МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ
УКРАИНЫ
ДОНБАССКАЯ ГОСУДАРСТВЕННАЯ МАШИНОСТРОИТЕЛЬНАЯ АКАДЕМИЯ
КАФЕДРА КОМПЬЮТЕРНЫХ ИНФОРМАЦИОННЫХ
ТЕХНОЛОГИЙ
Пояснительная записка к дипломному проекту
Специальность “Информационные технологии”
Квалификационный уровень - специалист
Тема работы: "Разработка программно - методического
комплекса проектирования токарных операций в производственных условиях ЗАО НКМЗ"
Специальная часть: "Разработка программного обеспечения
для организации интерфейса программно-методического комплекса"
Разработал
студент гр. ИТ 98-1 А.А. Охрименко
Консультант
по экономике В.В. Володченко
Консультант
по охране труда Л.В. Дементий
Руководитель
проекта С.А. Негрий
Н.
Контроль А.В. Алтухов
Краматорск 2003 г.
Содержание
Реферат
Перечень сокращений
Введение
1. Общая часть
1.1 Анализ объекта автоматизированного проектирования и
постановка задачи
1.1.1 Структура и состав
технической документации
1.1.2 Роль и место САПР ТП механообрабатывающих работ в
технической подготовке производства и непосредственно в технологической подготовке производства
1.1.3 Организация работ по технологической подготовке
производства на предприятии
1.1.4 Функции отдела главного технолога
1.1.5 Анализ структуры и состава эксплуатируемых на
предприятии систем автоматизированного проектирования
1.1.5.1 Система автоматизированного проектирования
"АРМ-Технолога"
1.1.5.1.1 Структура и функциональные
возможности системы "АРМ-Технолога"
1.1.5.1.2 Методология системы АРМ-Технолога
1.1.5.1.3 Недостатки системы АРМ-Технолога
1.1.5.2 Комплекс программ SPT
1.1.5.3 Программа генерирования техпроцессов для нарезки
зубьев
1.1.6 Обзор и критический анализ
аналогичных систем в Украине, России, в мире
1.1.6.1 САПР ТП Компас-автопроект
1.1.6.2 САПР ТП ТехноПро
1.1.6.3 САПР ТП TECHCARD
1.1.6.4 Интегрированная компьютеризированная система
конструкторско-технологической подготовки производства (КТПП) изделий
машиностроения
1.1.6.5 Система автоматизированного технологического
проектирования "ТЕМП"
1.1.7 Разработка предложений по совершенствованию существующей системы САПР ТП механообработки
на токарном оборудовании в условиях ЗАО НКМЗ
1.2 Выбор базовых программных средств для разработки оригинального программного обеспечения
1.2.1 Критерии оценки
1.2.2 Оценка средства разработки
1.3 Компоненты программно-методического
комплекса (ПМК) проектирования токарных операций
1.3.1 Информационное обеспечение
1.3.2 Программное обеспечение
1.3.3 Алгоритм и порядок работы с программно-методическим
комплексом при составлении модели комплексной детали
1.3.3.1 Описание формата файла для хранения информации о
комплексной детали
1.3.4 Алгоритм и порядок работы при описании индивидуальной
детали
1.3.4.1 Описание формата файла для хранения информации об
индивидуальной детали
1.3.5 Алгоритм работы программно-методического комплекса
при проектировании техпроцесса
1.3.5 Техническое обеспечение
1.3.6 Организационное обеспечение
2. Специальная часть разработка программного обеспечения
для организации интерфейса программно-методического комплекса
2.1 Разработка технического задания на реализацию
специальной части дипломного проекта
2.1.1 Основание для разработки
2.1.2 Назначение разработки
2.1.3 Требования к программному продукту
2.1.3.1 Требования к функциональным характеристикам
2.1.3.2 Требования к надежности
2.1.3.3 Условия эксплуатации
2.1.3.4 Требования к составу и параметрам технических
средств
2.1.3.5 Требования к информационной
и программной совместимости
2.1.4 Требования к программной документации
2.1.5 Технико-экономическая эффективность
2.1.6 Стадии и этапы разработки
2.1.7 Порядок контроля
2.2 Детальное описание алгоритма моделирования комплексной
детали
2.3 Разработка программного модуля
2.3.1 Описание элементов главного
меню ПМК
2.4 Результаты использования разработанного программно -
методического комплекса
2.4.1 Анализ работы ПМК проектирования токарных операций
3. Экономические расчеты
3.1 Расчет капитальных затрат на создание программного
изделия
3.2 Расчет годовой экономии
текущих затрат
3.2.1 Расчет
себестоимости выполнения проектирования в старом автоматизированном варианте
3.2.2 Расчет годовой экономии и срока окупаемости
4. Охрана труда
4.1 Анализ вредных и опасных производственных факторов
4.2 Разработка мероприятий по
обеспечению безопасных и комфортных условий труда
4.3 Расчет общего равномерного освещения
Заключение
Перечень ссылок
Пояснительная записка состоит из
введения, четырех разделов, заключения и списка использованной литературы,
содержит __ страниц машинописного текста, ___ таблиц, ___ рисунков и схем, ___
приложения.
