффектов отверждения Q ненаполненной анилино-фенолоформальдегидной смолы СФ-342А и взаимодействия Qдоп этой смолы с лавсаном, из которых складывается тепловой эффект суммарного процесса Qсумм=?Qдоп+(1-?)Q, найти величину Qдоп, если Qсумм=65 кДж/моль, Q=21 кДж/моль; массовая доля связующего, образовавшего переходный слой, ?=0,56
Решение:
Из балансового уравнения тепловых эффектов, данного в условии задачи, находим:
Qдоп=?100 кДж/моль
Отверждение анилино-фенолоформальдегидной смолы при повышенных давлениях ускорится капроном, тепловой эффект взаимодействия капрона с этим связующим сравнительно велик, величина Qдоп=100 кДж/моль близка к прочности химических связей между связующим и наполнителем.
Ответ: Qдоп=100 кДж/моль
39. На основании известных экспериментальных значений эффективной энергии активации отверждения смеси анилино-фенолоформальдегидной смолы СФ-342А с капроном Есумм=101 кДж/моль и суммарного теплового эффекта отверждения указанной смеси Qсумм=-65 кДж/моль. Найти параметр А соотношения Е=А+В|Q|.Параметр В=7,3 считать одинаковым для смол СФ-342А и эпоксидной ЭД-20.
Решение:
Из соотношения зависимости Е от |Q| выражаем :
А=Е-В|Q|=101-7,3•65=101=-374 кДж/моль.
Указанное соотношение является уравнением прямой, в котором В-тангенс угла наклона прямой, А-значение Е при |Q|=0, то есть точка пересечения прямой с осью Е.
Ответ: А= - 374 кДж/моль.
40. Используя соотношение между энергией активации Е и тепловым эффектом Q; Е= - 864+7,3|Q| для отверждения эпоксидной смолы ЭД-20, вычислить абсолютные значения |Qдоп|, кДж/моль тепловых эффектов взаимодействия ЭД-20 с лавсаном и ППН, если энергии активации Едоп этих процессов составляют 43 и 172 кДж/моль соответственно.
Решение:
Выразим величину |Q| из данного соотношения: |Q|=.
Применяя это соотношение к процессу взаимодействия между связующим и различными наполнителями, получаем для лавсана:
|Qдоп|==124 кДж/моль
и для полипропиленовой нити:
|Qдоп|==142 кДж/моль
Полученные значения |Qдоп| и |Qдоп| свидетельствуют о том, что эпоксидная смола образует с полипропиленом более прочные химические связи, чем с лавсаном.
Ответ: |Qдоп|=124 кДж/моль
|Qдоп|=142 кДж/моль
41. Используя соотношение Е=-374+7,3|Q| между энергией активации Е и тепловым эффектом Q для отверждения анилино-фенолоформальдегидной смолы СФ-342А, вычислить абсолютные значения |Qдоп|,кДж/моль, тепловых эффектов взаимодействия смолы СФ-342А с ППН при повышенном (8 МПа) и атмосферном давлении, если энергии активации этих процессов Едоп составляют 34 и 21 кДж/моль соответственно.
Решение:
Выразим величину |Q| из данного в условии соотношения: |Q|=.
Применив это соотношение к процессу взаимодействия между связующим и наполнителем, получаем величины |Qдоп| при повышенном и |Qдоп| при атмосферном давлении соответственно:
|Qдоп|==56 кДж/моль,
|Qдоп|==54 кДж/моль.
Полученные значения показывают, что величина давления практически не влияет на прочность физико-химических связей, образующихся между смолой СФ-342А и полипропиленовой нитью.
Ответ: |Qдоп|=56 кДж/моль; |Qдоп|=54 кДж/моль.
42. Используя соотношение ?=А (1), аналогичное соотношению Вант-Гоффа для константы равновесия K: K=A(2), где А-предэкспоненциальный множитель; Qдоп- тепловой эффект взаимодействия между связующим и наполнителем; Q- тепловой эффект рассматриваемого обратимого процесса, найти массовую долю ?2 переходного слоя в системе анилино-фенолоформальдегидная смола СФ-342А - полипропиленовая нить ППН при температуре Т2=443 К, если при Т1=393 К известно значение ?1=0,38. Тепловой эффект Qдоп взаимодействия ППН со связующим в данном случае составляет Qдоп=-45 кДж/моль. Рекомендуется записать соотношение (1) в логарифмической форме для температуры Т1 и для температуры Т2.
