Конспект лекций по предмету "Информатика"


Алгоритмическая машина Тьюринга

Машина Тьюринга состоит из трех частей: ленты, считывающе-записывающей головки и логического устройства (рис. 7.1).
Лента выступает в качестве внешней памяти; она считается неограниченной (бесконечной) - уже это свидетельствует о том, что машина Тьюринга является модельным устройством, поскольку ни одно реальное устройство не может обладать памятью бесконечного размера.



Как и в машине Поста, лента разбита на отдельные ячейки, однако, в машине Тьюринга неподвижной является головка, а лента передвигается относительно нее вправо или влево. Другим отличием является то, что она работает не в двоичном, а некотором произвольном конечном алфавите А = {∆, а1,...ап} - этот алфавит называется внешним. В нем выделяется специальный символ - ∆, называемый пустым знаком - его посылка в какую-либо ячейку стирает тот знак, который до этого там находился, и оставляет ячейку пустой. В каждую ячейку ленты может быть записан лишь один символ. Информация, хранящаяся на ленте, изображается конечной последовательностью знаков внешнего алфавита, отличных от пустого знака.
Головка всегда расположена над одной из ячеек ленты. Работа происходит тактами (шагами). Система исполняемых головкой команд предельно проста: на каждом такте она производит замену знака в обозреваемой ячейке ai знаком aj. При этом возможны сочетания:
· j = i — это означает, что в обозреваемой ячейке знак не изменился;
· i ≠ 0, j = 0 означает, что хранившийся в ячейке знак заменяется пустым, т.е. стирается;
· i = 0, j ≠ 0 означает, что пустой знак заменяется непустым (с номером j в алфавите), т.е. производится вставка знака;
· i ≠ j ≠ 0 соответствует замене одного знака другим.
Таким образом, в машине Тьюринга реализуется система предельно простых команд обработки информации, о которых шла речь в п.7.3.1. Эта система команд обработки дополняется также предельно простой системой команд перемещений ленты: на ячейку влево, на ячейку вправо и остаться на месте, т.е. адрес обозреваемой ячейки в результате выполнения команды может либо измениться на 1, либо остаться неизменным. Однако, хотя фактически происходит перемещение ленты, обычно рассматривается сдвиг головки относительно обозреваемой секции - по этой причине команда сдвига ленты влево обозначается R («Right), сдвига вправо - L («Left»), отсутствие сдвига - S («Stop»). В дальнейшем будем говорить именно о сдвиге головки и считать R, L и S командами ее движения. Элементарность этих команд означает, что при необходимости обращения к содержимому некоторой ячейки, она отыскивается только посредством цепочки отдельных сдвигов на одну ячейку. Разумеется, это значительно удлиняет процесс обработки, зато позволяет обойтись без нумерации ячеек и использования команд перехода по адресу, т.е. сокращает количество истинно элементарных шагов, что важно в теоретическом отношении.
Обработка информации и выдача команд на запись знака, а также сдвига ленты в машине Тьюринга производится логическим устройством (ЛУ). Оно может находиться в одном из состояний, которые образуют конечное множество и обозначаются Q = {q1…qm, z}, причем, состояние z соответствует завершению работы, a q1 является начальным (исходным). Q совместно со знаками R, L, S образуют внутренний алфавит машины. ЛУ имеет два входных канала (ai, qi) и три выходных (аi+1, qi+1, Di+1) (см. рисунок):



Понимать схему необходимо следующим образом: на такте i на один вход ЛУ подается знак из обозреваемой в данный момент ячейки (ai), а на другой вход - знак, обозначающий состояние ЛУ в данный момент (qi). В зависимости от полученного сочетания знаков (ai, qi) и имеющихся правил обработки ЛУ вырабатывает и по первому выходному каналу направляет в обозреваемую ячейку новый знак (ai+1), подает команду перемещения головки (Di+1 из R, L и S), а также дает команду на вызов следующего управляющего знака (qi+1). Таким образом, элементарный шаг (такт) работы машины Тьюринга заключается в следующем: головка считывает символ из обозреваемой ячейки и, в зависимости от своего состояния и прочитанного символа, выполняет команду, в которой указано, какой символ записать (или стереть) и какое движение совершить. При этом и головка переходит в новое состояние. Схема функционирования такой машины представлена на рис. 7.2.



