1. Экспериментальные исследования процесса тепломассообмена и химических реакций углерода с газами.
Для получения наиболее простого экспериментального решения и проведения строгого анализа процесса горения и газификации углерода необходимо изучать процесс горения на телах определенной геометрической формы. Существуют различные методы исследования: метод канала, засыпки, метод сферической частицы и т.д.
При использовании метода канала затруднительна точная оценка так называемого «внутреннего» горения углерода, которое наблюдается в различных температурных условиях и которое при высоких температурах потребует особого внимания. Поэтому исследование было проведено на сферической частице. Частицы правильной геометрической формы в виде шара вытачивались на токарном станке из блоков графитизированного углерода марки ЭГ-14 (d= 0,015 м) плотностью =1,73 Мг/м3 или изготавливались на заводе из графитизированного углерода марки ВТМ-4 (d = 0,0125 м). Для такого графита характерны произвольная ориентация кристаллитов и отсутствие четкой границы между зернами, где не наступает полной графитизации углерода даже при нагревании до 3900 К. Рентгенографические данные для выбранного нами графита показали, что исходный размер кристаллитов по оси С равен 15,4 им, а по оси а -- 95,8 нм. Материал имеет значительное количество пор. Пористость достигает иногда 25%, при этом основную массу составляют поры размером 0.5-5*10 -6 м.
Наиболее сложной и ответственной частью работы было получение очень высоких температур в широком диапазоне. Был использован метод высокочастотного нагрева, который, как нам представляется, достаточно хорошо себя оправдал, о чем свидетельствуют работы. В настоящее время этот метод получил распространение.
Благодаря тому что углерод, как и уголь, является проводником, хотя и с высоким удельным сопротивлением, он может быть очень легко нагрет в высокочастотном электромагнитном поле. Отрицательный температурный коэффициент и возможность варьирования параметров высокочастотного генератора и индуктора в широких пределах принципиально не ограничивают достижимого верхнего температурного предела. Главными параметрами, которые определяют количество теплоты, выделяющейся на 1*10-4 м2 поверхности, глубину прогрева объекта и распределение тока по поверхности, являются мощность генератора, его частота, геометрические размеры индуктора, куда помещается нагреваемый объект, и электрические свойства нагреваемого объекта. Геометрические параметры индуктора - соотношение между размером индуктора и объекта, соотношение между диаметром индуктора и его высотой -определяют в значительной мере КПД системы.
Градиент температуры в объеме сферической частицы при ВЧ -нагреве неизбежен, как и при любом другом методе нагрева. Он определяется прежде всего характером реакции - ее эндотермикой или экзотермикой и теплообменом с окружающей средой. Качественных различий в характер распределения температур метод ВЧ -нагрева внести не может, так как источник теплоты (токи Фуко) находится в узком поверхностном слое. Глубина проникновения токов Фуко ? = 5030 мала, в нашем случае составляла 2 * 10-3 -3*10 -3 м, здесь ?- удельное сопротивление; ?-магнитная проницаемостъ; f -- частота тока. Поток теплоты, как и при нагреве потоком горячего газа, был направлен внутрь тела.
Экспериментально на примере реакции С + 02 для 1800 К показано, что метод нагрева не вносит особенностей протекание реакции.
Индукционный метод нагрева предъявляет определенные требования к системе регистрации изменения массы. Для обеспечения высокой точности наблюдения за процессом образец, нагреваемый в индукторе высокочастотного генератора, не должен смещаться по высоте индуктора при изменении его массы. Вследствие существующей неоднородности распределения напряженности электромагнитного поля по высоте индуктора смещение образца будет приводить к изменению температурного уровня нагрева и электродинамической силы, действующей на образец в индукторе. В соответствии с этими требованиями экспериментальная установка была снабжена прецизионной автоматической весовой системой. Были приняты меры к автоматической стабилизации температуры и к созданию условий нагрева образца с минимально возможным градиентом температуры на его поверхности (см. ниже). Мощность рабочего генератора составляла 5*104 Вт
Установка (рис.1.1) состоит из следующих узлов: 1. экспериментальной камеры высокого давления с нагревательным элементом и реакционной трубкой;
2. камеры высокого давления с весовым механизмом;
3. высокочастотного генератора;
4. системы измерения, регулирования и стабилизации температуры;
5. системы приготовления и подачи газовой смеси в реакционную трубку;
6. пультов управления, регулирования и регистрации температуры тела, давления, расхода газа и измерения массы испытуемого материала.
