Конспект лекций по предмету "ИТ"


Моноканальная сеть

Моноканальная сеть – это локальная сеть, ядром которой является моноканал.
Моноканал в соответствии с базовой эталонной моделью взаимодействия открытых систем выполняет в сети роль физических средств соединения. Блоки доступа и абонентские звенья обеспечивают включение в сеть абонентских систем. В последних физический уровень и канальный уровень определяются характеристиками моноканала. Более высокие уровни от этих характеристик не зависят.
Выбор физических средств моноканала зависит от предъявляемых к ним требований, среди которых, в первую очередь — скорость передачи сигналов, надежность работы, стоимость средств.

Рисунок 5.3. Структура магистрального моноканала

В зависимости от способа передачи сигналов по моноканалам, последние делятся на два вида: физические и частотные. Физическим назовем канал, через который возможна одновременная передача только одного сигнала. В частотном канале за счет создания частотных полос одновременно передается группа сигналов (по каждой полосе по сигналу).
На рис. 1 изображен физический моноканал. Он строится на основе коаксиального либо оптического кабеля, скрученной пары проводов, плоского кабеля, через который одновременно направляется только один сигнал. Последний использует физическую среду полностью.
Частотный моноканал, напротив, занимает только одну полосу, в используемой физической среде. Так, на рис. 2 показана группа частотных каналов, построенных на основе широкополосного коаксиального кабеля. Для упрощения рисунка здесь изображены лишь две используемые полосы: а, б. В действительности же в кабеле создается значительное число частотных полос, на основе которых строится большое число частотных моноканалов.
На основе двух частотных моноканалов, показанных на рис. 2 образованы две не связанные друг с другом информационные сети. Первая из них охватывает абоненты A1 - M1, а вторая - А2 - М2.
Частотные моноканалы чаще всего создаются на основе коаксиальных кабелей. В этих случаях общий канал кроме собственного кабеля имеет значительное число вспомогательных технических устройств: усилителей, разветвителей и т. д.


Рисунок 5.4. Частотный моноканал

Так как они пока являются однонаправленными, это создает определенные трудности: сигналы по общему каналу передаются только в одну сторону. Вследствие этого приходится принимать специальные меры.
Первая из них заключается в том, что общий канал (рис. 2) прокладывается так, чтобы он дважды проходил мимо всех абонентских систем. Далее происходит следующее. В первой сети (полоса а, стрелки) общий канал (в верхней его части) вначале собирает информацию, передаваемую абонентами A1 - M1. Затем в нижней части канала осуществляется раздача полученной информации абонентам A1 - M1. Аналогично этому абоненты А2 - М2 передают информацию через моноканал, созданный на основе частотной полосы б.
Вторая специальная мера заключается в добавлении к общему каналу компонента, именуемого головным преобразователем (рис. 3). Его задачей является передача сигналов из одного частотного канала в другой. Появление в моноканале головного преобразователя, естественно, усложняет его структуру. Однако в этом случае общий канал не должен, как в схеме на рис. 2 дважды проходить мимо всех абонентских систем. Это позволяет вдвое сократить длину дорогостоящего кабеля.
Вместе с тем, в схеме, показанной на рис. 3 каждый частотный моноканал использует уже не одну, как на рис. 2 две частотные полосы. По одной из них (например, а) информация собирается со всех абонентских систем. По второй частотной полосе (например, б) информация раздается всем абонентским сис­темам сети. Головной преобразователь осуществляет преобразование частот, обеспечивающее соединение пар частотных; полос, например полос а, б на рис. 3.


