2
ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ
ГОУ ВПО «КЕМЕРОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»
Химический факультет
Кафедра аналитической химии
Постановка методики определения таурина с целью изучения обменных процессов в мягких контактных линзах
(дипломная работа)
Научный руководитель:
к.х.н., доцент
Шрайбман Г.Н. ______
«___»_________2007 г.
Научный консультант:
вед. инженер
Дикунова Т.В. _______
«___»_________2007 г.
Дипломник:
Ватрушкина А.В. _____
«___»_________2007 г.
КЕМЕРОВО 2007
РЕФЕРАТ
В настоящей работе представлены результаты исследования обменных свойств мягких контактных линз (МКЛ) на основе материала «Кемерон-1» по отношению к широко применяемому в офтальмотерапии лекарственному средству «Тауфон» (4% водный раствор таурина).
Для проведения исследования в качестве достаточно чувствительного метода выбран спектрофотометрический метод с использованием реакции с нингидрином. Метод основан на образовании красителя фиолетового Руэмана с максимумом в спектре поглощения при длине волны 570 нм. В работе установлены условия, при которых фотометрическая реакция приводит к образованию воспроизводимой и стабильной окраски продукта: растворитель нингидрина - этилцеллозольв, стабилизатор окраски - этиловый спирт (соотношение в смеси реагентов 1:1); буферный раствор с рН 6,2; температура реакции 100єС; время нагревания 10 минут. Экспериментальное значение молярного коэффициента поглощения при этом составляет (8170480) М-1·см-1. Градуировочный график линеен в диапазоне концентраций (0,657,0)·10-5 М.
Предел обнаружения таурина сmin=4,20·10-6М(5,25·10-4мг/мл); Sr не более 5 %.
Отработанная методика использовались при исследовании сорбции и десорбции таурина из МКЛ. Было установлено, что насыщение МКЛ таурином достигается к 3 часам. Степень десорбции таурина уменьшается с увеличением степени сорбции до ~40 %, причем более 50% поглощенного таурина десорбируется за первые 30 минут.
Полученные результаты свидетельствуют о возможности пролонгированного введения препарата в ткани глаза с использованием МКЛ из материала «Кемерон-1» в качестве транспортного средства.
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
1. Литературный обзор
1.1. Свойства таурина
1.1.1 Химические и физические свойства
1.1.2 Биологическая роль таурина
1.1.3 Названия препаратов с действующим веществом таурин*(тaurine*)
1.2. Методы определения аминокислот
1.2.1 Метод кислотно-основного титрования
1.2.2 Анализ аминокислот методом тонкослойной хроматографии
1.2.3 Электрохимические методы определения аминонокислот
1.2.4 Фотометрические методы
1.3 Мягкие контактные линзы
1.3.1 Основные характеристики мягких контактных линз
1.3.2 Применение МКЛ
2. ОБЪЕКТЫ И МЕТОДИКИ ЭКСПЕРИМЕНТА
2.1 Объект исследования
2.2 Реактивы и аппаратура, используемые в работе
2.3 Методики исследования
2.3.1 Методики определения таурина
2.3.2 Методика определения сорбции и десорбции таурина
2.4 Обработка результатов анализа
3. Результаты эксперимента и их обсуждение
3.1 Изучение условий проведения фотометрической реакции таурина с нингидрином
3.2 Характеристики градуировочной зависимости для определения
таурина в выбранных условиях
3.3 Результаты исследования обменных свойств МКЛ и их обсуждение
3.3.1 Результаты исследования сорбции таурина
3.3.2 Результаты изучения десорбции таурина
ВЫВОДЫ
ЛИТЕРАТУРА
приложение
ВВЕДЕНИЕ
Мягкие контактные линзы (МКЛ) были созданы чехословацкими учеными Вихтерле и Лимом в 1960 году. Это послужило началом использования линз в лечении некоторых заболеваний глаза в качестве искусственной повязки для роговицы и средства введения лекарственных веществ в глаз. Однако если применение МКЛ с бандажной целью уже вошло в практику офтальмологов, то вопросы, связанные с введением лекарственных веществ в глаз с помощью линз, находятся в стадии разработки. Известно, что МКЛ, пропитанные лекарственными веществами, продлевают их лечебное действие и вследствие этого являются более эффективным методом введения препаратов в глаз по сравнению с инстилляционным. Время действия препарата, вводимого в глаз с помощью МКЛ, различно и определяется химическим строением молекулы препарата и природой материала линз. Лечебный эффект, в свою очередь зависит от свойств материала линз, таких, как кислородопроницаемость, влагосодержание и др., и геометрических параметров линз.
Для изготовления МКЛ применяются полимерные материалы на основе гидрогелей. Линзы из этих материалов, наряду с хорошими оптическими свойствами (прозрачность, стабильность показателя преломления) обладают гибкостью, эластичностью, биологической инертностью. В настоящее время существует более 150 видов материалов для МКЛ. В проблемной научно-исследовательской лаборатории высокомолекулярных соединений КемГУ создан материал «Кемерон-1», который обладает выше указанными свойствами и применяется для изготовления мягких контактных линз, используемых в бандажных целях.
Возможность применения МКЛ в качестве средства для введения лекарственных веществ в орган зрения зависит от абсорбции (поглощения) данного вещества материалом линзы и последующей десорбции. Одним из широко используемых лекарственных терапевтических средств являются глазные капли «Тауфон», отпускаемые без рецепта врача. При9меняется «Тауфон» при лечении помутнения хрусталика - катаракты (старческой, диабетической, травматической, лучевой); для лечения дистрофических поражений сетчатой оболочки глаза, в том числе, наследственных дегенераций; физической травмы роговицы, глаукомы, сердечно-сосудистой недостаточности различной этиологии. «Тауфон» представляет собой 4% водный раствор таурина - 2-аминоэтансульфоновой кислоты. Для определения таурина в препарате достаточно чувствительности титриметрического анализа - метода кислотно-основного титрования с блокированием аминогруппы формальдегидом. При изучении процессов сорбции-десорбции вещества гидрогелем МКЛ необходим более чувствительный метод. Рассмотрение литературных данных позволило выбрать спектрофотометрический метод, основанный на реакции с нингидрином. Поскольку конкретной методики для определения таурина не было найдено, возникла необходимость ее разработки на основе известных условий проведения реакции с нингидрином родственных веществ.