Экспериментальная камера и камера весового устройства устанавливались на общем стенде одна над другой. Камера с весовым устройством может перемещаться вертикально по двум направляющим стежкам при помощи подъемного механизма . Последний состоит из электродвигателя, редуктора, группы шестерен и червяка, жестко скрепленного в вертикальном положении с весовой камерой. Вертикальное перемещение весовой камеры предусмотрено для смены образцов испытуемого материала и ввода их в экспериментальную камеру.
Обе камеры соединяются трубопроводом нижнего фланца весовой камеры, внутри которого проходит подвеска весового механизма; на нем крепится образец исследуемого материала. Соединение герметизируется уплотнением плунжерного типа, находящимся в верхнем фланце экспериментальной камеры.
Рис. 1.1. Схема экспериментальной установки (а) и реакционной камеры (б) 1 -экспериментальная камера, 2- весовая камера, 3 -соединительный трубопровод, 4 - подъемный; механизм, 5-к высокочастотному генератору, 6- электрический пирометр к пульту управления ве-сов, 9 - блок генера-тора высокой частоты (ГВЧ);. Ю - регулятор температуры "Редмет-201"; 11 - блок конден-саторов контура индукто-ра; 12 -водяное охлаж-дение; 13 -- сброс газа из камеры; 14 - ввод газа в камеру; 15 - кран сброса газа; 16 - ре-дукторы; 17 - осушка газа; 18 - очистка га-за от О2; 19-- игольчатые краны регулировки рас- * хода газа; 20 - фильтр; 21 - сверхзвуковое соп-ло; 22 - дифманометр ДТ-150 с из-мерительной диафраг-мой; 23 - образцовый манометр; 24 - смеси-тель; 25 - система при-готовления и подачи га-зовой смеси; 26 - ввод газа в реакционную труб-ку; 27 - отражательный экран; 28 - змеевик во-дяного охлаждения; 29 - кварцевый учас-ток подвески; 30 - гай-ка плунжерного уплот-нения; 31 - верхний фланец эксперименталь-ной камеры с водяным охлаждением; 32 - плун-жерное уплотнение; 33 -устройство для подвеши-вания образца; 34 - гра-фитовый участок подвес-ки; 35 - кварцевая ре-акционная трубка; 36 -углеродная частица; 37-смотровое окно; 38 -индуктор; 39 - металли-ческий участок реакци-онной трубки; 40 - оп-тическое стекло; 41 -вводы индуктора; 42 -фланец для вводов индуктора с водяным охлаждением.
Экспериментальная камера высокого давления представляет собой цилиндр из нержавеющей стали с приваренными к нему фланцами. Внутренний диаметр камеры 0,130 м, высота 0,400 м. Верхний съемный фланец снабжен водяным охлаждением для уменьшения подвода теплоты к весовому механизму.
В центральной части камеры помещена реакционная кварцевая трубка, соединенная нижним концом с металлической трубкой нижнего фланца камеры. Осесимметрично кварцевой трубке расположен индуктор высокочастотного генератора, вводы которого для подачи высокочастотного напряжения проходят через специальный фланец, расположенный на бо-ковой стенке камеры. Вводы индуктора тщательно герметизированы и электроизолированы.
В кварцевую трубку симметрично относительно индуктора помещается испытуемый образец на графитовой подвеске, прикрепленной к подвеске весового механизма.
Максимально допустимая частота, необходимая для получения достаточно высокого КПД индукционного нагрева тела сферической формы, оценивалась по формуле
fдоп >4*108 ?/r2,
где r -- радиус нагреваемого тела; ? -- его удельное сопротивление. Для сферического образца из поликристаллического графита диаметром d= 1,25 * 10 -2 м и ? = 1,0 * 10 -5 Ом * м fдоп > 1 МГц. В качестве рабочей была выбрана часта 1,8 МГц ближайшая разрешенная по радиопомехам.
Применение выбранного индуктора при указанных параметрах высокочастотного генератора (мощность 5,0 *104 Вт и частота 1,8 МГц) позволило при нагреве сферической углеродной частицы диаметром 1,5*10 -2 -- 1,25*10 -2 м достигать температуры 3500 К. Этот предел лимитировался больше прочностными свойствами графита, чем параметрами нагревательной системы.