Рисунок 5.5. Моноканал с преобразованием частоты

В коммуникационных подсетях все шире начинают применяться оптические моноканалы. Это связано с тем, что оптическое волокно по сравнению с металлом имеет ряд важных преимуществ. К ним, прежде всего, следует отнести высокую защищенность от электромагнитных помех, малую массу и отсутствие все более дефицитной меди. Кроме того, если затухание сигнала, передаваемого по коаксиальному кабелю, составляет 50—200 дБ/км, то в качественном оптическом волокне оно равно всего 2—5 дБ/км. Это позволяет резко повысить частоту передаваемых в моноканале сигналов и увеличить длину кабеля без повторителей и усилителей. Современные оптические кабели обеспечивают передачу данных со скоростями, превышающими 500 Мбит/с, при расстоянии между повторителями до 5 км.
Невосприимчивость к электромагнитным помехам позволяет прокладывать оптические кабели в цехах и даже возле высоковольтных электрических линий передач. На оптическое волокно не действуют даже грозовые разряды. Так как волокно не заземляется, то в нем не могут возникнуть паразитные контуры.
Масса оптического кабеля резко отличается от массы коаксиального. Так, при замене коаксиального кабеля в подсети Ethernet массой 68 кг, оказалось, что масса оптического кабеля всего 2,3—4,5 кг.
Случайный разрыв оптического кабеля, в отличие от коаксиального, не приводит к появлению искр и поэтому имеет высокую противопожарную безопасность. Важна еще одна особенность. Скорость передачи по оптическому каналу лимитируется не волокном, а электронными устройствами, передающими и принимающими световые сигналы. Поэтому часто повышение скорости в оптическом канале может быть осуществлено лишь при замене излучателей и приемников света. В противоположность этому, для повышения скорости передачи данных в коаксиальном кабеле нужно полностью заменить весь кабель.
Следует также иметь в виду, что оптическое волокно имеет сердцевину и покрытие. Энергия светового сигнала распространяется главным образом внутри сердцевины и очень мало выходит в материал покрытия. В большинстве случаев сердцевина и ее покрытие образуют неразделимую структуру, поэтому покрытие не может быть снято с сердцевины для того, чтобы получить доступ к сигналу.
Благодаря этому оптический канал хорошо защищен от несанкционированного доступа и подслушивания, а точнее говоря - подсматривание информации в оптическом канале является очень сложной проблемой.
У
Однако при создании оптического моноканала возникают и определенные трудности. Главная из них заключается в том, что изготовление оптического канала с большим числом ответвлений сегодня еще является сложной задачей. Кроме того, свет по оптическому волокну передается пока только в одном направлении. Это требует создания особой структуры моноканала.
Моноканал, в котором сигналы по оптическим волокнам передаются только в одном направлении, показан на рис. 4. Моноканал имеет форму звезды, исходящей из специального устройства, именуемого смесителем (СМ) сигналов. К нему от каждого блока доступа (БД) подходит два оптических волокна. Каждое из них передает сигналы в одном направлении. Задачей смесителя является передача пришедшего по одному из волокон сигнала параллельно всем волокнам, направленным к абонентским системам сети.
В большом оптическом моноканале используется группа активных смесителей, располагаемых в несколько ярусов.

Рисунок 5.6. Оптический моноканал со смесителем сигналов

В трехъярусном моноканале (рис. 5) к каждому смесителю подходит по 16 пар оптических волокон. Поэтому на первом ярусе располагается один смеситель, на втором - 16, а на третьем ярусе находится уже до 256 смесителей. Это позволяет охватывать подобной коммуникационной сетью большую территорию (десятки километров) и подключать к моноканалу до 4096 абонентских систем.

Рисунок 5.7. Трехъярусный моноканал

В оптическом моноканале с зеркальным отражателем (рис. 6) общий канал дважды проходит мимо всех абонентских систем. В каждой точке подключения абонентской системы в оптическое волокно встраивается зеркало. Благодаря ему при приеме информации световой сигнал, отражаясь от общего канала, попадает к блоку доступа (БД), а от него – к абонентской системе.


Рисунок 5.8. Оптический моноканал с зеркальным отражателем

Большое число абонентских систем, включаемых в моноканальную сеть, все возрастающие объемы информации требуют увеличения скоростей передачи блоков данных. Эта задача может быть решена созданием многоканальных моноканалов.
Первый способ повышения скорости передачи данных заключается в создании не одного, а нескольких общих каналов. Так, на рис. 7 показан моноканал, содержащий три общих канала (1, 2, 3). Однако следует отметить, что несмотря на наличие нескольких каналов, здесь не возникает, как в узловой подсети, проблема маршрутизации информации. В рассматриваемом моноканале выбирается не маршрут передачи, а номер общего канала. И несмотря на наличие нескольких каналов осуществляется, как обычно, селекция (выбор по адресам назначения) принимаемых блоков информации.

Рисунок 5.9. Трехканальный моноканал

Второй способ повышения скорости передачи информации заключается в создании иерархии моноканалов. Сущность этого способа иллюстрируется схемой, показанной на рис. 8. В сети функционирует 18 абонентских систем (А - Т). Однако они подключены не к одному, а к шести моноканалам (1—6).

Рисунок 5.10. Иерархия моноканалов

В рассматриваемой сети в большинстве случаев взаимодействующие системы передают данные соответственно через свои моноканалы 1, 2, 4, 5, 6. Что касается моноканала 3, то он используется только тогда, когда необходимо взаимодействие систем, подключенных к разным моноканалам.
В результате использования иерархии моноканалов можно резко повысить скорость передачи информации.

5.2 Подсети. Маска подсети. Имена
Как известно, IP-адрес состоит из двух иерархических уровней. Необходимость во введении третьего уровня иерархии — уровня подсетей — была продиктована возникновением дефицита номеров сетей и резким ростом таблиц маршрутизации маршрутизаторов в Internet. После введения уровня подсети номер устройства разделяется на две части — номер подсети и номер устройства в этой подсети (рис. 1).

