Конспект лекций по предмету "Информатика"


Системы счисления

Начнем с некоторых общих замечаний относительно понятия число. Можно считать, что любое число имеет значение (содержание) и форму представления*. Значение числа задает его отношение к значениям других чисел («больше», «меньше», «равно») и, следовательно, порядок расположения чисел на числовой оси. Форма представления, как следует из названия, определяет порядок записи числа с помощью предназначенных для этого знаков. При этом значение числа является инвариантом, т.е. не зависит от способа его представления. Это означает также, что число с одним и тем же значением может быть записано по-разному, т.е. отсутствует взаимно однозначное соответствие между представлением числа и его значением. В связи с этим возникают вопросы, во-первых, о формах представления чисел, и, во-вторых, о возможности и способах перехода от одной формы к другой.
* Ситуация весьма напоминает порядок использованием переменных в программах - они тоже имеют значение и имя. Эта аналогия подчеркивает общность подхода к представлению данных независимо от того, кому (или чему) эти данные предназначены.

Способ представления числа определяется системой счисления.
Система счисления - это правило записи чисел с помощью заданного набора специальных знаков - цифр.

Людьми использовались различные способы записи чисел, которые можно объединить в несколько групп: унарная, непозиционные и позиционные.
Унарная - это система счисления, в которой для записи чисел используется только один знак - | («палочка»). Следующее число получается из предыдущего добавлением новой |; их количество (сумма) равно самому числу. Именно такая система применяется для начального обучения счету детей (можно вспомнить «счетные палочки»); использование унарной системы оказывается важным педагогическим приемом для введения детей в мир чисел и действий с ними. Но, как увидим в дальнейшем, унарная система важна также в теоретическом отношении, поскольку в ней число представляется наиболее простым способом и, следовательно, просты операции с ним. Кроме того, именно унарная система определяет значение целого числа количеством содержащихся в нем единиц, которое, как было сказано, не зависит от формы представления. Для записи числа в унарной системе в дальнейшем будем использовать обозначение Z1.
Из непозиционных наиболее распространенной можно считать римскую систему счисления. В ней некоторые базовые числа обозначены заглавными латинскими буквами: 1 - I, 5 - V, 10 - Х, 50 - L , 100 - С, 500 - D, 1000 - М. Все другие числа строятся комбинаций базовых в соответствии со следующими правилами:
· если цифра меньшего значения стоит справа от большей цифры, то их значения суммируются; если слева - то меньшее значение вычитается из большего.
· цифры I, X, С и М могут следовать подряд не более трех раз каждая;
· цифры V, L и D могут использоваться в записи числа не более одного раза.
Например, запись XIX соответствует числу 19, MDXLIX - числу 1549. Запись чисел в такой системе громоздка и неудобна, но еще более неудобным оказывается выполнение в ней даже самых простых арифметических операций. Отсутствие нуля и знаков для чисел больше М не позволяют римскими цифрами записать любое число (хотя бы натуральное). По указанным причинам теперь римская система используется лишь для нумерации.
В настоящее время для представления чисел применяют, в основном, позиционные системы счисления.
Позиционными называются системы счисления, в которых значение каждой цифры в изображении числа определяется ее положением (позицией) в ряду других цифр.

Наиболее распространенной и привычной является система счисления, в которой для записи чисел используется 10 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9. Число представляет собой краткую запись многочлена, в который входят степени некоторого другого числа - основания системы счисления. Например,



В данном числе цифра 2 встречается трижды, однако, значение этих цифр различно и определяется их положением (позицией) в числе. Количество цифр для построения чисел, очевидно, равно основанию системы счисления. Также очевидно, что максимальная цифра на 1 меньше основания. Причина широкого распространения именно десятичной системы счисления понятна - она происходит от унарной системы с пальцами рук в качестве «палочек». Однако в истории человечества имеются свидетельства использования и других систем счисления - пятиричной, шестиричной, двенадцатиричной, двадцатиричной и даже шестидесятиричной - об этом можно прочитать, например, в книге С.В. Фомина [43].
Общим для унарной и римской систем счисления является то, что значение числа в них определяется посредством операций сложения и вычитания базисных цифр, из которых составлено число, независимо от их позиции в числе. Такие системы получили название аддитивных. В отличие от них позиционное представление следует считать аддитивно-мультипликативным, поскольку значение числа определяется операциями умножения и сложения. Главной же особенностью позиционного представления является то, что в нем посредством конечного набора знаков (цифр, разделителя десятичных разрядов и обозначения знака числа) можно записать неограниченное количество различных чисел. Кроме того, в позиционных системах гораздо легче, чем в аддитивных, осуществляются операции умножения и деления. Именно эти обстоятельства обуславливают доминирование позиционных систем при обработке чисел как человеком, так и компьютером.
По принципу, положенному в основу десятичной системы счисления, очевидно, можно построить системы с иным основанием. Пусть р - основание системы счисления. Тогда любое число Z (пока ограничимся только целыми числами), удовлетворяющее условию Z < pk (k ≥ 0, целое), может быть представлено в виде многочлена со степенями р (при этом, очевидно, максимальный показатель степени будет равен k - 1):



Из коэффициентов aj при степенях основания строится сокращенная запись числа:



Индекс р у числа Z указывает, что оно записано в системе счисления с основанием р; общее число цифр числа равно k. Все коэффициенты aj - целые числа, удовлетворяющие условию:



Уместно задаться вопросом: каково минимальное значение р? р = 1 невозможно, поскольку тогда все aj = 0 и форма (4.1) теряет смысл. Первое допустимое значение р = 2 - оно и является минимальным для позиционных систем. Система счисления с основанием 2 называется двоичной. Цифрами двоичной системы являются 0 и 1, а форма (4.1) строится по степеням 2. Интерес именно к этой системе счисления связан с тем, что, как указывалось выше, любая информация в компьютерах представляется с помощью двух состояний - 0 и 1, которые легко реализуются технически. Наряду с двоичной в компьютерах используются 8-ричная и 16-ричная системы счисления - причины будут рассмотрены далее.
Необходимо еще раз подчеркнуть, что значение целого числа, т.е. общее количество входящих в него единиц, не зависит от способа его представления и остается одинаковым во всех системах счисления; различаются только формы представления одного и того же количественного содержания числа. Например,


Не сдавайте скачаную работу преподавателю!
Данный конспект лекций Вы можете использовать для создания шпаргалок и подготовки к экзаменам.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем конспект самостоятельно:
! Как написать конспект Как правильно подойти к написанию чтобы быстро и информативно все зафиксировать.