2. Теоретические исследования кинетики химических реакций и массообмена пористых углеродных частиц с газами с учетом эндотермической реакции и стефановского течения.
2.1. Кинетика параллельных и последовательных реакций углеродной частицы с газами.
Тепломассообмен (ТМО) твердого или жидкого тела с газами протекает взаимосвязанно с химическими реакциями и фазовыми превращениями (испарение, конденсация), которые являются источниками (стоками) энергии и новых масс газов (продуктов реакции). Появление или исчезновение газовых масс на поверхности твердого тела является причиной появления стефановского течения, направленного в первом случае от поверхности тела, а во втором к поверхности, дополнительно учавствующего в переносе тепла и газообразных компонент [1 - 4]. В целом ряде случаев необходимо учитывать пористую структуру твердого тела и, следовательно, внутреннюю диффузию и кинетику химических реакций на поверхностях пор. Так же необходимо учитывать, что при определенных условиях возможно протекание гомогенных химических реакций в пространстве около частицы. Наилучшим примером является реагирование углерода (графит, электродный уголь, коксы различных топлив) с газами. Известно [1, 5], что на поверхности углерода протекают параллельно экзотермические химические реакции
С+О2 =СО2+ (І), 2С+О2=2СО+ (ІІ),
а так же последовательная эндотермическая химическая реакция
С+СО2=2СО- (ІІІ),
где , , - тепловые эффекты химических реакций (І), (ІІ), (ІІІ), Дж/моль.
В газовой фазе возможно протекание экзотермической гомогенной химической реакции
2СО+О2=2СО+ (ІV),
где - тепловой эффект химической реакции (ІV), Дж/моль.
Если скорость гомогенной реакции (ІV) меньше скорости массопереноса (критерий Дамкелера (Damkohier) или критерий Семенова) < 0.4, то ее влиянием на тепломассообмен твердого тела можно пренебречь [1]
где d - диаметр углеродной частицы, м; - предэкспоненциальный множитель, 1/с; - энергия активации реакции (ІV), Дж/моль; - температура газовой смеси, К; - коэффициент диффузии окиси углерода, м2/с; Nu - критерий Нуссельта. Малое значение критерия Семенова определяется экспериментальными условиями, когда частица дополнительно разогревается током высокой частоты или в результате поглощения лазерного излучения и обдувается холодным газом [5-7]. Так в [5] частица электродного угля d=1.2 - 1.5 см, нагреваемая током высокой частоты, обдувалась воздухом комнатной температуры (Тg=293 К) со скоростью V=0.6 м/с. В [6-7] приведены экспериментальные и теоретические результаты временных зависимостей температуры и диаметра углеродной частицы, горение которой в воздухе комнатной температуры поддерживается лазерным излучением.
Проведенный анализ тепломассообмена и кинетики химических реакций (І), (ІІ), (ІІІ) углеродной частицы с газами показал на необходимость учета стефановского течения и позволил получить аналитические выражения качественно верно описывающие влияние условий и свойств на газовый состав продуктов реакции, скорость химического превращения углерода, плотности тепловых и массовых потоков на поверхности частицы [3]. Однако, пренебрежение внутренним реагированием привело к несовпадению экспериментальных и расчетных результатов по скорости химического превращения углеродной частицы при различных ее температурах и диаметрах.
Задачей настоящей работы является выявление роли внутреннего реагирования и стефановского течения в процессах ТМО и химических реакций пористой углеродной частицы с газами с учетом вынужденной и естественной конвекции в зависимости от температуры и диаметра частицы.
Скорость химического превращения углерода в газообразные компоненты определяется скоростью химической реакции на внешней поверхности частицы и внутри частицы на поверхностях пор
,
где - соответственно, суммарная скорость химического превращения, скорость химического превращения на поверхности углеродной частицы и внутри, на поверхностях пор, кг/(м2 с).
Скорость химического превращения углерода на поверхности частицы определяется кинетикой реакций (I), (II) и (III)
, (2.1)
,
,
где - молярные массы углерода, кислорода, углекислого газа, кг/моль; - относительные массовые концентрации O2 и CO2 на поверхности частицы; , , - константы скоростей химических реакций (I), (II), (III), м/с; , , - предэкспоненциальные множители, м/с; E1, E2, Е3 - энергии активации (I), (II) и (III) реакций, Дж/моль; R - универсальная газовая постоянная, Дж/(мольК); Т - температура частицы, К; , - плотность газа при температуре частицы и при Т0=273.15 К, кг/м3.