Рисунок 5.11.
Увеличение количества уровней снимает проблему роста таблиц маршрутизации благодаря тому, что информация о топологии корпоративных сетей становится ненужной магистральным маршрутизаторам Internet. Маршруты из сети Internet до любой конкретной подсети, расположенной в сети с данным IP-адресом, одинаковы и не зависят от того, в какой подсети расположен получатель. Это стало возможным благодаря тому, что все подсети сети с данным номером используют один и тот же сетевой префикс, хотя их номера (номера подсетей) разные. Маршрутизаторам в частной сети требуется различать отдельные подсети, но для маршрутизаторов Internet все подсети относятся к единственной записи в таблице маршрутизации. Это позволяет администратору частной сети вносить любые изменения в логическую структуру своей сети, не влияя на размер таблиц маршрутизации маршрутизаторов Internet.
Кроме того, легко решается проблема выделения номеров при росте организации. Организация получает номер сети, а затем администратор произвольно присваивает номера подсетей для каждой внутренней сети. Это позволяет организации расширять свою сеть без необходимости получения еще одного сетевого номера. На рис. 2 показана корпоративная сеть (класса В), состоящая из нескольких логических подсетей. Граничный маршрутизатор получает весь трафик из internet, адресованный к сети 130.5.0.0 и передает его внутренним подсетям, основываясь на информации, содержащейся в третьем октете.

Рисунок 5.12.
Перечислим некоторые преимущества, которые обеспечивает формирование подсетей внутри частной сети:
· Размер глобальных таблиц маршрутизации в сети Internet не растет;
· Администратор может по своему усмотрению создавать новые подсети без необходимости получения новых номеров сетей;
· Изменение топологии частной сети не влияет на таблицы маршрутизации в сети Internet, поскольку маршрутизаторы в Internet не имеют маршрутов в индивидуальные подсети организации — они хранят только маршрут с общим номером сети.

5.3 Маска подсети
SIZE=2>Если маршрутизаторы в сети Internet используют только сетевой префикс адреса получателя для передачи графика в организацию, то маршрутизаторы внутри частной сети организации используют расширенный сетевой префикс для передачи графика индивидуальным подсетям. Расширенным сетевым префиксом называют префикс сети и номер подсети. Так что схему на рис. 8.4 можно представить также следующим образом (рис. 3):

ßРасширенный сетевой префиксà
Префикс сети
Номер подсети
Номер устройства
Рисунок 5.13. Расширенный сетевой префикс
Понятие расширенного сетевого префикса, по сути, эквивалентно понятию маска подсети (subnet mask). Маска подсети — это двоичное число, содержащее единицы в тех разрядах, которые относятся к расширенному сетевому префиксу. Маска подсети позволяет разделить IP-адрес на две части: номер подсети и номер устройства в этой подсети.
Старшие биты IP-адреса используются рабочими станциями и маршрутизаторами для определения класса адреса. После того как класс определен, устройство может легко вычислить границу между битами, использующимися для идентификации номера сети, и битами номера устройства в этой сети. Однако для определения границ битов, идентифицирующих номер подсети, такая схема не подходит. Для этого как раз и используется 32-битная маска подсети, которая помогает однозначно определить требуемую границу. Для стандартных классов сетей маски имеют следующие значения:
· 255.0.0.0 — маска для сети класса А;
· 255.255.0.0 — маска для сети класса В;
· 255.255.255.0 — маска для сети класса С.
Например, если сетевой администратор хочет использовать весь третий октет для номера подсети в сети класса В 130.5.0.0, то ему необходимо указать маску подсети 255.255.255.0. Биты в маске подсети должны быть установлены в единицу, если система, проверяющая адрес, должна рассматривать соответствующий бит в IP-адресе как часть расширенного сетевого префикса. Другими словами, после определения класса IP-адреса, любой бит в номере устройства, который имеет соответствующий установленный бит в маске подсети, используется для идентификации номера подсети. Оставшаяся часть номера устройства, которой соответствуют нулевые биты в маске подсети, используется для задания номера устройства. На рис. 4 показан пример IP-адреса класса В с соответствующей маской подсети.

Адрес
130.5.5.25
Адрес в двоичном виде
10000010.
00000101.
00000101.

Маска подсети
255.255.255.0


Маска подсети в двоичном виде
11111111.
11111111.
11111111.

Сетевой префикс
10000010.
00000101.




Расширенный сетевой префикс
10000010.
00000101.
00000101.

Или в более наглядном виде




Сетевой префикс
Номер подсети
Номер устройства
IP-адрес
130.5.6.25

00000101.
00000101.

Маска подсети
255.255.255.0
11111111.
11111111.
11111111.





Расширенный сетевой префикс





Рисунок 5.14. IP-адрес класса В с соответствующей маской подсети
В стандартах, описывающих современные протоколы маршрутизации, часто используется длина расширенного сетевого префикса, а не маска подсети. Эта длина показывает число установленных в единицу бит в маски подсети. Так сетевой адрес 130.5.5.25 с маской подсети 255.255.255.0 может быть записан как 130.5.5.25 /24 (в маске подсети 255.255.255.0 число бит, установленных в единицу, равно 24). Такая запись является более компактной и легче воспринимается, чем маска подсети в ее традиционном точечно-десятичном формате. В таблице 5.1 приведен пример использования расширенного сетевого префикса. В таблице 5.2 устройство того же адреса представлено в несколько другом виде.
Таблица 5.1.
Пример записи с использованием расширенного сетевого префикса



Сетевой префикс
Номер подсети
Номер устройства
130.5.5.25
10000010.
00000101.
00000101.

255.255.255.0
11111111.
11111111.
11111111.

Эквивалентная запись


24-битовый расширенный сетевой префикс
Номер устройства
130.5.5.25/24
10000010.
00000101.
00000101.