Целью работы является изучение обменных свойств МКЛ на основе материала «Кемерон-1» по отношению к таурину - действующему веществу глазных капель «Тауфон».
Задачи дипломной работы:
1) поиск и отработка условий проведения нингидриновой реакции с таурином и установление метрологических характеристик фотометрической методики определения таурина;
2) изучение сорбции и десорбции таурина образцами МКЛ с использованием фотометрической методики.
1.1. Свойства таурина
Таурин - жизненно необходимая серосодержащая аминокислота, обладающая широким спектром фармакологического действия. Как своеобразная аминокислота, таурин представляет интерес с химической и с биологической точки зрения. С одной стороны, это производное аминокислоты, так как в нём есть кислотная и аминогруппы. С другой стороны, таурин является аминосульфоновой кислотой, и, в отличие от б-аминокарбоновых кислот (точнее, замещённых аминоуксусных кислот), являющихся структурными единицами белков и множества других аминокарбоновых кислот, обладает особыми свойствами. В связи с этим определение таурина, как аминокислоты вызывает некоторые затруднения.
Таурин или амидоэтиленсульфоновая кислота C2H7NSO3, название происходит от лат. taurus (бык), был открыт Леопольдом Гмелином в 1826 г. как продукт разложения находящейся в бычьей желчи таурохолевой кислоты. Анализ таурина был произведен Демарсэ, а позднее Редтенбахером, который открыл в нем присутствие серы. Таурин находится в желчи многих животных, в мышцах моллюсков, в легких быка, в печени, селезенке и почках ската [4]. В организме образуется при ферментативном окислении сульфгидрильной группы SH цистеина с участием цистеиндеоксигеназы и последующим декарбоксилированием. Таурин образует в печени конъюгаты с желчными кислотами (ацилируясь ими по аминогруппе), образовавшиеся конъюгаты (например, таурохолевая и тауродезоксихолевая кислоты) входят в состав желчи, и, будучи поверхностно-активными веществами, способствуют эмульгированию жиров в кишечнике.
Таурин является естественным продуктом обмена серосодержащих аминокислот: цистеина, цистеамина, метионина. Таурин - жизненно необходимая сульфоаминокислота, которая была найдена практически у всех видов животных. В растительном мире это вещество не встречается. Исключение составляют красные водоросли. Благоприятное лечебное действие оказывает при кардиоваскулярных заболеваниях, гликозидных интоксикациях, гиперхолестеринемии, эпилепсии, диабете, болезни Альцгеймера, при заболеваниях печени, алкоголизме, цистофиброзе, пострадиационном поражении, ретинопатии. После родов концентрация его в материнском молоке достигает больших значений. Предназначенную природой первую порцию таурина младенец получает с молоком матери. Таурин необходим для нормального развития центральной нервной системы и мышц. Характерной особенностью таурина является способность стимулировать репаративные процессы при дистрофических нарушениях сетчатки глаза, травматических поражениях тканей глаз. Таурин необходим для сетчатки глаза. На свету сетчатка теряет таурин, ночью он накапливается. Потеря 50% таурина от нормальной концентрации - необратимый процесс, приводящий к слепоте. Абсолютного дефицита таурина у человека не бывает. Какое-то количество его образуется в организме в процессе превращения. Но, в основном, мы получаем это вещество с животными продуктами (с молоком, мясом, рыбой). Большие концентрации таурина содержат морские животные. Существуют ситуации, при которых необходимо потреблять дополнительное количество таурина, когда организму нужна помощь. Так, например, критическим является момент, когда миокард теряет таурин и одновременно понижается его концентрация в крови. В эксперименте такие животные не выживают. У человека риск развития подобных событий может возникнуть при сердечной недостаточности или облучении большими дозами радиации. Дефицит таурина в организме наблюдается также при сахарном диабете. Приём таурина в таких случаях позволяет стабилизировать течение болезни, избежать неблагоприятного исхода и увеличить продолжительность жизни. Таурин теряется при стрессах, хирургических операциях, ишемических состояниях (кислородной недостаточности). При недостатке таурина страдает сердце, печень, белые клетки крови. В старости скорость выведения таурина увеличена. Избыточное выведение таурина из организма встречается при различных состояниях и нарушениях обмена. Аритмии, нарушения процессов образования тромбоцитов, кандидозы, физический или эмоциональный стресс, заболевания кишечника, дефицит цинка и злоупотребление алкоголем приводят к дефициту таурина в организме. Злоупотребление алкоголем к тому же нарушает способность организма усваивать таурин. Для того чтобы избежать дефицита таурина необходимо его восполнять. Чтобы проявить себя при столь широком спектре заболеваний, таурин должен затрагивать процессы или клеточные структуры, которые являются принципиально важными для физиологической активности органов и тканей, страдающих при перечисленных патологиях. Таурин необходим для нормального обмена натрия, калия, кальция и магния. Он предотвращает выведение калия из сердечной мышцы и потому способствует профилактике некоторых нарушений сердечного ритма. Таурин оказывает защитное действие на головной мозг, особенно при дегидратации. Его применяют при лечении беспокойства и возбуждения, эпилепсии, гиперактивности, судорог. Концентрация таурина в головном мозге у детей в четыре раза больше, чем у взрослых. Биологически активные пищевые добавки с таурином дают детям с синдромом Дауна и мышечной дистрофией. В некоторых клиниках эту аминокислоту включают в комплексную терапию рака молочной железы [2,5].
В последнее время установлено, что в мозге таурин играет роль нейромедиаторной аминокислоты, тормозящей синоптическую передачу, обладает противосудорожной активностью, оказывает также кардиотропное действие.
Таурин используется в медицине и пищевой промышленности, но в последние годы стал обычным компонентом для напитков (тоники), соков. Используется как биологически активная добавка (БАД), а также добавляется в корма для животных, особенно - для кошек. Таурин часто вводят в состав комплексных лекарственных препаратов, БАД. Он является основным действующим веществом препарата «Тауфон».