Энергии активации и предэкспоненциальные множители реакций (I), (II) и (III) связаны между собой [1]:
; ,
где =1 для реакции (I), 2- для реакции (II) и 3- для реакции (III).
Выражение для скорости химического превращения углерода в результате химических реакций на поверхностях пор внутри объёма частицы получается из решения задачи внутренней диффузии и может быть представлено в виде
, , (2)
, (3)
, , (4)
где -эффективная константа внутреннего реагирования, м/с; Sev - критерий Семенова, определяющий соотношение констант скоростей химических превращений на поверхностях пор и диффузии [8, 9] или отношение радиуса частицы к глубине реакционной зоны, Dv - коэффициент внутренней диффузии кислорода в порах, м2/с; - глубина реакционной зоны внутреннего реагирования, м, - удельная поверхность пор, м-1.
Коэффициент внутренней диффузии выражается через порозность частицы [1, 5]
, (5)
где - коэффициент диффузии кислорода в воздухе при температуре , м2/с; - порозность частицы.
Суммарная скорость химического превращения углеродной частицы и плотность химического тепловыделения
, (6)
, (7)
где Q1, Q2 - тепловые эффекты химических реакций (I) и (II), рассчитанные на единицу массы кислорода, Дж/кг; Q3 - тепловой эффект реакции (III), рассчитанный на единицу массы углекислого газа, Дж/кг; - суммарная плотность химического тепловыделения, на поверхности и внутри частицы, соответственно, Вт/м2.
2.2. Взаимовлияние кинетики химических реакций и массообмена пористых углеродных частиц с газами.
Влияние относительной скорости движения частицы на кинетику химических реакций и тепломассообмен учитывается радиусом приведенной пленки , на поверхности которой задаются параметры невозмущенного потока [1, 2]. Для случая отсутствия вынужденной и естественной конвекций (частица неподвижна относительно газа, Nu=2) радиус приведенной пленки равен бесконечности. Радиус приведенной пленки уменьшается с увеличением интенсивности естественной и вынужденной конвекций, приближаясь к радиусу частицы . Зависимость от критерия Нуссельта имеет вид:
(8)
, (9)
, [5, 10]
, , , ,
,
,
где - критерии Рейнольдса, определяющие суммарную, вынужденную и естественную конвекции; Gr, Pr - критерии Грасгофа и Прандтля; V - относительная скорость частицы, м/с; g - кинематическая вязкость газа, м2/с; g - ускорение свободного падения, м/с2; аg - температуропроводность газовой смеси, м2/с; - коэффициент теплопроводности газовой смеси, Вт/(м К); - коэффициент теплопроводности газовой смеси при , Вт/(м К); - коэффициент массообмена, м/с; - удельная теплоемкость газовой смеси, Дж/(кг К); - температура газовой смеси на бесконечном удалении от поверхности частицы, К; - коэффициент диффузии кислорода в газовой смеси, м2/с; - коэффициент теплообмена, Вт/м2 К.
Зависимости относительных массовых концентраций кислорода (), диоксида углерода (), оксида углерода () и азота (), а так же скорость стефановского течения (), для , находятся из решений уравнений, в которых левые части представляют потоки масс газообразных компонент через произвольную поверхность радиуса r, а правые - скорости образования или исчезновения масс этих компонент в результате химических реакций
(10)
,
,
где - молярная масса угарного газа, кг/моль; - текущая скорость стефановского течения, м/с.
Предполагая, что коэффициенты диффузии компонент газовой смеси равны и, применяя условие, , из (10) получим уравнение неразрывности
, (11)
где Wc определяется формулой (6), - скорость стефановского течения на поверхности частицы, м/с.
Для решения (10) зададим граничные условия
и введем безразмерные координаты
, . (12)
Учитывая (8) и (9), получим, что безразмерная скорость стефановского течения на поверхности частицы
,
где - относительные массовые концентрации; j-1 для О2, 2 - СО2, 3 - СО, 4 - N2; ? относительные массовые концентрации компонент газовой смеси на поверхности частицы и приведенной пленки.