Объект проектирования -
программно-методический комплекс проектирования токарных операций в
производственных условиях ЗАО НКМЗ.
Основная цель работы - разработка
программно - методического комплекса для использования в целях обучения
студентов основам проектирования технологических процессов для токарных
операций.
В работе рассмотрены и
проанализированы системы автоматизированного проектирования технологических
процессов существующие на Украине, в России, в мире. Рассмотрены их
функциональные возможности и выявлены недостатки. Проанализированы структура и
состав систем автоматизированного проектирования эксплуатируемых на заводе. Разработаны
предложения по усовершенствованию существующей системы САПР ТП механообработки
на токарном оборудовании в условиях ЗАО НКМЗ. Выделены и обобщены основные
функции, которые должна выполнять проектируемая система, разработаны
технологические подходы к организации информации о деталях.
Спроектировано программное обеспечение
для организации интерфейса программно - методического комплекса.
По охране труда проведен анализ
опасных и вредных производственных факторов, разработаны мероприятия по
обеспечению безопасных и комфортных условий труда, выполнен расчет общего равномерного
освещения.
В экономической части рассчитаны
основные технико-экономические показатели проектируемого
программно-методического комплекса.
Программно-методический комплекс
предназначен для наглядной демонстрации проектирования технологического процесса,
состоящего из токарных операций. Рекомендуется использовать в учебном процессе
для обучения основам проектирования техпроцессов.
ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕСС,
ТОКАРНЫЕ ОПЕРАЦИИ, ПЕРЕХОД, ОПЕРАЦИЯ, ТАБЛИЦА СООТВЕТСТВИЙ, ИНТЕРФЕЙС, САПР ТП.
CUA (Common User Access) - стандарт на общий
пользовательский интерфейс;
DFD (Data Flow Diagram) - диаграмма потоков данных;
GUI (Graphic User Interface) - графический интерфейс
пользователя, составная часть стандарта CUA;
БД - база данных;
ЗАО - Закрытое акционерное
общество;
КИТ - Кафедра информационных
технологий;
НКМЗ - Новокраматорский
машиностроительный завод;
ОГТ - отдел главного технолога;
ОС - операционная система;
ОТД - отдел технической
документации;
ПК - персональный компьютер;
ПО - программное обеспечение;
САПР - система
автоматизированного проектирования;
СНГ - Содружество независимых
государств;
СУБД - система управления базами
данных;
ТП - технологические процессы;
ЧПУ - числовое программное
управление;
ЭВМ - электронно-вычислительная
машина.
Современное отечественное
машиностроение должно развиваться в направлении автоматизации производства с
широким использованием ЭВМ и роботов, внедрения гибких технологий,
позволяющих быстро и эффективно перестраивать технологические процессы на
изготовление новых изделий. Автоматизация проектирования технологии и
управления производственными процессами - один из основных путей интенсификации
производства, повышения его эффективности и качества продукции.
Эффективность мероприятий по
автоматизации производственных процессов высока там, где велика серийность
выпускаемых изделий, высока надежность автоматизированных процессов, минимальна
частота и длительность переналадок.
Наметились три направления, по
которым идет решение проблемы повышения эффективности инженерного труда в сфере
проектирования, рационализация системы проектирования, включая систематизацию
самого процесса проектирования и улучшение организации труда
инженера-проектировщика:
комплексная автоматизация
умственно-формальных, нетворческих функций инженера-проектировщика в процессе
проектирования;
разработка имитационных моделей
для воспроизводства на ЭВМ умственной деятельности человека, его способности
принимать решения в условиях полной и частичной неопределенности проектных
ситуаций;
разработка эвристических
алгоритмов, позволяющих качественно решать сложные задачи проектирования при
введении определенных ограничений.
Тенденцией современного этапа
автоматизации проектирования является создание комплексных систем
автоматизированного проектирования и изготовления, включающих конструирование
изделий, технологическое проектирование, подготовку управляющих программ для
оборудования с программным управлением, изготовление деталей, сборку узлов и
машин, упаковку и транспортирование готовой продукции.