Основные физиологические функции таурина:
Таурин в составе таурохолевых (желчных) кислот необходим для всасывания липидов и жирорастворимых витаминов в кишечнике. В свободном виде он необходим для нормальной физиологической активности любой клетки организма.
Таурин защищает клетку от сморщивания, если состав электролитов во внеклеточной среде выше нормы, и от набухания, если концентрация электролитов ниже нормы.
Таурин регулирует внутриклеточный кальций. Он понижает концентрацию Са2+, предотвращая некротические изменения при избытке этого иона, и повышает Са2+, если уровень кальция в клетке ниже нормы и его не хватает для физиологической активности.
Таурин защищает клеточную мембрану, регулируя её состав и жёсткость.
Таурин участвует в воспалительных ответах организма и, крайне необходим для защиты клеток крови. Он обладает детоксикационными свойствами, нейтрализует сильный окислитель гипохлорную кислоту, которая генерируется при окислительном взрыве нейтрофилов (как известно, эти клетки участвуют в иммунном ответе).
Фармакологические свойства: Тауфон относится к аминокислотным препаратам, стимулирующим репаративные и регенеративные процессы при заболеваниях сетчатки глаза дистрофического характера, травматических повреждениях тканей последнего, патологических процессах, сопровождающихся резким нарушением метаболизма этих тканей. Как серосодержащая аминокислота препарат способствует нормализации функций клеточных мембран, оптимизации энергетических и обменных процессов, поддержанию постоянства электролитного состава цитоплазмы клеток, торможению синоптической передачи.
Применение: Дистрофические поражения сетчатой оболочки глаза, в том числе наследственные тапеторетинальные дегенерации, дистрофии роговицы, катаракта, травмы роговицы, открытоугольная глаукома, сердечно-сосудистая недостаточность различной этиологии (в том числе на фоне интоксикации сердечными гликозидами). Также назначается при лечении органа зрения совместно с другими препаратами.
Противопоказания: Повышенная индивидуальная чувствительность к препарату.
Побочные действия: Аллергические реакции.
Форма выпуска: Для медицинского применения таурин выпускается в виде 4% водного раствора под названием «Тауфон» во флаконах из бесцветного стекла по 5 мл или 10 мл и в ампулах по 1 мл. Хранение: в прохладном, защищенном от света месте. 10 мл препарата содержат 0,4 г таурина. Этот препарат выбран нами для исследований, потому что отпускается без рецепта врача. Используется в виде бесцветного прозрачного стерильного раствора с рН 5-6,5.
1.2 Методы определения аминокислот
Поскольку таурин часто рассматривают в ряду аминокислот, в нейтральной среде он существует в виде цвиттер-иона. Поэтому для его определения целесообразно рассмотреть методы анализа аминокислот.
В настоящее время разделение и определение аминокислот в различных биологических объектах является важной задачей клинической биохимии и аналитической химии. В связи с этим быстро развиваются методы анализа аминокислот и их смесей. К таким методам относятся: метод обращенно-фазовой ВЭЖХ с флуоресцентным или электрохимическим детектированием [6,7] (способы пред- и постколоночной дериватизации аминокислот), реакция с о-фталевым альдегидом в присутствии нуклеофильных агентов, которую широко используют для чувствительного электрохимического, спектрометрического и флуориметрическое анализа аминокислот [8], метод капиллярного электрофореза [9], метод алкалиметрического титрования [10,11] и др.
В ВЭЖХ аминокислоты определяют с использованием различных детекторов: УФ, лазерного флуориметрического (ЛИФ), электрохимического, а также рефрактометрического. Все методы детектирования, кроме последнего, требуют предварительной процедуры дериватизации. Для получения производных аминокислот с целью их последующего определения используют такие соединения, как о-фталевый альдегид, фенил-изотиоцианат (УФ-детектирование), флуоресцеин-изотиоцианат, флуоресцамин (ЛИФ-детектирование).
Серосодержащие аминокислоты обычно определяют методами хроматографии [12], потенциометрии, а также иодометрическим титрованием. Среди электрохимических методов анализа для определения серосодержащих аминокислот широко применяют вольтамперометрию [13,14,15].
Аминокислоты и пептиды можно легко обнаружить методом хроматографии на бумаге или в тонком слое целлюлозы, используя небольшие количества материала. Бумажная и тонкослойная хроматография чаще используются для качественного анализа. Для определения используются различные буферы и органические растворители, при использовании которых достигается разделение аминокислот при одномерном фракционировании. Не разделенные аминокислоты могут быть разделены в результате проведения хроматографии при других pH во втором (перпендикулярном) направлении. Среди реагентов дающих широкий диапазон цветов при взаимодействии с аминокислотами можно отметить: нингидрин, флуоресцамин, изатин. Аминогруппы могут реагировать со свободными альдегидными группами, содержащимися в бумаге. Образующиеся основания Шиффа дают синюю флуоресценцию в УФ-свете. Йод не вызывает разрушения аминокислот. Хлор пригоден для определения N-блокируемых аминокислот [2]. Быстро развивается лигандообменный хроматографический анализ аминокислот и пептидов на силикагельных сорбентах в присутствии ионов меди.
1.3 Мягкие контактные линзы
Контактные (т.е. надевание непосредственно на глазное яблоко под веки) линзы получили в последнее время большое распространение для улучшения зрения при близорукости, дальнозоркости, астигматизме, старческой дальнозоркости, а также для усиления или изменения цвета глаз. В разных странах ими пользуется от 2 до 10% населения. Первые контактные линзы созданы в начале 20-го века и были изготовлены из стекла, далее появились жесткие контактные линзы из полиметилметакрилата, в 60-е годы разработаны первые мягкие линзы из НЕМА, в 90-е - кислородопроницаемые жесткие линзы.
2.1 Объект исследования
Объектом исследования в данной работе являются модельные калиброванные МКЛ из материала «Кемерон-1». В исходном состоянии до гидратации линзы представляют собой жесткие полимеры - негибкие и ломкие. При погружении в воду полимер по мере насыщения становится мягким и гибким. У набухшей линзы увеличивается ее масса и объем. Такая линза хранится в водном растворе.