Таблица 5.2.
Структура адреса с расширенным сетевым префиксом

Адрес
130.5.5.25
Адрес в двоичном виде
10000010.
00000101.
00000101.

Маска подсети в десятичном виде
255.255.255.0
Маска подсети в двоичном виде
11111111.
11111111.
11111111.

Номер подсети




00000101.


Номер устройства







Адрес с расширенным сетевым префиксом
130.5.5.25/24
Адрес с расширенным сетевым префиксом в двоичном виде

00000101.
00000101.


Однако следует учитывать, что большинство современных протоколов маршрутизации переносят маску подсети в своих сообщениях. В то же время, не существует стандартного протокола маршрутизации, который имел бы дополнительное однобайтовое поле в заголовке своих сообщений, содержащее запись о числе бит в расширенном сетевом префиксе. Каждый протокол маршрутизации передает полную 4-октетную маску подсети.
Для администратора сети чрезвычайно важно знать четкие ответы на следующие вопросы:
· Сколько подсетей требуется организации сегодня?
· Сколько подсетей может потребоваться организации в будущем?
· Сколько устройств в наибольшей подсети организации сегодня?
· Сколько устройств будет в самой большой подсети организации в будущем?
Первым шагом в процессе планирования является определение максимального количества требуемых подсетей. Данное число округляется вверх до ближайшей степени двойки. Затем важно учесть возможность увеличения числа подсетей. Наконец, проверяется достаточность адресов устройств в самой большой подсети организации на настоящий момент и в обозримом будущем.
Предположим, что организация получила сеть класса С 193.1.1.0 и ей необходимо сформировать шесть подсетей. Наибольшая подсеть должна поддерживать 25 устройств. На первом шаге определяется число бит, необходимых для выделения шести подсетей. Очевидно, необходимо выделить три бита (23=86). Так как организации выделены адреса класса С (префикс /24), то получаемый расширенный сетевой префикс равен /27 (24+3=27). Это соответствует маске подсети 255.255.255.224 (таблица 5.3).
Таблица 5.3.
Пример определения маски подсети в организации


Сетевой префикс
Байт для задания номеров устройств в данной сети


Байты для задания номера сети
Биты для номеров подсетей
Биты для номеров устройств
193.1.1.0
11000001.
00000001.
00000001.


255.255.255.224
11111111.
11111111.
11111111.


Эквивалентная запись
193.1.1.0/27
11000001.00000001.00000001.000

Таблица 5.4.
Более подробно устройство адреса.

Адрес
193.1.1.0
Адрес в двоичном виде
11000001.
00000001.
00000001.
000 (биты номера подсети)
00000 (биты номера устройства)
Маска подсети






255.255.255.224


Маска подсети в двоичном виде
11111111.
11111111.
11111111.
111(биты номера подсети)
00000(биты номера устройства)
Эквивалентная запись
Адрес с расширенным сетевым префиксом
193.1.1.0/27
Адрес с расширенным сетевым префиксом в двоичном виде






Номер подсети необязательно должен располагаться сразу после сетевого префикса. Администратор может устанавливать биты в маске подсети независимо от остальной части адреса. В примере с адресом 193.1.1.0 /27 третий байт маски подсети вместо 111000002 может быть, например, установлен в 00011100. Однако на практике в большинстве случаев так не поступают.
Используемый 27-битовый расширенный сетевой прификс оставляет 5 бит для задания номеров устройств в каждой из подсетей. Это означает, что в каждой подсети может быть использовано до 32 (2S-32) устройств. Однако, так как адреса, у которых все биты равны нулю или единице, являются зарезервированными, общее число адресов устройств в каждой подсети равно 30 (32-2).
Для выделения подсети сетевой администратор помещает двоичное представление номера этой подсети (для восьми подсетей это может быть число от 0 до 7) в битовое поле номера подсети. Например, для определения подсети 4 администратор просто помещает двоичное представление числа 4 (1002) в трехбитовое поле номера подсети. Таблица 5.5 содержит все восемь возможных вариантов подсетей в рассматриваемом примере.
Таблица 5.5.
Возможные варианты подсетей