Одним из путей успешного
внедрения интегрированной системы проектирования и производства САD/САМ
является принцип групповой технологии С.П. Митрофанова, основанный на
использовании оборудования, планирования и организации производства по принципу
технологической общности деталей.
Если выпуск изделий
осуществляется с использованием ГПС, то система автоматизации проектирования
технологических процессов, прежде всего, должна обеспечивать их гибкость. Под
гибкостью понимается возможность быстрого перехода на новые технологические
процессы в связи с изменением факторов, определяющих качество выпускаемых
деталей (точность, качество поверхностного слоя и др.) и производительность. При
изменении конструктивных параметров детали технологическая система (технологические
системы) должна (должны) количественно и качественно переналаживаться в сжатые
сроки при минимальных затратах.
Таким образом, тенденцией
современного этапа автоматизации проектирования является создание комплексных
систем, включающих конструирование, технологическое проектирование и
изготовление изделий. Спроектированный технологический процесс должен
оперативно реагировать на изменение производственных ситуаций процесса
изготовления изделий
Автоматизация технологической
подготовки производства на предприятии - важный шаг к сокращению затрат на
выпуск новых видов изделий. К современной системе автоматизированного технологического
проектирования предъявляются высокие требования к универсальности,
комплексности, интегрируемости с существующими на предприятии базами данных и
системами, относительной простоте в адаптации и эксплуатации, распространением
методики автоматизированного проектирования на различные виды производств,
поддержке технологии “клиент-сервер”.
Высокой степени автоматизации
при работе в САПР ТП можно достичь только в результате кропотливого накопления
данных и знаний о процессе технологического проектирования в конкретных
производственных условиях, более того, с конкретными пользователями. Важным
условием успеха внедрения является удобство “общения системы с пользователем"
- возможность развития системы без помощи разработчиков.
В настоящее время на предприятиях
остро встал вопрос о необходимости быстрой оценки трудозатрат и материальных
ресурсов, необходимых для изготовления продукции. Предприятиям надо быстро
определять - смогут ли они выполнить появившийся заказ, и какая прибыль будет
получена. Следствием этого является необходимость реальной интеграции системы
проектирования технологических процессов с САПР конструирования и АСУ
предприятия.
Следует иметь в виду, что работа
технолога по разработке технологического процесса пока никак не может быть
заменена компьютерными программами, поэтому указанные системы решают только
задачу моделирования принятых технологических решений. Технолог в этом случае
получает возможность увидеть последствия и результаты технологического
процесса, не прибегая к натурному его запуску, предполагающему дорогостоящее
изготовление оснастки.
К настоящему времени стало
совершенно очевидно, что никакая компьютерная система не в состоянии заменить
квалифицированного специалиста. Поэтому система САПР ТП должна быть создана как
средство, не подменяющее технолога, но существенно ускоряющее и упрощающее
проектирование технологии, расчет режимов и норм, расчет технологических
размерных цепей, формирование текстов переходов, выбор необходимой оснастки и
инструментов, формирование документации и операционных эскизов.
Комплекс графических и текстовых
документов, определяющих технологию изготовления изделия, которые содержат
данные для организации производственного процесса, называется технологической
документацией. В машиностроении государственными стандартами установлена Единая
система технологической документации (ЕСТД), являющаяся составной частью единой
системой технологической подготовки производства (ЕСТПП).
ЕСТД определяет взаимосвязанные
правила и положения о порядке разработки, оформления, комплектации и обращения
технологической документации, разрабатываемой и применяемой всеми
машиностроительными и приборостроительными предприятиями. Основное назначение
стандартов ЕСТД - установление на всех предприятиях единых правил оформления и
ведения технологической документации. ЕСТД обеспечивает стандартизацию
обозначений и унификацию документации на различные виды работ, предусматривает
возможность обмена между предприятиями технологическими документами без их
переоформления, что обеспечивает стабильность комплектности документации,
исключающую их повторную разработку предприятиями.
Основные технологические
документы (ГОСТ 3.1102-81) подразделяют на документы общего и специального назначения.
К первым относятся технологические документы, применяемые отдельно или
включенные в комплекты документов на технологические процессы, независимо от
характера технологических методов изготовления или ремонта изделия.
Документами общего назначения
являются карта эскизов (КЭ) и технологическая инструкция (ТИ).
КЭ - это графический документ,
содержащий эскизы, схемы и таблицы, предназначенные для пояснения выполнения
технологического процесса, операции или перехода изготовления или ремонта
изделия, включая контроль и перемещения.
ТИ предназначена для описания
технологических процессов, методов и приемов, повторяющихся при изготовлении
изделий, правил эксплуатации средств технического оснащения и используется в
целях сокращения объема разрабатываемой технологической документации.