В качестве вещества для исследования обменных свойств, был взят препарат «Тауфон» (разд. 2.1.5.), представляющий собой 4%-й водный раствор таурина - 2-аминоэтансульфоновой кислоты. Этот препарат выбран нами для исследования, поскольку отпускается без рецепта врача, довольно часто применяется для лечения органа зрения как совместно с другими лекарственными препаратами, так и отдельно, а литературные данные по сорбции и десорбции таурина материалом МКЛ отсутствуют.
2.2 Реактивы и аппаратура, используемые в работе
Характеристики исходных веществ:
Глазные капли «Тауфон» (производитель: ООО Славянская аптека, Р.№002492/01-2003; ЗАО фармацевтическая фирма «ЛЕККО», Р.№002696/01-2003).
Натрий уксуснокислый, 3- водный, ЧДА по ГОСТ 199-78.
Уксусная кислота ледяная по ГОСТ 61-75.
Олово двухлористое, 2- водное, ЧДА по ГОСТ 36-78.
Нингидрин (НГ), 1-водный, ЧДА ОКП 26 3812 0052, ТУ 6-09-10-1384-79.
Этилцеллозольв технический по ГОСТ 8313-88.
Спирт этиловый, чистый по ТУ 6-09-1710-77.
Формалин, 36,9% технический по ГОСТ 1625-89.
Гидроксид натрия, ЧДА по ГОСТ 4328-77.
Кислота соляная, фиксанал по ТУ 6-09-2540-72.
Натрия хлорид, раствор изотонический 0,9% (производитель: ОАО «БИОХИМИК», Р.№002134/01-2003).
Бидистиллированная вода.
Характеристики используемой аппаратуры:
Колбы вместимостью 100 см3, с пробками.
Колбы для титрования вместимостью 100 мл.
Бюретка, емкостью 25 мл.
Набор пробирок со стеклянными пробками.
Пипетки вместимостью 1, 2, 5 и 10 мл.
Водяная баня с ячейками для вертикальной установки колб в воду.
Фотоэлектроколориметр ФЭК-56М, снабженный кассетой с 9 светофильтрами [25].
Набор кювет с l = 1 см для фотометрирования.
2.3 Методики исследования
где V1 ? объем NaOH, пошедший на титрование таурина, мл;
с1 - концентрация NaOH, моль/л;
Vал ? объем препарата, мл;
125 - молярная масса таурина, г/моль.
Методика фотометрического определения
Для определения низких концентраций таурина был апробирован фотометрический метод определения б-аминокислот по реакции с нингидрином (НГ) с учетом рекомендаций работ [18-20] (разд. 2.2.4). Сущность его состоит в том, что растворы аминокислот при нагревании с нингидрином приобретают синюю или фиолетовую окраску. Фотометрические реакции очень чувствительны к чистоте реактивов, температуре и pH среды [18].
В работе изменены условия проведения фотометрической реакции (рН буферного раствора, состав смеси реагентов, режим нагревания), позволившие получить устойчивую окраску продукта с таурином, увеличить интенсивность окраски и уменьшить поглощение холостого опыта. Для проведения этой реакции важным является использование одного типа посуды (одинаковая толщина стекла).
Подготовка к анализу
1. Приготовление рабочего раствора:
В колбу объемом 100 мл вносят стандартизованный методом кислотно-основного титрования препарат «Тауфон» и доводят до метки бидистиллированной водой (раствор А, концентрация таурина в котором составляет 3,20?10-3 моль/л). В мерную колбу объемом 50 мл вносят 10 мл раствора А и доводят до метки бидистиллированной водой (раствор В с концентрацией таурина 6,40?10-4 моль/л).
2. Приготовление раствора реагентов:
Раствор реагентов, свежеприготовленный. Растворяют 2 г нингидрина в 37,5 мл этилцеллозольва и добавляют 37,5 мл этилового спирта.
3. Приготовление буферного раствора с рН 6,2. В дистиллированной воде растворяют 544 г уксуснокислого натрия (тригидрат) добавляют 4 мл ледяной уксусной кислоты (плотность 1049 кг/м3) и доводят объем до 1 л, затем доводят уксусной кислотой до нужного рН.
Ход анализа
В колбу на 100 мл пипеткой отбирают 3,00 мл раствора реагентов, 2,00 мл буферного раствора, 5,00 мл раствора, содержащего таурин (общий объем пробы 10,00 мл). При больших концентрациях таурина проводят промежуточное разбавление. После перемешивания помещают в баню с кипящей водой на 10 мин (колбы при нагревании открытые). Затем охлаждают до комнатной температуры водопроводной водой, и после выдерживания для выравнивания температур растворов в колбах измеряют оптическую плотность по отношению к дистиллированной воде при л=570 нм. Параллельно проводят холостой опыт, в котором раствор таурина заменяют бидистиллированной водой [20]. За аналитический сигнал принимают разность полученных значений оптической плотности.
Для получения градуировочной зависимости в выбранных условиях готовят водные растворы таурина с концентрацией 0,06·10-4;……;1,0·10-4 моль/л соответствующим разбавлением раствора В.
Методика получения гидриндантина
Гидриндантин (ГД) получают восстановлением нингидрина. В 1 л дистиллированной воды растворяют при 90°С 40 г нингидрина и в 200 мл при 40°С 40 г аскорбиновой кислоты. Раствор кислоты при перемешивании вводят в раствор нингидрина, после перемешивания в течение 30 мин гидриндантин отфильтровывают с помощью водоструйного насоса на стеклянном фильтре, здесь же промывают дистиллированной водой и сушат в вакуумном эксикаторе над Р2О5.
Методика очистки этилцеллозольва
Технический этилцеллозольв очищают от содержащихся в нем перекисей путем кипячения в колбе с обратным холодильником с добавкой гидроксида натрия или хлористого олова (15-20 г на 0,5 л). Кипячение проводится в течение 15-20 минут в круглодонной колбе на воздушной бане. После этого колбу подсоединяют к водяному холодильнику с алонжем, который опускают в колбу-приемник. Перегонку ведут со скоростью 5-10 мл/мин. Собирают фракцию в интервале температур 135-136°С (около 350 мл). Перегнанный растворитель хранится в емкости из темного стекла в прохладном месте. Контроль содержания перекисей проводится периодически по реакции с иодидом калия.