Решение:
Записываем соотношение (1) для температур Т1 и Т2:
?1 =A (2)
?2=A(3)
Почленно логарифмируем соотношения (2) и (3):
(4)
(5),
из соотношения (4) вычитаем соотношение (5):
,
откуда . Подставив сюда значения всех величин из условия задачи, получаем:
10-1,08=10-2•100,92=8,3•10-2=0,083.
Результат показал, что при повышении температуры отверждения массовая доля переходного слоя уменьшается, так как взаимодействие между наполнителем и связующим - экзотермический процесс.
Ответ: .
43. Равновесная деформация жгута из диацетатных нитей при усилии Р=0,7 Н составила ?=2,34 мм (однонаправленное растяжение). Начальная длина жгута между зажимами =140,0 мм, текс жгута t=554 (то есть
1000 м такого жгута имеют массу 554г.).Испытания проводились при Т=413 К. Плотность диацетата целлюлозы ?=1320 кг/м3.
Вычислить относительную деформацию ? , площадь поперечного сечения S, мкм2 по соотношению S=1000t/? (1), где ? выражено в г/см3.
Далее определить напряжение в жгуте ?= (2), модуль упругости
ЕР= (3) и среднюю массу молекулярных цепей между узлами сетки
MC= (4), где ?- плотность, кг/м3; R- универсальная газовая постоянная R=8,31 Дж/моль•К. В каких единицах выражается напряжение ? и модуль упругости Е в системе СИ?
Решение:
1. Расчет относительной деформации ?:
? =
2. Вычисляем площадь поперечного сечения исходной нити :
S=
При расчете по данному соотношению величину S выражают в мкм2 (эта размерность определяемая коэффициентом 103 при выражении ? в г/см3)
3.Механическое напряжение ? относительно начального сечения вычисляем по соотношению:
? ==1,7•106 Па=1,7 МПа
4.Для упругих деформаций модель упругости Ep при растяжении рассчитывается как Ер==1,7•106 Па/0,017=108 Па
5. Известно, что модуль упругости сетчатого полимера при сдвиге Ecдв=ncRT=, а также Ер=3Есдв.
Отсюда следует: Mc=
Полученное значение Mc сравнительно невелико.Это есть средняя масса цепей между химическими и физическими узлами сетки.
Ответ: ?=0,017; S=4,2•10-7 м2; ?=1,7•106 Па;
E=108 Па; Mc=140 г/моль
Ответы:
1. m=65,4 г/мин, r= 160 мкм
2. q=2,75•10-2 ; вязкость уменьшилась в 36 раз
3. m=0,95
4. ?=0,07 Па
5. Mc=0,012 кг/моль=12 г/моль
6. d=0,07 мкм
7. V=2,09 см3/см3
8. ?=43 с
9. ?=0,03•10-4 см=0,03 мкм
10. S=56 м2; Sуд=12 м2/г
11. 1.Q373=-122-15=-137 кДЖ/моль
2.Q373=-122-17=-139 кДж/моль
Литература:
1. Липатов Ю.С.
Контрольная работа | Концепция информатизации Российской Федерации |
Контрольная работа | Причины агрессивного поведения. Методы работы с агрессивными детьми |
Контрольная работа | Алгоритм выбора и реализации предпринимательской идеи |
Контрольная работа | Современные методы арт-терапии |
Контрольная работа | Системы управления взаимоотношения с клиентами |
Контрольная работа | Учет материальных затрат в бухгалтерском учете |
Контрольная работа | Геополитическое положение России |
Контрольная работа | Особенности вознаграждения работников в организации |
Контрольная работа | Виды запасов |
Контрольная работа | Психоанализ |
Контрольная работа | Организационное проектирование производственных систем |
Контрольная работа | Учет движения материалов на производстве |
Контрольная работа | Развитие и размещение ведущих отраслей промышленности Центрального федерального округа |
Контрольная работа | Социально-экономическое развитие Китая |
Контрольная работа | Основные принципы построения локальных вычислительных сетей |