В данной схеме отражено разделение памяти на внешнюю и внутреннюю. Внешняя представлена, как указывалось, в виде бесконечной ленты - она предназначена для хранения информации, закодированной в символах внешнего алфавита. Внутренняя память представлена двумя ячейками для хранения следующей команды в течение текущего такта: в Q передается из ЛУ и сохраняется следующее состояние (qi+1), а в D - команда сдвига (Di+1). Из Q по линии обратной связи qi+1 поступает в ЛУ, а из D команда поступает на исполнительный механизм, осуществляющий при необходимости перемещение ленты на одну позицию вправо или влево.
Общее правило, по которому работает машина Тьюринга, можно представить следующей записью: qiaj→qi'aj'Dk, т.е. после обзора символа aj головкой в состоянии ai, в ячейку записывается символ aj', головка переходит в состояние qi', а лента совершает движение Dk. Для каждой комбинации qiaj имеется роено одно правило преобразования (правил нет только для z, поскольку, попав в это состояние, машина останавливается). Это означает, что логический блок реализует функцию, сопоставляющую каждой паре входных сигналов qiaj одну и только одну тройку выходных qi'aj'Dk - она называется логической функцией машины и обычно представляется в виде таблицы (функциональной схемой машины), столбцы которой обозначаются символами состояний, а строки - знаками внешнего алфавита. Если знаков внешнего алфавита п, а число состояний ЛУ т, то, очевидно, общее число правил преобразования составит п∙т.
Конкретная машина Тьюринга задается перечислением элементов множеств А и Q, а также, логической функцией, которую реализует ЛУ, т.е. набором правил преобразования. Ясно, что различных множеств A, Q и логических функций может быть бесконечно много, т.е. и машин Тьюринга также бесконечно много.
Прежде, чем обсуждать функционирование машины Тьюринга, введем еще одно понятие.

Совокупность состояний всех ячеек ленты, состояния ЛУ и положение головки называется конфигурацией машины.

Записать конфигурацию можно следующим образом: ∆а1qiaj...аk∆ которая означает, что в слове из k символов обозревается секция номер j и при этом управляющее устройство находится в состоянии qi. Ясно, что конфигурация машины может содержать любое количество символов внешнего алфавита и лишь один символ внутреннего. Часто конфигурацию записывают в виде α1qiα2, где α1 - слово на ленте слева от головки, α2 - слово на ленте справа от головки, включая обозреваемый знак. Слева от α1 и справа от α2 лента пуста. Конфигурация, изображенная на рис. 7.1., может быть записана следующим образом: а1∆а2∆qa3а4аk, на рис. 7.2.- 1q1111.
Перед началом работы на пустую ленту записывается исходное слово α конечной длины в алфавите А; головка устанавливается над первым символом слова α, ЛУ переводится в состояние q1 (т.е. начальная конфигурация имеет вид q1α). Поскольку в каждой конфигурации реализуется только одно правило преобразования, начальная конфигурация однозначно определяет всю последующую работу машины, т.е. всю последовательность конфигураций вплоть до прекращения работы.
В зависимости от начальной конфигурации возможны два варианта развития событий:
· после конечного числа тактов машина останавливается по команде остановки; при этом на ленте оказывается конечная конфигурация, соответствующая выходной информации;
· остановки не происходит.
В первом случае говорят, что данная машина применима к начальной информации, во втором - нет. Вся совокупность входных конфигураций, при которых машина обеспечивает получение результата, образуют класс решаемых задач. Очевидно, применять машину Тьюринга для задачи, не входящей в класс решаемых, бессмысленно. С другой стороны, во многих случаях возможно расширение класса решаемых задач за счет создания другой машины Тьюринга. Возникает вопрос: можно ли построить такую универсальную машину (хотя бы на теоретическом уровне), которая решала бы любую задачу? Здесь подошли к вопросу об алгоритмической разрешимости, который будет исследован позднее.


Не сдавайте скачаную работу преподавателю!
Данный конспект лекций Вы можете использовать для создания шпаргалок и подготовки к экзаменам.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем конспект самостоятельно:
! Как написать конспект Как правильно подойти к написанию чтобы быстро и информативно все зафиксировать.