Определение сорбции и десорбции таурина МКЛ проводили с использованием фотометрической методики.
Исследование обменных свойств МКЛ проводили по схеме:
измерение массы сухих линз;
измерение массы насыщенных водой линз;
определение методом кислотно-основного титрования концентрации исходного препарата;
выдерживание МКЛ в препарате в течение определенного времени и определение концентрации таурина в растворе после извлечения линзы;
выдерживание МКЛ, содержащих таурин, в воде или в физрастворе для десорбции и определение концентрации таурина в вытяжке при определенной частоте сменяемости воды и физраствора;
расчет массы таурина в МКЛ по разности масс таурина в исходном препарате и в препарате после вымачивания линз;
расчет сорбции и десорбции таурина МКЛ.
Методика проведения сорбции таурина МКЛ из материала «Кемерон-1»
Для изучения сорбции таурина линзы замачиваются в фиксированный объем препарата (2,00 мл) на определенное время. По истечении этого времени линзы извлекают из раствора таурина. Этот раствор используется для дальнейшего анализа. Для анализа раствора таурина после сорбции использовалась фотометрическая методика (разд. 3.3.1). Анализируемый раствор таурина разбавляется в 500 раз. При объеме пробы для анализа менее 5,00 мл для сохранения общего объема раствора при проведении реакции 10 мл в реакционную колбу добавлялось соответствующее количество воды.
Массу сорбированного вещества (Дm) находят по разности масс в исходном растворе капель (mисх) и после сорбции (mп.).
Массу таурина в каплях после сорбции рассчитывают по формуле:
mп = с ? K ? Vпробы ? V1 ? 125 ? 10-3/ Vал, г (3.2)
где с ? концентрация таурина в растворе, определяемая по уравнению градуировочной зависимости, моль/л;
Vпробы ? объем анализируемого раствора, мл;
V1 ? объем фотометрируемого раствора, мл;
Vал ? объем аликвоты раствора таурина взятого на анализ, мл;
К ? коэффициент разбавления;
125 - молярная масса таурина, г/моль.
Доля сорбированного вещества оценивается по отношению к массе сухой линзы (Дm/безвод) и по отношению к mисх.
Методика проведения десорбции таурина из МКЛ
Изучение десорбции таурина проводится следующим образом: после вымачивания линз в препарате для сорбции их извлекают из фиксированного объема раствора таурина и помещают в такой же фиксированный объем бидистиллированной воды или физраствора. Через определенные промежутки времени (30 мин.) линзы извлекают и снова помещают в такой же объем свежеприготовленной воды или физраствора (2,00 мл). Так повторяют несколько раз. Воду и физраствор после десорбции используют для анализа. Анализируемый раствор разбавляется в 50 раз. Для сравнения проводится десорбция однократно в суммарный объем.
Массу десорбированного вещества вычисляют по формуле (3.2).
2.4 Обработка результатов анализа
Уравнение линейного градуировочного графика получают методом наименьших квадратов (МНК) [29], позволяющим вычислить коэффициенты a и b в уравнении: y = a + bx.
b = (n Уxiyi - Уxi Уyi)/(n Уxi2 - (Уxi)2)
a = (Уyi - bУxi)/n
Оценивают точность параметров a и b, для этого оценивают дисперсию S2yx экспериментальных точек:
S2yx ? (n - 2) = Уyi2 - aУyi - bУxiyi
Дисперсию констант a и b вычисляют по уравнениям:
S2b = (n ? S2yx)/(n Уxi2 - (Уxi)2)
S2a = (S2b / n) ? Уxi2
Зная дисперсии констант a и b, можно рассчитать доверительные интервалы:
?b = Sb ? фб,н
?a = Sa ? фб,н
Окончательный вид уравнения прямой:
y = (a±?a) + (b±?b)x
Вычисление метрологических характеристик методики и результатов анализа:
xан = (y - a)/b,
Sx = .
Доверительный интервал результата анализа:
?xан = Sxан ? фб,н.
Предел обнаружения (xmin):
; xmin = сmin = .
При проведении параллельных измерений проводилась статистическая обработка результатов по стандартной методике [29] с вычислением границ доверительного интервала (С) и относительного стандартного отклонения Sr.
3.1 Изучение условий проведения фотометрической реакции таурина с нингидрином
В разделе 2.3.1 дано описание методики фотометрического определения таурина в условиях проведения нингидриновой реакции с образованием фиолетового (синего) Руэмана [18-20], установленных в работе после предварительно проведенных исследований. Были апробированы некоторые рекомендации для определения капролактама [20] и аминокислот [18].
Поиск условий проведения фотометрической реакции с нингидрином с целью определения низких концентраций таурина заключался в следующем:
изучение влияния рН буферного раствора;
изучение влияния температуры и режима нагревания;
изучение влияния добавок гидриндантина (ГД), органических растворителей;
изучение влияния порядка введения реактивов на величину устойчивого аналитического сигнала.
Попытка получения окрашенного в сине-фиолетовый цвет продукта реакции нингидрина (НГ) с таурином по методике [18] (разд. 2.2.4 - пропись I) не удалась. Причиной этого может быть, с одной стороны, неполное соблюдение условий, связанных с невозможностью использования NaCN в составе буферного раствора, и отсутствие рекомендованного изопропанола. С другой стороны, что вероятнее, указанное значение рН буфера (5,3-5,4) не подходит для проведения реакции (образуется продукт желто-оранжевого цвета).
Поэтому возникла необходимость поиска других условий, в частности, с использованием рекомендаций работы [20]. При проведении эксперимента варьировались: соотношение компонентов, порядок их введения, рН буферного раствора, концентрация таурина. Измерение оптической плотности окрашенного продукта проводилось при 570 нм. Результаты представлены в таблице 3.1.
Таблица 3.1.