Сеть/адрес
Точечно-десятичный формат
Двоичный формат
Базовая сеть
193.1.1.0/24
11000001.00000001.00000001.00000000
Подсеть #0
193.1.1.0/27
11000001.00000001.00000001.00000000
Подсеть #1
193.1.1.32/27
11000001.00000001.00000001.00100000
Подсеть #2
193.1.1.64/27
11000001.00000001.00000001.01000000
Подсеть #3
193.1.1.96/27
11000001.00000001.00000001.01100000
Подсеть #4
193.1.1.128/27
11000001.00000001.00000001.10000000
Подсеть #5
193.1.1.160/27
11000001.00000001.00000001.1010000
Подсеть #6
193.1.1.192/27
11000001.00000001.00000001.11000000
Подсеть #7
193.1.1.224/27
11000001.00000001.00000001.11100000
Самым простым способом проверить, что все подсети выделены правильно, является следующий. Убедитесь в том, что все десятичные номера подсетей кратны номеру подсети #1. В данном примере все номера подсетей кратны 32.
Первоначально документ RFC 950 запрещал использование номеров подсетей, у которых все биты установлены в единицы или нули. Причиной такого ограничения являлось то, что некоторые протоколы маршрутизации не переносят в своих служебных сообщениях ни маски подсети, ни длины расширенного сетевого префикса. Например, при использовании протокола маршрутизации RIP версии 1 маршруты в разные подсети с адресами 193.1.1.0 /27 (00000) и 193.1.1.0 /24 (00000000) будут рассматриваться как идентичные. Аналогичная проблема возникает и в случае установки всех бит в единицу. Например, адрес 193.1.1.255 будет широковещательным адресом и для сети 193.1.1,0 /24 (номер устройства 11111111) и для сети 193.1.1.224 /27 (номер устройства 11111). В табл. 6 показаны обе рассмотренные ситуации.
С разработкой протоколов маршрутизации, переносящих в своих служебных сообщениях маску подсети (OSPF, IS-IS), стало возможным использование подсетей, все биты номеров которых установлены в единицу или ноль — вопреки Документу RFC 950. В результате производители позволяют настраивать подсети с такими номерами на портах своих маршрутизаторов. При этом, однако, нужно учитывать два обстоятельства: используемые в корпоративной сети протоколы маршрутизации, относящиеся к классу IGP, должны поддерживать маску подсети или расширенный сетевой префикс. Кроме того, необходимо, чтобы маршрутизаторы в сети поддерживали номера подсетей со всеми единичными или нулевыми битами. При этом важно учитывать номер версии программного обеспечения маршрутизатора. Например, маршрутизатор NetBuilder II фирмы 3Com включает полную поддержку таких подсетей, начиная с версии 8.3.0.2.
Таблица 5.6.

Идентичные маршруты и широковещательные адреса

Маршруты в сети
193.1.1.0/24
11000001.00000001.00000001.(24-битовый расширенный сетевой префикс)



193.1.1.0/27
11000001.00000001.00000001.000 (27-битовый расширенный сетевой префикс)

Широковещательные адреса
193.1.1.0/24
11000001.00000001.00000001.(24-битовый расширенный сетевой префикс)



193.1.1.224/27
11000001.00000001.00000001.111(27-битовый расширенный сетевой префикс)


В рассмотренном примере остается 5 бит для задания адресов устройств в каждой подсети. В результате каждая подсеть может содержать блок из 30 адресов устройств (^S-^). Устройства нумеруются от 1 до 30. Для определения адреса устройства #N в сети администратор помещает двоичное представление числа N в поле номера устройства. Например, для выделения адреса устройству #28 в подсети #2 администратор вставляет двоичное представление 28 (111002) в пятибитовое поле подсети #2. В таблице 5.7 показаны некоторые возможные номера устройств в подсети #2.
Таблица 5.7.
Адреса устройств в подсети #2.
Сеть (устройство)/адрес
Точечно-десятичный формат
Двоичный формат
Подсеть #2


193.1.1.64/27

11000001.00000001.00000001.01000000
Устройство #1
193.1.1.65/27
11000001.00000001.00000001.01000001
Устройство #2
193.1.1.66/27
11000001.00000001.00000001.01000010
Устройство #3
193.1.1.67/27
11000001.00000001.00000001.01000011



Устройство #28
193.1.1.92/27
11000001.00000001.00000001.01011100
Устройство #29
193.1.1.93/27
11000001.00000001.00000001.01011101
Устройство МО
193.1.1.93/27
11000001.00000001.00000001.01011110
Широковещательный адрес для подсети #2

193.1.1.95
11000001.00000001.00000001.01011111
Для того чтобы проверить правильность широковещательного адреса для определенной подсети, можно использовать следующее простое правило. Во всех случаях широковещательный адрес для подсети #N на единицу меньше, чем базовый адрес для подсети #(N+1). Например, широковещательный адрес для подсети #2 (193.1.1.95) на единицу меньше базового адреса подсети #3 (193.1.1.96).
При введении подсетей значительно усложнился процесс определения принадлежности отправителя и получателя к одной сети.
Теперь перед отправкой дейтаграмм устройству необходимо определить:
· располагается ли получатель в той же подсети, что и отправитель;
· какой маршрутизатор необходимо использовать (в том случае, если существует несколько (более одного) маршрутизаторов, имеющих маршрут в нужную сеть).
До введения подсетей в поле сетевого номера IP-адрес получателя сравнивался отправителем с собственным сетевым номером. Если сетевые номера совпадали, то считалось, что устройства располагаются в одной локальной сети.
Однако после введения подсетей получатель может располагаться в другой подсети той же самой сети, что и получатель. В этом случае для проверки используется маска подсети. Над IP-адресом получателя и маской подсети выполняется операция логическое “И”. Результат сравнивается с результатом выполнения этой же операции над собственным IP-адресом и той же маской подсети. Если результаты совпадают, то отправитель и получатель находятся в одной подсети и дейтаграмма может быть послана напрямую. Если результаты различны, то получатель находится в другой подсети. В этом случае дейтаграмма посылается маршрутизатору.
Документ RFC 1219 определяет основное правило, которому желательно следовать при присваивании номеров подсетям и устройствам. Номера подсетей назначают таким образом, чтобы старшие биты в номере подсети устанавливались первыми. Например, если поле номера подсети состоит из четырех бит, то первые несколько номеров подсетей должны быть следующими: 8 (10002), 4 (01002), 12 (11002), 2 (00102) 6 (01012) и т. д. Иными словами, единичные биты номеров подсетей рекомендуется устанавливать, начиная с крайней левой позиции. В то же время единичные биты номеров устройств рекомендуется устанавливать, начиная с крайней правой позиции (табл. 8.10). В нашем случае сетевой префикс состоит из двух октетов (в маске 11111111.11111111.), за ними (в адресе) следует 4 бита номера подсети и 12 бит остается под номер устройства.
Если следовать данному правилу, то на границе между номером подсети и номером устройства будут существовать нулевые неиспользуемые биты. Это позволяет изменять маску подсети без изменения IP-адреса, присвоенного устройству. Необходимость изменения маски подсети может возникнуть при увеличении числа устройств в каждой подсети. В этом случае можно “заимствовать” часть бит из числа зарезервированных под номера подсетей. Достоинством описанного правила является то, что администратору при изменении маски подсети на устройстве не надо менять IP-адрес устройства. Изменение адресов может потребовать больших усилий от администратора: перенастройки почтовых служб, модификации статических таблиц маршрутизации и т. д.
Таблица 5.8.
Рекомендуемая схема присвоения адресов