Решение (10) и (11) представим в виде
или (13)
Скорость химического превращения углерода в газообразные компоненты может оказывать влияние на интенсивность теплообмена поверхности частицы с газом. Для определения плотности теплового потока, характеризующего теплообмен частицы с газом, воспользуемся предположением о квазистационарности поля температуры газовой фазы и частицы. В этом случае () тепловой поток через произвольную поверхность радиуса является постоянным и равен произведению плотности теплового потока на поверхность частицы.
.
Подставляя (30) и (31) в (7) получим, что при протекании химических реакций в диффузионной области плотность химического тепловыделения
.
Учитывая, что тепловые эффекты реакций (I) - (III) связаны между собой
,
получим, что плотность химического тепловыделения в диффузионной области определяется тепловым эффектом реакции (II)
. (35)
Скорости химического превращения углеродной частицы и при протекании химических реакций в диффузионном режиме, получаются в результате подстановки (30), (31) в (1) и (2)
,
.
С учетом (29) и (34) получим, что суммарная скорость химического превращения углерода при высокой температуре определяется скоростью химической реакции 2С+О2=2СО (ІІ), протекающей в диффузионной области
. (36)
3. Аналіз влияния температури и диаметра частицы на кинетику химических реакций и тепломассообмен углеродной частицы с газами.
3.1. Влияние температуры при заданном диаметре частицы.
Расчеты скоростей химических реакций (, , ), плотностей химического тепловыделения (, , ) и относительных массовых концентраций газообразных компонент на поверхности углеродной частицы (, , ) проводились по формулам
,
, ,
,
,
при следующих параметрах: =1,234?107, =6,859?106, =3,989?106 Дж/кг О2; = 2,188?105, = 4,721?105, = 2,228?105 м/с; = 1,67?105, = 1,837?105, = 3,674?105 Дж/моль; =8,31 Дж/(моль?К); = 2?105 м-1; постоянные величины: = 0,178?10-4 м2/с; =1,293кг/м3; =0,0244Вт?м/К определены для =273,15 К, m=0.2 и соответствуют графиту марки ЭГ-14.
Рис.1. Температурные зависимости скоростей химических реакций пористой углеродной частицы в воздухе, плотностей химического тепловыделения, констант скоростей химических реакций, коэффициента массообмена, эффективной константы внутреннего реагирования и скорости стефановского течения
а) 1 - , 2 - расчет по формуле (36), 3 - WC без учета стефановского течения, 4 - без учета внутреннего реагирования, °°°°° - эксперимент Головиной [5],
б) 1 - , 2 - , 3 - , 4 - расчет по формуле (36),
в) 1 - , 2 - , 3 - , 4 - протекание реакции 2С+О2=2СО в диффузионном режиме(расчет по формуле (35).
г) 1-, 2-, 3-, 4-, 5-, 6-. (d = 1.5•10-2 м, V=0,6 м/с, =293К).
3.2. Влияние диаметра частицы на скорости химического превращения и тепломассообмен.
На рис. 2 (а-в) представлены кривые и при различных температурах частицы (Т=1000, 1500, 2000 К). С повышением температуры качественный ход этих зависимостей изменяется. При низких температурах на кривой имеется максимум, такой ход зависимости подтверждается экспериментальными данными [11]. Концентрация монотонно уменьшается, а и - увеличиваются, при чем концентрация растет в большей степени. Максимум на кривой определяется конкуренцией процессов внутрипористого реагирования и процессов, протекающих на внешней поверхности частицы при фактически малом участии в процессе внешней поверхности. Увеличение температуры от 1100 К до 1500 К приводит к смещению максимума на зависимости в область малых диаметров и повышению роли реакции на внешней поверхности частицы (рис. 1 в).
а) Т = 1000 К
б) Т=1500 К
в) Т=2000К
Рис2. Зависимости скорости химического превращения углерода от размера частицы ( 1- , 2 - , 3- ) и концентраций газообразных компонент на поверхности от размера частицы ( 1 - , 2 - , 3 -).
Дальнейшее повышение температуры до 2000 К приводит к смещению реакции на внешнюю поверхность. При больших диметрах преимущественным продуктом реакции становится СО. На кривой появляется максимум, определяемый конкуренцией процессов появления СО2 в реакции (І) и исчезновение в реакции (ІІІ).
ЛИТЕРАТУРА
1. Основы практической теории горения / Под ред. В.В. Померанцева. ? Л.: Энергоатомиздат, 1986. - 312 с.