Документы специального
назначения посвящены описанию технологических процессов и операций в
зависимости от типа и вида производства и заранее предусмотренных
технологических методов изготовления или ремонта изделия (их составных частей).
К числу обязательных документов такого рода относится маршрутная карта (МК). В
ней дается полное описание технологического процесса, включая все
технологические операции, а также контроль и перемещение детали (изделия) в
технологической последовательности его изготовления (ремонта) с указанием
данных об оборудовании, оснастке, материальных нормативах и трудовых затратах.
Взамен маршрутной карты
допускается использовать соответствующие карты технологического процесса (КТП).
Она предназначена для операционного описания технологического процесса
изготовления или ремонта изделия в технологической последовательности по всем
операциям одного вида формообразования, обработки, сборки, или ремонта с
указанием переходов, технологических режимов и данных о средствах
технологического оснащения, материальных и трудовых затратах.
Карта типового (группового) технологического
процесса предназначена для описания типового (группового) технологического
процесса изготовления или ремонта изделия в технологической последовательности
по всем операциям одного вида формообразования, обработки, сборки или ремонта с
указанием переходов и общих данных о средствах технологического оснащения,
материальных и трудовых затратах.
Для единичных технологических
процессов разрабатывается операционная карта, в которой содержится описание
технологической операции с указанием последовательного выполнения переходов,
данных о средствах технологического оснащения, режимах и трудовых затратах [1].
Проектирование технологических
процессов один из основных этапов в подготовке производства изделий. Технологические
процессы содержат информацию о трудовых и материальных нормативах, без которых
невозможно планирование и управление производственными ресурсами. В середине ХХ
века наша страна занимала лидирующие позиции в области разработки методологии и
методов автоматизации проектирования ТП. В эти годы были созданы концепции
проектирования типовых и групповых технологических процессов, сформировано
понятие конструкторско-технологических элементов детали (которые впоследствии
получили на Западе наименование features), разработано множество
различных САПР ТП. Однако большинство этих систем, созданных с использованием
кустарных информационных технологий, прекратили свое существование, как только
их авторы перестали ими заниматься. В настоящее время это направление
компьютеризации инженерной деятельности стоит на пороге революционных изменений.
Основная цель создания САПР ТП,
в нынешних экономических условиях, это получение максимальной прибыли с
минимальными затратами от изготовления изделия. При использовании САПР ТП
уменьшается себестоимость и время проектирования, количество возможных ошибок; увеличивается
прибыль предприятия и качество проектируемых изделий.
Для достижения этих целей
необходимо располагать средствами автоматизации оформления технологической
документации, средствами информационной поддержки проектирования и
автоматизации принятия решений. В своем историческом развитии САПР ТП
постепенно расширял арсенал своих средств. На первом этапе эти системы часто
представляли собой специализированные текстовые редакторы, некоторые из которых
были документированными. С появлением баз данных появилась возможность
поддерживать процесс ручного формирования ТП в таких редакторах в части поиска
необходимых средств технологического оснащения. Однако подавляющее большинство
САПР ТП, в том числе и ныне существующих, не способны поддерживать
автоматизацию принятия решений в процессе проектирования на основе
технологических знаний.
Немаловажное значение среди
целей внедрения САПР имеет повышение качества проектных решений. Необходимо,
чтобы накопленный положительный опыт находил отражение в базе знаний системы и
был доступен для всех, в том числе и для новых сотрудников. Для достижения этой
цели нужно предоставить не программирующим носителям технологического опыта
возможность сохранять его в системе. Такую возможность и обеспечивают методы
искусственного интеллекта.
Отличительной особенностью САПР
ТП является необходимость настройки систем данного класса при внедрении в
различных производственных условий. Изменениям подвергаются, прежде всего,
состав и структура баз данных, формы выходной документации, процедуры принятия
технологических решений. Гибкость и перенастраиваемость САПР ТП в процессе
внедрения и эксплуатации являются решающими факторами ее жизнеспособности. Центральное
место в САПР ТП занимает модель технологического процесса. Все остальные базы
данных системы являются источником информации для этой модели. Конечной целью
САПР ТП является разработка комплекта технологической документации.
Проводя аналогию с материальным
производством, можно сказать, что в области автоматизации инженерного труда
имеется основное производство, связанное с разработкой конструкторских и
технологических проектов, а также планов управления, и вспомогательное
производство, связанное с созданием и сопровождением собственно программных
средств. Соответственно и цели компьютеризации инженерной деятельности следует
разбить на две группы: основные и вспомогательные.