Номера подсетей
Биты адреса
Номера устройств

1000 0000. 0000 0001


0100 0000. 0000 0010


1100 0000. 0000 0011


0010 0000. 0000 0100


1010 0000. 0000 0101


0110 0000. 0000 0110


1110 0000. 0000 0111

В сети с подсетями можно использовать два вида широковещания: направленное и ограниченное. Направленное широковещание используется для передачи дейтаграммы всем устройствам определенной подсети. Для посылки дейтаграммы всем устройствам во всех подсетях необходимо использовать ограниченное широковещание с адресом 255.255.255.255. Необходимо, однако, учесть, что маршрутизаторы не пропускают дейтаграммы с таким адресом (поэтому такое широковещание и называется ограниченным). В средах с подсетями существует ограничение на направленное широковещание. Биты, используемые для формирования номеров подсетей и обычно (в традиционных сетях) являющиеся частью поля номера устройства, не могут быть установлены в нули или единицы. Например, пусть у нас есть адрес класса С, в котором третий байт выделен под номера подсетей: 128.1.Номер подсети. Номер устройства. В этом случае адрес направленного широковещания не может быть равен 128.1.255.255, 128.1.0.255, 128.1.255.0 или 128.1.0.0.
На рис. 8.8 показан пример сети с подсетями, связанными маршрутизаторами. Каждый из маршрутизаторов хранит маршруты во все подсети. Маска подсети равна 255.255.255.0.