Влияние условий проведения реакции таурина с нингидрином на получение окрашенного продукта
№ |
Условия опыта |
стаурина, моль/л |
Результаты (А570) |
|
11. |
4 мл раствора таурина; 2 мл раствора реагентов Й; 3 мл этилцеллозольва; 1 мл буферного раствора рН 6 |
6,4?10-4 |
Окраска отсутствует. |
|
22. |
4 мл раствора таурина; 1 мл буферного раствора рН 6; 2 мл раствора реагентов Й; после охлаждения пробы 3 мл этилцеллозольва |
6,4?10-4 |
Окраска отсутствует. |
|
33. |
1 мл раствора таурина; 2 мл раствора реагентов Й; 3 мл этилцеллозольва; 1 мл буферного раствора рН 6,55 |
6,4?10-4 |
Окраска отсутствует. |
|
44. |
2 мл раствора реагентов Й; 1 мл буферного раствора рН 6; 1 мл раствора таурина; 3 мл Н2O; 3 мл этилцеллозольва |
3,2?10-3 |
Окраска отсутствует. |
|
55. |
2 мл раствора реагентов Й; 1 мл буферного раствора рН 6,55; 1 мл раствора таурина; 3 мл Н2O; 3 мл этилцеллозольва |
3,2?10-3 |
Окраска отсутствует. |
|
66. |
3 мл раствора реагентов ЙЙ; 2,5 мл буферного раствора рН 6,55; 2 мл раствора таурина; 2,5 мл Н2O (окрашенный продукт был разбавлен в 3 раза) |
3,2?10-3 |
Продукт фиолетового цвета (0,972); окраска нестабильна. |
|
77. |
3 мл раствора реагентов ЙЙ; 2,5 мл фосфатного буферного раствора рН 6,86; 2 мл раствора таурина; 2,5 мл Н2O |
3,2?10-3 |
Окраска отсутствует. |
|
88. |
3 мл раствора реагентов ЙЙ (готовился без ГД); 2,5 мл буферного раствора рН 6,55; 2 мл раствора таурина; 2,5 мл Н2O (окрашенный продукт был разбавлен в 3 раза) |
3,2?10-3 |
Продукт фиолетового цвета (0,718); окраска нестабильна. |
|
99. |
2,6 мл раствора реагентов ЙЙ; 0,9 мл буферного раствора рН 6,55; 0,5 мл раствора таурина; 6 мл Н2O |
3,2?10-3 |
Окраска не стабильна (0,125) |
|
110. |
2,6 мл раствора реагентов ЙЙ (готовился с избытком ГД (в 2 раза)); 0,9 мл буферного раствора рН 6,55; 0,5 мл раствора таурина; 6 мл Н2O |
3,2?10-3 |
Окраска стабильна в течение 15 мин. (0,224) |
|
111. |
3,5 мл раствора реагентов ЙЙ (готовился с избытком ГД (в 2 раза)); 0,9 мл буферного раствора рН 6,55; 0,5 мл раствора таурина; 5,1 мл Н2O |
3,2?10-3 |
Окраска стабильна в течение 15 мин. (0,206) |
|
112. |
2,6 мл раствора реагентов ЙЙ (готовился с избытком ГД (в 2 раза)); 1,5 мл буферного раствора рН 6,55; 0,5 мл раствора таурина; 5,4 мл Н2O |
3,2?10-3 |
Окраска стабильна и более интенсивна (0,443) |
|
113. |
3 мл раствора реагентов ЙЙ (готовился с избытком ГД (в 2 раза)); 2 мл буферного раствора рН 6,55; 0,5 мл раствора таурина; 4,5 мл Н2O |
3,2?10-3 |
Окраска стабильна до 20 мин. и более интенсивна (0,684) |
|
114. |
3 мл раствора реагентов ЙЙ (готовился с избытком ГД (в 2 раза)); 2 мл буферного раствора рН 6,55; 5 мл раствора таурина. Нагревание в закрытой колбе 20 мин. Градуировочная зависимость в интервале концентраций от 0,1·10-4 моль/л до 2,5·10-4 моль/л: y = (0,054 0,002) + (5090 500)x |
6,4?10-4 |
Окраска стабильна до 20 мин. Раствор интенсивно окрашен. (1,573) |
|
Примечания к таблице: Раствор реагентов Й: 0,2 г НГ и 0,03 г ГД растворяли в 10 мл этилцеллозольва. Раствор реагентов ЙЙ по методике [20]: 0,2 г НГ и 0,03 г ГД растворяли в 7,5 мл этилцеллозольва.
При проведении фотометрической реакции необходимо было получить устойчивый аналитический сигнал в течение времени, достаточного для анализа, высокий и постоянный выход окрашенного продукта, обеспечивающий определение концентрации таурина менее 1·10-5 моль/л (для исследования десорбции). Наиболее подходящими условиями для получения красителя оказались результаты опытов с 2- кратным избытком ГД по отношению к рекомендуемому в методике [20] и увеличение количества буферного раствора практически в 2 раза (п.14 табл.4.1). В этом случае аналитический сигнал получается и при низких концентрациях таурина, а оптическая плотность стабильна в течение 20 мин (рис. 4.1). Для получения более стабильной окраски рекомендуют [18] проводить реакцию в присутствии солей меди или кадмия. В данном эксперименте в качестве стабилизатора использовался CuSO4 с концентрацией 10-3 моль/л (1 мл). Однако на устойчивость окраски добавка соли меди практически не повлияла, с течением времени она также убывает.
Таким образом, показано, что ГД увеличивает интенсивность окраски продукта реакции, повышает ее стабильность (рис. 3.1).
Рис. 3.1. Влияние ГД на получение и стабильность красителя
Однако введение ГД приводит к появлению плохо воспроизводимой окраски холостого опыта красных оттенков, которая налагается на окраску продукта, как это можно видеть из спектров поглощения (рис. 3.2а).
Рис. 3.2. Спектры поглощения продукта нингидриновой реакции.
Концентрация таурина 6,4·10-5 моль/л. Условия реакции:
а - в присутствии гидриндантина по п.14 (табл. 4.1) (разбавление в 3 раза);
б - без гидриндантина при рН 6,2 с добавкой этанола.
Анализируя полученные результаты, приведенные в табл. 3.1, можно сделать следующие обобщения:
Раствор реагентов Й - “не работает”, т.к. все реакции с этой смесью не дали окрашенного продукта.