К числу вспомогательных целей
автоматизации проектирования относятся: уменьшение трудоемкости разработки
программных средств, адаптации их к условиям эксплуатации при внедрении, а
также их сопровождения, то есть модификации, обусловленной необходимостью
устранения выявленных ошибок и (или) изменения функциональных возможностей.
Средством для сокращения
трудоемкости разработки программных средств является использование
инструментальной среды и ее мобильность.
Средством для сокращения
трудоемкости адаптации систем к условиям эксплуатации на конкретном предприятии
являются системы управления базами данных и знаний, ориентированные на
конечного пользователя. Это означает, что упомянутые системы должны быть
оснащены языками описания и манипулирования данных, доступными не
программирующему пользователю.
Использование САПР ТП позволяет
членам проектных групп одновременно работать над изделием с разных сторон. Группой
специалистов, работающей над проектированием нового изделия, выполняются все
этапы разработки деталей, узлов и сборок, их технологическая проработка. Облегчается
автоматизированное управление проектами на базе электронного документооборота. Любые
изменения в любом элементе изделия незамедлительно становятся доступными как
для отдельных конструкторов и технологов, так и для целых отделов и организаций
на всех этапах проектирования изделия - благодаря использованию единой базы
данных. Таким образом, САПР сокращает время и трудозатраты на проектирование
изделия. Моделирование механообработки позволяет оценить качество деталей с
точки зрения их деформации.
Недостаточная оснащенность
конструкторских и технологических подразделений современными САПР приводит к
неполной проработке конструктивных и технологических решений, к материальным и
временным потерям на стадии изготовления и во время эксплуатации [2].
Технологические отделы
разрабатывают, применяя средства автоматизации, и внедряют технологические процессы
и режимы обработки на выпускаемую предприятием продукцию и все виды различных
по сложности работ. Устанавливают порядок выполнения работ и пооперационный
маршрут прохождения продукции (деталей, сборочных единиц). Составляют планы
размещения оборудования, технического оснащения и организации рабочих мест,
рассчитывают производственные мощности и загрузку оборудования. Участвуют в
разработке технически обоснованных норм времени (выработок), сетевых графиков,
в отработке изделий на технологичность, рассчитывают нормы материальных затрат
(технические нормы расхода сырья, полуфабрикатов, материалов, инструментов,
технологического топлива, энергии), экономическую эффективность проектируемых
технологических процессов.
Разрабатываемая в
конструкторском отделе документация, в виде спецификаций и чертежей поступает в
отдел технической документации (ОТД), где происходит расцеховка заказа -
разработка межцеховых технологических маршрутов для всех составных частей
изделия. Для этой цели, бюро мощностей определяет возможность получения на ЗАО
НКМЗ требуемой заготовки (отливки, поковки) или определяет необходимость этого
заказа на стороне. Так же бюро мощностей рассчитывает затраты материалов,
изготовление оснастки, использование СОЖ для реализации проекта. Затем устанавливаются
основные методы изготовления деталей и цеха, их изготавливающие.
Расцеховка определяет не только
схему будущего технологического процесса получения из заготовки изделия, но и
номенклатуру производственной программы каждого цеха, тем самым специализации и
кооперирование основных цехов.
Ведомость расцеховки
разрабатывают опытные инженеры в аппарате главного технолога. Служба ОТД
направляет техническую документацию по службам завода, непосредственно
связанным с изготовлением заказа.
Документация поступает в ОГТ,
где она комплектуется в бюро подготовки производства, в бюро информационного
обеспечения и компьютерной обработки документации (БИОКОД), отбираются типовые
сводки, печатаются маршрутно-нормировочные технологические карты (МНТК),
которые выдаются в технологическое бюро. После поступления в технологическое
бюро рабочих чертежей начинается разработка технологических процессов деталей. Во
время разработки маршрутных и операционных технологических процессов, если
возникает необходимость, выдаются технические задания на разработку специальных
инструментов или оснастки в бюро проектирования инструментов, приспособлений и
оснастки.
Разработанный технологический
процесс передается в бюро нормирования для расчета норм времени на механическую
обработку. Затем технологическая документация передается в бюро сборки для
разработки технологического процесса сборки и согласования промежуточных
операций (слесарных). После всех вышеперечисленных этапов технологическая
документация, технические задания выданные бюро проектирования инструментов,
инструментов и оснастки, возвращаются в технологическое бюро. При возвращении
всех этих документов выписывается маршрутно-нормировочная карта
технологического процесса, в которой собраны все сведения о разработанном
технологическом процессе.