5.4 Маска подсети переменной длины
В 1987 году вышел документ RFC 1009, определяющий использование разных масок подсетей в одной сети, состоящей из большого количества подсетей. Так как в этом случае расширенные сетевые префиксы в различных подсетях имеют разную длину, говорят о масках подсетей переменной длины. Маску подсети переменной длины поддерживают современные протоколы маршрутизации, такие как OSPF и IS-IS (см. ниже). Сообщения этих протоколов переносят как адрес подсети, так и соответствующую ему маску. Если протокол маршрутизации не позволяет использовать маску подсети, маршрутизатор будет либо предполагать, что должна использоваться маска подсети, присвоенная его локальному порту, либо выполнять поиск в статически настроенной таблице, содержащей всю информацию о масках подсетей. Первое решение не гарантирует правильности выбора маски подсети, а статическая таблица не имеет возможности масштабирования. Кроме того, ею сложно управлять и исправлять в ней ошибки также непросто.
Таким образом, если требуется использование маски подсети переменной длины в сложной сетевой топологии, то наилучшим выбором является применение протоколов маршрутизации OSPF, IS-IS, а не RIP-1 IP. Однако при этом нужно учитывать, что вторая версия протокола RIP (RIP-2 IP), описанная в документе RFC 1388, расширяет возможности первой версии протокола, в том числе и добавлением возможности переноса маски подсети.
Так как протокол RIP-1 не переносит информацию о масках подсетей в своих сообщениях об обновлении маршрутизации, то сохраняются маски подсетей, используемые с каждым номером сети. При отсутствии данной информации протокол маршрутизации RIP-1 IP выбирает маску подсети, которая соответствует каждому маршруту в его таблице маршрутизации.
Рассмотрим пример сети, на входе которой стоит маршрутизатор. Порту 1 этого маршрутизатора присвоен адрес 130.24.13.1 с маской 255.255.255.0 (расширенный сетевой префикс /24), а порту 2 - адрес 200.14.13.2 с такой же маской подсети. Анализируя первые биты адреса порта 1 и маску подсети, маршрутизатор определит, что это адрес класса В, поэтому третий байт адреса используется для задания номера подсети. Порту 2 присвоен адрес класса С без выделения подсетей.
Если маршрутизатор получает информацию о маршруте к сети 130.24.36.0 от своего соседа через порт 1, он будет использовать маску подсети 255.255.255.0 (расширенный сетевой префикс /24), так как порту 1 присвоен адрес с тем же номером сети 130.24.0.0. Маска подсети просто наследуется. Но если маршрутизатор получит от соседа информацию о маршруте к сети 131.25.0.0, он будет использовать стандартную маску подсети 255.255.0.0, так как адрес 131.25.0.0 этому классу соответствует маска подсети 255.255.0.0. Будет использоваться именно эта маска, т.к. маршрутизатор не имеет другой информации о маске подсети.
Маршрутизатор поддерживающий протокол RIP-1 IP, включает биты, определяющие сообщения об обновлении маршрутов, только в том случае, если порт, через который предполагается посылать сообщения, настроен на подсеть с тем же номером сети. Если порт настроен с другим сетевым номером, маршрутизатор будет рассылать только сетевую часть адреса.
Теперь предположим, что входной маршрутизатор получил информацию от соседа о маршруте к сети 130.24.36.0. Так как порт 1 настроен на адрес того же класса, то маршрутизатор предположит, что сеть 130.24.36.0 имеет маску 255.255.255.0. Поэтому, когда наступает время оповестить о данном маршруте, он будет информировать маршруте к сети с адресом 130.24.36.0 через свой порт 1 и о маршруте к сети 130.24.0.0 через порт 2. Во втором случае оказывается утраченной, содержащаяся в третьем байте адреса (36).
Протокол RIP-1 IP может использовать только одну маску подсети для данного номера сети. Возможность присваивания одному адресу нескольких масок предоставляет несколько преимуществ. Множество масок подсетей позволяет более эффективно использовать выделенное организации адресное пространство. Кроме того, удается объединять маршруты, что значительно уменьшает количество маршрутной информации внутри домена маршрутизации.
О нескольких масках подсетей, присвоенных одному адресу, часто говорят как о маске подсети переменной длины (Variable Length Subnet Mask, VLSM). Основной проблемой этого метода является совместимость с предыдущими версиями протоколов, которые использовали только одну маску подсети.
Пусть администратор сети организации хочет настроить сеть класса В 130.5.0.0 на расширенный сетевой префикс /22 (таблица 5.9). Для задания номеров подсетей могут использоваться 6 бит.
Таблица 5.9.
Распределение адресного пространства при префиксе/22
сети с расширенным сетевым префиксом
130.5.0.0/22
вой префикс (класс В)
10000010.
00000101.




• для номеров подсетей







| для номеров устройств






00.00000000

В этой сети с расширенным сетевым префиксом /22 будут доступны 64 подсети (26=64), каждая из которых поддерживает максимум до 1022 (210-2=1022) адресов устройств. Такой вариант устроит администратора, если организации нужно небольшое число подсетей с большим количеством устройств в них. Однако, допустим, организации нужны подсети с числом устройств, не превышающих 30. При использовании фиксированной маски подсети администратору придется создавать подсети, рассчитанные на значительно большее чем 30 количество устройств (а именно, 1022). В результате невостребованными оказываются около 1000 адресов устройств в подсетях. Как видно из этого примера, ограничения, вызываемые необходимостью применять единую маску подсети, значительно уменьшают эффективность использования всего адресного пространства, выделенного организации.
Использование маски подсети переменной длины дает возможность легко преодолеть эти трудности. Действительно, предположим, что администратор хочет использовать расширенный сетевой префикс /26. Сеть класса В с таким расширенным сетевым префиксом позволяет поддерживать до 1024 подсетей (210), каждая из которых может содержать до 62 (26-2) индивидуальных адресов устройств. Такой расширенный сетевой префикс идеально подходит к небольшим подсетям с числом устройств порядка 60.
Таблица 5.10.
Распределение адресного пространства при префиксе/26
Адрес сети с расширенным сетевым префиксом
130.5.0.0/26
Сетевой префикс (класс В)
10000010.
00000101.




Биты для номеров подсетей




00000000.00


Биты для номеров устройств








Как видно, применение различных расширенных сетевых префиксов (/22 и /26) позволило получить две разные подсети, отличающиеся по числу поддерживаемых устройств. Маска подсети переменной длины позволяет администратору выделять подсети с необходимыми характеристиками. При этом созданные подсети можно со временем легко изменять. Общая схема такова: сначала сеть делится на подсети, затем некоторые из этих подсетей делятся на более мелкие подсети и т. д. То есть происходит рекурсия (дробление) подсетей.
Рассмотрим другой пример. На рис. 4 показано, как сеть класса А с адресом 10.0.0.0 сначала разделяется на подсети с расширенным сетевым префиксом /16 (маска подсети 255.255.0.0). Получается 254 подсети. В каждой подсети поддерживается до 65 534 (216-2) индивидуальных адресов устройств. Полученная подсеть с адресом 10.253.0.0 с расширенным сетевым префиксом /24 поддерживает 254 подсети, каждая из которых включает до 254 (2^2) устройств. При дальнейшей рекурсии с расширенным сетевым префиксом /27 подсеть с адресом 10.253.1.0 будет включать 6 подсетей с номерами, кратными 32, содержащих до 30 (25-2) устройств.