2. Франк-Каменецкий Д.А. Диффузия и теплопередача в химической кинетике. ? М.: Наука, 1987. ? 502 с.
3. Калинчак В. В. Влияние стефановского течения и конвекции на кинетику химических реакций тепломассообмена углеродных частиц с газами // Инженерно-физический журнал. ? 2001. ? Т. 74, 2. - С. 51 - 56.
4. Калинчак В.В., Орловская С.Г., Калинчак А.И., Дубинский А.В. Высоко- и низкотемпературный тепломассообмен углеродной частицы с воздухом при учете стефановского течения и теплопотерь излучением // Теплофизика высоких температур. - 1996. - Т.34, 1. - С. 83 - 91.
5. Головина Е.С. Высокотемпературное горение и газификация углерода, - М.,1986. - 176 с.
6.Букатый В.И., Суторихин И.А. Высокотемпературное горение углеродных частиц в поле лазерного излучения // Физика горения и взрыва. - 1988. - Т.24, №3.-С.9-11.
7. Калинчак В.В., Орловская С.Г., Мандель А.В. Устойчивые и критические режимы тепло- и массообмена частицы, находящейся в поле лазерного излучения // Физика горения и взрыва.-1999.-Т.35, №6.-С.1-6.
8. Калинчак В. В., Орловская С. Г., Гулеватая О. Н. Высокотемпературный тепломассообмен нагреваемой лазерным излучением углеродной частицы с учетом стефановского течения на ее поверхности // Физика аэродисперсных систем. - 2001. - Т. 38. ? С. 158 - 169.
9. Калинчак В.В., Садковский В.И., Харлампиева Н.А. Влияние внутренней диффузии на критические условия и характеристики высоко- и низкотемпературных состояний углеродной частицы // Теплофизика высоких температур. -1997. - Т.35, №1.- С.73-79.
10. Нигматулин Р. И. Динамика многофазных сред. Часть первая. ? М.: Наука, 1987. - 464 с.
11. Канторович Б.В. Введение в теорию горения и газификации твердого топлива. - М.: Гос-ное н.-т. изд-во лит-ры по черной и цветной металлургии, 1960.- 356с.
! | Как писать дипломную работу Инструкция и советы по написанию качественной дипломной работы. |
! | Структура дипломной работы Сколько глав должно быть в работе, что должен содержать каждый из разделов. |
! | Оформление дипломных работ Требования к оформлению дипломных работ по ГОСТ. Основные методические указания. |
! | Источники для написания Что можно использовать в качестве источника для дипломной работы, а от чего лучше отказаться. |
! | Скачивание бесплатных работ Подводные камни и проблемы возникающие при сдаче бесплатно скачанной и не переработанной работы. |
! | Особенности дипломных проектов Чем отличается дипломный проект от дипломной работы. Описание особенностей. |
→ | по экономике Для студентов экономических специальностей. |
→ | по праву Для студентов юридических специальностей. |
→ | по педагогике Для студентов педагогических специальностей. |
→ | по психологии Для студентов специальностей связанных с психологией. |
→ | технических дипломов Для студентов технических специальностей. |
→ | выпускная работа бакалавра Требование к выпускной работе бакалавра. Как правило сдается на 4 курсе института. |
→ | магистерская диссертация Требования к магистерским диссертациям. Как правило сдается на 5,6 курсе обучения. |
Дипломная работа | Формирование устных вычислительных навыков пятиклассников при изучении темы "Десятичные дроби" |
Дипломная работа | Технологии работы социального педагога с многодетной семьей |
Дипломная работа | Человеко-машинный интерфейс, разработка эргономичного интерфейса |
Дипломная работа | Организация туристско-экскурсионной деятельности на т/к "Русский стиль" Солонешенского района Алтайского края |
Дипломная работа | Разработка мероприятий по повышению эффективности коммерческой деятельности предприятия |
Дипломная работа | Совершенствование системы аттестации персонала предприятия на примере офиса продаж ОАО "МТС" |
Дипломная работа | Разработка системы менеджмента качества на предприятии |
Дипломная работа | Организация учета и контроля на предприятиях жилищно-коммунального хозяйства |
Дипломная работа | ЭКСПРЕСС-АНАЛИЗ ФИНАНСОВОГО СОСТОЯНИЯ ООО «АКТ «ФАРТОВ» |
Дипломная работа | Психическая коммуникация |