Основными функциями ОГТ являются:
разработка и внедрение в
производство прогрессивных технологических процессов на механообработку и
сборку деталей и машин, антикоррозионного покрытия, гальванообработки и
упаковки изделий, выпускаемых в индивидуальном производстве НКМЗ;
формирование и выдача в
производство комплекта технологической и оплатной документации;
решение вопросов по
специализации цехов, производственных участков по изготовлению серийных деталей
и изделий;
расчеты загрузки оборудования
механосборочных узлов по планам производства;
проведение предпроектного
обследования предполагаемых к выпуску изделий с целью выдачи заключения о
возможности их изготовления на существующем оборудовании и предварительной
оценке трудозатрат;
статистический анализ и выдача
требуемых справочных данных по трудоемкости изготовления проектируемых и
выпускаемых изделий;
проведение проверок цехового
технологического оборудования на технологическую точность и соответствие
паспортным данным;
курирование механосборочных
цехов;
разработка и внедрение
мероприятий, направленных на повышение качества и сокращение трудозатрат
выпускаемых изделий;
разработка и внедрение
организационно-технических мероприятий планов новой техники, механизации и
автоматизации производства и технических процессов;
контроль соблюдения
технологической дисциплины по механическим или механосборочным цехам;
осуществление расчета загрузки
оборудования по цехам, анализ трудоемкости изготавливаемых машин по месячным,
квартальным планам;
проведение исследований с целью
внедрения новых технологий, инструмента, приспособлений, режимов резания, их
испытаний и отработки на опытных образцах.
Программа АРМ-технолога
представляет собой комплекс базовых программных средств (КБПС)"ИС Логика-Т"
технологического назначения, разработанных в рамках договора №1/41-2 от 1.02.1993
года "Разработка комплекса базовых программных средств, реализующих
функции автоматизированной технологической подготовки производства
технологическим подразделением" для ЗАО НКМЗ. Разработчиком программного
обеспечения является Ворошиловградский ПТИМАШ.
КБПС "ИС Логика-Т" сформирован
как логически завершенная система, с набором основных функций и необходимого
минимума сервисных процедур (оформление отдельными программными модулями - утилитами),
достаточных для решения возложенных на него задач. КБПС "ИС Логика-Т"
совершенствуется разработчиками в плане расширения функциональных возможностей,
создания сервисной оболочки, повышения надежности эксплуатации на различных
типах ПЭВМ (в том числе с минимальными ресурсами). Учитывая дальнейшее развитие
системы, разработчик оставляет за собой право модификации основных программных
модулей КБПС. Относительно версии 0.0 в версию 1.0 внесен ряд функциональных
изменений, не предусмотренных объемом работ по договору. Документация на них
разрабатывается в настоящее время.
АРМ-технолога - подсистема
автоматизированного проектирования и автоматического нормирования ТП
механообработки, включающей в себя комплекс программных средств, обеспечивающих:
проектирование ТП в
автоматизированном режиме;
формирование ТП в ручном режиме
(без возможности его автоматического нормирования);
автоматическое нормирование
операций механообработки;
формирование и выдача
техдокументации на деталь (операцию);
ведение рабочих индивидуальных
архивов подетальных операционных технологий;
передачу разработанных ТП в
систему SPT, для формирования необходимого комплекта технологической
документации на узел (заказ) и решения других технологических задач.
Подсистема имеет программный
графический интерфейс, обеспечивающий обмен данными (технологическими
процессами) между рабочими архивами АРМ-Технолога.
Назначение и расположение
основных программных файлов приведено в таблице 1.1 [3].
Таблица 1.1 -
Назначение и расположение основных программных файлов
Назначение | Расположение |
Базовое программное обеспечение | ARM |
Нормативно-справочная база | ARM\B; ARM\F |
Оригинальное программное обеспечение | ARM\B; ARM\F |
Библиотека слайдов | ARM\SLD |
Рабочие архивы | ARM\A |
В основу методологии
предлагаемых программных средств положен принцип выбора результата по
определенному условию из последовательности данных, построенных в виде таблицы.
Таблицы могут иметь несколько входов и выходов, т.е. предоставляют возможность
многовариантного выбора.
Пользователь, сводя в таблицу
условия (в системе - аргументы) и результаты (в системе - решения), делает
выбор решения. Таблица с решениями и условиями называется
информационно-логической (ИЛТ). ИЛТ - основной компонент базы данных системы. Таблица
строится пользователем при подготовке базы данных по правилу однозначного
соответствия условию выбора результата или набора результатов. Пример ИЛТ
приведен в таблице 1.2
Таблица 1.2 - Одновходовая
информационно-логическая таблица
+--------------------------------------+
¦F(NR)=F¦1
¦+ ¦
¦-------+--------------+---------------¦
¦F(KP)=C¦=C¦=C¦
=C ¦=C ¦=C¦ =C ¦
¦-------+--+--+--------+---+--+--------¦
¦ZN
¦25¦7 ¦6 ¦_ ¦_ ¦_ ¦
¦+
¦^ ¦8 ¦T(RSN21)¦6.3¦7 ¦T(RSN21)¦
+--------------------------------------+
Взаимодействие пользователя с
системой осуществляется с помощью команд и меню. Изменение ИЛТ или другой
информации пользователем не влечет за собой изменение программных средств.