Рисунок 5.15.

Таким образом иерархическое (рекурсивное) разбиение адресного пространства позволяет гибко настроить сеть организации. Кроме того, внедрение маски подсети переменной длины позволяет значительно уменьшить объемы таблиц маршрутизации.
Дело в том, что каждый маршрутизатор теперь может включить информацию обо всех своих подсетях в одну запись сообщения об обновлении. Так как структура подсетей не имеет значения для внешних сетей, маршрутизатор Ml оповещает маршрутизаторы в сети Internet только о маршруте с адресом 10.0.0.0 (рис. 5).

Рисунок 5.16. Объединение подсетей в одну запись

Естественно, даже при использовании маски подсети переменной длины администратору следует убедиться, что класс сети организации достаточен для выделения требуемого количества подсетей.
Рассмотрим сеть организации, которая охватывает несколько удаленных филиалов. Если организация имеет три удаленных сети, то ей потребуется выделить 3 бита для формирования подсетей (23=83). Этих 3 бит хватит и в обозримом будущем. Предположим, что администратор хочет сформировать отдельные подсети внутри каждого филиала — второй уровень в иерархии подсетей. Внутри этих подсетей необходимо выделить отдельные рабочие группы и их подсети. Следуя приведенной выше модели, мы видим, что верхний уровень иерархии определяется числом удаленных филиалов, второй — числом зданий внутри филиалов, а третий — максимальным числом подсетей в каждом здании и максимальным числом устройств в каждой из подсетей.
Для поддержки маски подсети переменной длины требуется выполнение трех основных условий:
· Протокол маршрутизации должен переносить информацию о расширенном сетевом префиксе;
· Все маршрутизаторы должны поддерживать алгоритм передачи, основывающийся на технологии наибольшего совпадения (longest match);
· Адреса должны присваиваться в соответствии с существующей топологией сети.
Правило наибольшего совпадения основывается на том факте, что маршрут в таблице маршрутизации с большим расширенным сетевым префиксом определяет меньший набор получателей, чем тот же маршрут с коротким расширенным сетевым префиксом. Поэтому маршрутизатор должен выбирать маршрут с расширенным сетевым префиксом (как наиболее точно определяющий получателей) при передаче графика. В этом и состоит правило наибольшего совпадения.
Например, если адрес получателя равен 11.1.2.5 и в таблице маршрутизации есть три маршрута к этой сети (табл. 5.11), маршрутизатор выберет маршрут #1, так как его расширенный сетевой префикс совпадает с адресом получателя в большем числе бит.
Таблица 5.11.
Выбор маршрута с наибольшим совпадением
Получатель
11. 1. 2. 5
00001011. 00000001. 00000010. 00000101
Маршрут #1
11. 1. 2. 0/24
00001011. 00000001. 00000010. 00000000
Маршрут#2
11. 1. 0. 0/16
00001011. 00000001. 00000000. 00000000
Маршрут #3
11. 0. 0. 0/8
00001011. 00000000. 00000000. 00000000

Здесь необходимо сделать одно важное замечание. Адрес получателя (11. 1. 2. 5) совпадает с тремя маршрутами. Согласно правилу наибольшего совпадения будет выбран маршрут к подсети 11. 1. 2. 0 /24. Но может оказаться так, что устройство с адресом 11. 1. 2. 5 не будет входить в подсеть 11. 1. 2. 0. Тогда маршрутизатор не сможет передать трафик этому устройству. Поэтому назначение адресов следует обязательно проводить, исходя из существующей сетевой топологии и при этом непременно учитывать правило наибольшего совпадения.
Иерархическая маршрутизация (реализованная в протоколе OSPF) требует, чтобы адреса устройств отражали действительную сетевую топологию на всех уровнях. Только при этом условии несколько подсетей можно объединить в одном сообщении о маршруте. Этот постулат является основополагающим при рассмотрении технологии бесклассовой маршрутизации (CIDR).
Вопросы для самоконтроля:
1. Моноканальные подсети. Моноканал.
2. Для чего применяется разбиение сетей на подсетей?
3. Опишите процесс маршрутизации в системе TCP/IP.
4. Перечислите основные протоколы маршрутизации.
5. Какую информацию содержит таблица маршрутизации?
6. Отличие физического моноканала от частотного.
7. Почему целесообразно использовать оптические моноканалы?
8. Назовите способы повышения скорости передачи данных в моноканале.
9. Для чего необходимо увеличение уровня подсетей?
10. Что такое маска подсети?
11. Назовите три основных условия, требующиеся для поддержки маски переменной длины?
12. Опишите процесс маршрутизации в системе TCP/IP.


Не сдавайте скачаную работу преподавателю!
Данный конспект лекций Вы можете использовать для создания шпаргалок и подготовки к экзаменам.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем конспект самостоятельно:
! Как написать конспект Как правильно подойти к написанию чтобы быстро и информативно все зафиксировать.