ГД повышает устойчивость окраски во времени; без ГД интенсивность окраски раствора ниже и устойчивость снижается.
Важна также последовательность добавления веществ для получения окрашенного продукта и дальнейшего анализа, а именно: раствор реагентов, буферный раствор, раствор таурина.
Необходимо использовать ацетатный буферный раствор с рН 6,50-6,55, в отличие от 5,3-5,4 по методике [18].
Таким образом, методика анализа с введением ГД имеет следующие недостатки: плохую воспроизводимость результатов, высокий аналитический сигнал холостого опыта (рис. 4.2а) и ограниченную стабильность продукта. В связи с этим был необходим поиск иных условий проведения реакции таурина с нингидрином без введения ГД.
Исследование влияния рН в интервале 5,1 - 6,5, создаваемом ацетатным буфером, показало, что синий продукт образуется при рН 6,5 и без ГД, в отличие от капролактама [20]. То есть для проведения нингидриновой реакции с таурином необходимы более высокие значения рН, чем указанные в работе [18]. При этом время нагревания при температуре 80єС пришлось увеличить до 60 минут, вместо 22 мин [20].
Согласно литературным данным на стабильность и интенсивность окраски продукта оказывают влияние добавки спиртов в реакционную смесь. Вводить спирт для стабилизации окраски рекомендуется или после реакции (изопропиловый, амиловый) или во время реакции (этиловый вместе с изобутиловым) [18]. Введение в смесь реагентов этилового спирта и проведение реакции при температуре 100єС в течение 10 минут позволило получить окрашенный продукт сине-фиолетового цвета (рис. 3.2б), устойчивый в течение суток. Порядок введения реактивов не влияет на аналитический сигнал. При этом аналитический сигнал холостого опыта существенно ниже, чем в присутствии ГД (рис. 3.2).
При использовании такого смешанного растворителя установлено, что наибольшая величина полезного аналитического сигнала получается при рН 6,2 и приготовлении раствора нингидрина в этилцеллозольве с добавлением спирта в соотношении 1:1. При рН 6,55 в присутствии этанола практически в 2 раза увеличивается оптическая плотность холостого опыта, что нежелательно. На образование окрашенного продукта влияет режим нагревания. Для лучшей повторяемости результатов в присутствии этанола, как показали наблюдения, нагревание следует проводить в вертикально установленных на кипящую водяную баню открытых колбах одинакового калибра. При этом получается окрашенный продукт, сходимость измерений оптической плотности которого (А570) на уровне 0,1 (при концентрации таурина 1,3·10-5 моль/л) при п = 67 характеризуется Sr не превышающим 3%.
Таким образом, использование спирта позволило в определенной степени решить поставленные задачи. Установлены наиболее приемлемые условия проведения нингидриновой реакции с таурином: растворитель нингидрина - этилцеллозольв, стабилизатор окраски - этиловый спирт (их соотношение в смеси реагентов 1:1); буферный раствор с рН 6,2; температура реакции 100єС; время нагревания 10 минут. Нагревание следует проводить в тонкостенных открытых колбах с большим свободным объемом (100 мл при объеме реакционной смеси 10 мл). Методические детали выполнения анализа в отработанных условиях приведены в разд. 2.3.1.
3.2 Характеристики градуировочной зависимости для определения таурина в выбранных условиях
В выбранных условиях проведения фотометрической реакции (разд. 2.3.1) была получена градуировочная зависимость оптической плотности растворов при 570 нм (А570) от концентрации таурина, линейная в диапазоне концентраций таурина 0,06·10-4 - 1,0·10-4 моль/л и проходящая через начало координат (рис. 3.3).
Рис. 4.3. Зависимость оптической плотности продукта нингидриновой реакции от концентрации таурина в растворе.
Исходная концентрация таурина в препарате «Тауфон», установленная методом кислотно-основного титрования, составила (0,0414 ± 0,0001) г/мл.
Характеристики градуировочной зависимости:
b = 8170; a = -0,0023 (не значим);
Sb = 174; Sа = 0,007;
Cb = 480;
y = (8170 480)x;
ymin = 0,020 (Аmin при 570 нм);
Предел обнаружения: сmin= 4,20·10-6 М (5,25·10-4 мг/мл).
Следует отметить, что характеристики градуировочной зависимости практически не изменяются в присутствии физраствора.
Значение экспериментального молярного коэффициента поглощения, близкое к 8100 М-1·см-1, занимает промежуточное среди указанных в работе [18,20] для продуктов с различными аминопроизводными (от 1,6·103-20·103). Это может быть связано с недостаточно высоким выходом продукта реакции, но стабильность и воспроизводимость окраски полученного в условиях методики красителя свидетельствует о ее применимости для проведения анализа.
Таблица 3.2.
Метрологические характеристики методики определения таурина с нингидрином в установленных условиях (р = 0,95).
Введено, мкг |
Найдено |
||||
мкг |
, % |
Sr, % |
|||
7,6 |
п = 7 |
7,7 ± 0,2 |
1,3 |
2,9 |
|
16,5 |
п = 5 |
17,0 ± 1,0 |
3,0 |
4,9 |
|
28,0 |
п = 7 |
27,6 ± 1,0 |
1,4 |
1,5 |
|
66,1 |
п = 5 |
65,9 1,4 |
0,3 |
1,7 |
|
Примечание: 1) исходная концентрация таурина, установленная методом кислотно-основного титрования (разд. 3.3.1) 41,3 г/л (0,331 моль/л), разбавлена в 500 раз; взятые объемы, соответственно, равны 0,10; 0,20; 0,34 и 0,80 мл.
Отработанная методика имеет хорошие метрологические характеристики. Полученная градуировочная зависимость использовалась при исследовании обменных свойств МКЛ по отношению к препарату «Тауфон».
3.3 Результаты исследования обменных свойств МКЛ и их обсуждение
Подготовка линз к проведению исследования.
МКЛ на основе материала «Кемерон-1» были выточены специально для изучения обменных свойств и представляли собой в сухом состоянии прозрачные неэластичные образцы диаметром 12,000,01 мм и толщиной в центральной части 0,60 мм.