Функции включения в работу
таблиц и других данных возложены на управляющие строки. Составленные по определенным
синтаксическим правилам и сгруппированные в отдельный набор данных, они
инициируются и обрабатываются программными средствами. В начале отработки
программы, система всегда инициирует строку с номером 0. Дальше пользователь
сам или посредством ИЛТ указывает строке направление обработки. Он может
изменить естественный ход работы посредством вызова других строк или других
фрагментов этой же строки.
Обработка всех указанных
пользователем управляющих строк является алгоритмом решения различных задач.
Результат работы -
сформированные структуры данных, используемые для формирования печатных форм.
Разработанные программные
средства могут быть использованы при разработке различных систем
автоматизированного проектирования технологических процессов при технической
подготовке производства с использованием персональных компьютеров.
Основным недостатком системы
АРМ-Технолога является зависимость от операционной системы DOS. Эта
операционная система является давно устаревшей, и многие возможности новых
систем не используются для работы в системе. Также АРМ требует при установке
записать на диск метку. Поскольку запись метки ведется в 16-разрядном режиме,
то исключается работа системы на операционных системах с файловой системой
NTFS, поскольку эти системы блокируют прямой доступ к диску. Работа системы
возможна только на операционных системах Windows 95/98, в режиме эмуляции DOS.
Так же работа системы
существенно замедляется при обработке управляющих строк, потому что
осуществляется чтение с диска напрямую, без буферизации и кэширования операций.
Часто бывают сбои в системе, из-за которых она "зависает". Механизм
восстановления после сбоев работает плохо и не всегда. Ограничены возможности
хранения информации в архивах, вследствие организации операционной системы DOS,
операции с архивами реализованы неудобно.
Для программирования алгоритмов
обработки входящей информации используется внутренний язык Логика-Т,
малоизвестный и не позволяющий использовать вычислительные возможности
процессора в полной мере. Язык сложен и не имеет аналогов, составить программу
на нем может только человек, имеющий специальные знания. Для написания
программы нет специализированного редактора, позволяющего легко составлять код.
Нет поддержки контекстной справочной системы. Система плохо документирована.
Комплекс программ SPT разработан
в бюро БИОКОД. Эти программы выполнены в виде надстройки над системой
АРМ-Технолога, они имеют возможность одностороннего обмена с архивами
техпроцессов АРМ. В основном комплекс предоставляет дополнительные сервисные функции
для работы с техпроцессами. Комплекс реализован на языке Clipper,
предназначенном для управления СУБД, и постоянно совершенствуется
соответственно потребностям производства. Общая функциональная схема комплекса
программ SPT представлена на рисунке 1.1.
SPT1 - дополнение архива ТП и база применяемости
При проектировании ТП технолог
пользуется базой данных применяемости. В этой базе собрана информация по
техоснастке и оборудованию, имеющемуся в наличии в цехах. Что бы не
проектировать новую техоснастку, используют уже имеющуюся.
Основные функции программы:
дополнение архива техпроцессов;
дополнение БД применяемости;
редактирование БД применяемости -
добавление переходов и операций;
просмотр БД.
SPT2 - проектирование ТП на
базе аналогов
При проектировании ТП обычно
берется существующий техпроцесс на спроектированную, аналогичную деталь и
переделывается, в соответствии с новыми требованиями.
Основные функции программы:
поиск и редактирование ТП;
просмотр и редактирование БД;
проектирование ТП по аналогу;
устранение некорректности станка
в БД.
Программа в режиме поиска
использует индексирование по номеру чертежа, номеру заказа, номеру
спецификации, номеру заказа и спецификации. Некорректность станка контролируется
соответственно базы данных применяемости. Если выбран станок, отсутствующий в
БД, выдается соответствующее сообщение, и блокируются дальнейшие действия до
устранения некорректности.
При редактировании ТП возможны
функции:
редактирование сведений на
операцию;
редактирование технологического
маршрута;
компоновка техпроцесса;
перенумерация операций;
добавление операции;
удаление операции.
Просмотр и редактирование БД:
база данных ТП;
база данных сведений на операцию;
база данных применяемости.
В режиме проектирования ТП по
аналогу возможно:
выбор ТП аналога;
создание нового ТП;
редактирование нового ТП;
выход с записью/без записи ТП в
архив.