После взвешивания сухих МКЛ проводили их насыщение водой до постоянной массы. При набухании линзы увеличивались в размере и приобретали эластичность. Набухшие линзы хорошо встряхивали, а затем взвешивали (работа проводилась с 3 линзами). Взвешивание повторяли не менее 5 раз. Данные представлены в виде таблицы 3.2.
Таблица 3.3.
Массы линз из материала «Кемерон-1»
№ линзы |
, г (безводный полимер) |
тл, г (гидратированный полимер) |
, г (гидратированный полимер) |
С (гидратированный полимер) |
|
1 |
0,1082 |
0,3208; 0,3209; 0,3225; 0,3230; 0,3247 |
0,322 |
0,001 |
|
2 |
0,1069 |
0,3195; 0,3160; 0,3171; 0,3153; 0,3162 |
0,317 |
0,001 |
|
3 |
0,1068 |
0,3105; 0,3112; 0,3145; 0,3114; 0,3170 |
0,313 |
0,001 |
|
А570 |
Vал, мл |
с·105,моль/л |
тп, мг |
(mп С), мг |
|
0,0950,0950,0950,0950,0950,1000,095 |
0,2 |
1,12 |
70,0 |
70,7 2,0 |
|
1,12 |
70,0 |
||||
1,12 |
70,0 |
||||
1,12 |
70,0 |
||||
1,12 |
70,0 |
||||
1,20 |
75,0 |
||||
1,12 |
70,0 |
||||
0,3550,3550,3550,3600,3500,3600,355 |
0,8 |
4,30 |
67,0 |
67,0 2,0 |
|
4,30 |
67,0 |
||||
4,30 |
67,0 |
||||
4,36 |
68,0 |
||||
4,23 |
66,0 |
||||
4,36 |
68,0 |
||||
4,30 |
67,0 |
||||
t, ч |
Масса в растворепосле сорбции(mп), мг |
Массаизвлеченногоодной линзой(Дm), мг |
Степеньсорбции(Дm /безвод ),мг/г |
Степеньизвлечения(Дm/ mисх), % |
|
0,5 |
78,7 |
7,9 |
74 |
9,1 |
|
1 |
76,0 |
10,6 |
99 |
12,2 |
|
2 |
72,5 |
14,1 |
132 |
16,3 |
|
3 |
71,5 |
17,9 |
168 |
20,7 |
|
4 |
70,2 |
16,4 |
154 |
18,9 |
|
24 |
71,3 |
15,3 |
143 |
17,7 |
|
Сорбция |
Десорбция |
||||||
Времясорбции,час |
Масса тауринаизвлеченногоодной линзой(Дm С), мг |
Время десорб-ции,мин. |
Vал, мл |
с·105,моль/л |
Массадесорбир.тауринаmв, мг |
Степень десорбции(mв/Дm), % |
|
0,5 |
7,92,0 |
30 |
0,5 |
1,62 |
4,0 |
50,6 |
|
30 |
1 |
0,06 |
0,1 |
1,3 |
|||
30 |
3 |
0,00 |
0,0 |
- |
|||
mв = 4,1 |
51,9 |
||||||
1 |
10,61,0 |
30 |
0,5 |
2,20 |
5,5 |
51,9 |
|
30 |
1 |
1,04 |
1,3 |
12,3 |
|||
30 |
3 |
0,65 |
0,3 |
2,8 |
|||
mв = 7,1 |
67,0 |
||||||
2 |
14,11,0 |
30 |
0,5 |
2,12 |
5,0 |
35,5 |
|
30 |
1 |
0,88 |
1,1 |
7,8 |
|||
30 |
3 |
0,50 |
0,1 |
0,7 |
|||
mв = 6,2 |
44,0 |
||||||
3 |
17,92,0 |
90 |
1 |
3,10 |
11,6 |
64,8 |
|
4 |
16,42,0 |
30 |
0,5 |
1,98 |
4,9 |
29,9 |
|
30 |
1 |
|
! | Как писать дипломную работу Инструкция и советы по написанию качественной дипломной работы. |
! | Структура дипломной работы Сколько глав должно быть в работе, что должен содержать каждый из разделов. |
! | Оформление дипломных работ Требования к оформлению дипломных работ по ГОСТ. Основные методические указания. |
! | Источники для написания Что можно использовать в качестве источника для дипломной работы, а от чего лучше отказаться. |
! | Скачивание бесплатных работ Подводные камни и проблемы возникающие при сдаче бесплатно скачанной и не переработанной работы. |
! | Особенности дипломных проектов Чем отличается дипломный проект от дипломной работы. Описание особенностей. |
→ | по экономике Для студентов экономических специальностей. |
→ | по праву Для студентов юридических специальностей. |
→ | по педагогике Для студентов педагогических специальностей. |
→ | по психологии Для студентов специальностей связанных с психологией. |
→ | технических дипломов Для студентов технических специальностей. |
→ | выпускная работа бакалавра Требование к выпускной работе бакалавра. Как правило сдается на 4 курсе института. |
→ | магистерская диссертация Требования к магистерским диссертациям. Как правило сдается на 5,6 курсе обучения. |
Дипломная работа | Формирование устных вычислительных навыков пятиклассников при изучении темы "Десятичные дроби" |
Дипломная работа | Технологии работы социального педагога с многодетной семьей |
Дипломная работа | Человеко-машинный интерфейс, разработка эргономичного интерфейса |
Дипломная работа | Организация туристско-экскурсионной деятельности на т/к "Русский стиль" Солонешенского района Алтайского края |
Дипломная работа | Разработка мероприятий по повышению эффективности коммерческой деятельности предприятия |
Дипломная работа | Совершенствование системы аттестации персонала предприятия на примере офиса продаж ОАО "МТС" |
Дипломная работа | Разработка системы менеджмента качества на предприятии |
Дипломная работа | Организация учета и контроля на предприятиях жилищно-коммунального хозяйства |
Дипломная работа | ЭКСПРЕСС-АНАЛИЗ ФИНАНСОВОГО СОСТОЯНИЯ ООО «АКТ «ФАРТОВ» |
Дипломная работа | Психическая коммуникация |