SPT3 - Печать технологии и комплектующих документов
Программа предназначена для
формирования и выдачи сопроводительных документов на техпроцессы. Основные
функции:
печать техпроцесса из базы
данных;
просмотр техпроцесса.
Комплект документации на
техпроцесс, включает в себя титульный лист и перечень техпроцессов.
SPT5 - формирование и печать МНТК технологического
процесса
Формирование
маршрутно-нормировочной технологической карты - важная часть технологической
подготовки производства. В этих картах расписано подготовительно-заключительное
время необходимое для обработки детали. Это частично говорит о стоимости
обработки детали. Так как станочники получают зарплату в зависимости от времени
работы.
SPT6,9 - сервисное обслуживание
Эти программы предназначены для
сервисного обслуживания баз данных. Основные функции SPT6:
копирование информации на
дискету;
копирование с дискеты;
удаление ТП;
сжатие БД;
работа со списком;
формирование техпроцесса из
АРМ-Технолога;
архивирование БД;
восстановление техпроцесса из
архива.
Программа SPT9 обеспечивает
интеграцию с системой АРМ-Технолога. Она извлекает информацию из архивов
незавершенных техпроцессов и записывает в структуры данных с которыми работает
комплект программ SPT.
Структуры данных используемые комплексом SPT
Все вышеперечисленные программы
используют в работе три файла баз данных. Данные на техпроцесс передаются из
АРМ-Технолога. Базы созданы в СУБД Clipper имеющего основные возможности для
работы с базами данных, такие, как индексация (сортировка) по первичному и
составному ключу. Базы данных располагаются локально на каждом компьютере. Структура
баз данных представлена в таблицах 1.3-1.5
Таблица 1.3 - База данных по
применяемости BPR. DBF
Наименование | Тип данных | Размер | Имя структуры данных | Описание |
CHERTDET | C | 30 | D (OD) | Чертеж* |
F1 | C | 7 | D (ЗK) | Заказ* |
F2 | C | 30 | D (CП) | Спецификация* |
F16 | C | 3 | D (U0) | Номер узла (в заказе оригинал) * |
F3 | C | 3 | D (C) | Номер по спецификации |
F4 | C | 4 | D (K0) | Количество деталей на изделие |
F5 | C | 3 | D (R0) | Исполнить на заказ |
F6 | C | 7 | D (MD) | Вес чистовой детали |
F7 | C | 6 | D (MZ) | Вес черновой детали |
F8 | C | 8 | D (VZ) | Вид заготовки |
F9 | C | 13 | D (HM) | Марка материала |
F10 | C | 5 | D (GS) | Группа стружки |
F11 | C | 50 | D (HD) | Наименование детали |
F12 | C | 19 | D (Ф) | Ф. И.О. разработчика |
F13 | C | 20 | D (Ф1) | Применения |
F14 | D | 8 | D (DR) | Дата разработчика |
F15 | D | 8 | D (DP) | Дата применения |
KOLP | N | 3 | D (Ц) | Номер цеха (выпускной) |
F17 | C | 30 | D (IZM) | Изменения комментарий |
CHERT1 | C | 6 | D (OD1) | Чертеж больше 30 знаков |
Примечание. * - этим символом
отмечены поля по которым возможна индексация (сортировка).
Таблица 1.4 - База данных
сведений на операцию TPN. DBF
Наименование | Тип данных | Размер | Имя структуры данных | Описание |
NCX | N | 2.0 | D (Ц) | Номер цеха |
CHERTDET | C | 30 | D (OD) | Чертеж* |
NOP | N | 3 | F (n) | Номер операции* |
NAMEOP | C | 19 | F (HOП) | Наименование операции |
INVOB | C | 6 | F (IN) | Наименование оборудования |
GRUPOB | C | 3 | F (Г) | Группа оборудования |
SPOSOP | C | 1 | F (C) | Способ оплат |
TPZ | C | 4 | F (З) | Подготовительно - заключительное время |
TSHT | C | 6 | F (ш) | Время штучное |
VIDN | C | 1 | F (W) | Вид норм |
R | C | 1 | F (RR) | Разряд |
D | D | 8 | D (DR) | Дата |
R1 | C | 1 | ||
TSHT1 | C | 6 | F (RZ) | |
TPZ1 | C | 4 | F (SH) | |
ST | C | 34 | F (Z) | Строповка |
CHERT1 | C | 6 | D (OD1) | Чертеж > 30 знаков |
Примечание. * - этим знаком
отмечены поля по которым возможна индексация (сортировка)
Таблица 1.5 - База данных
ведения на переход TP. dbf
Наименование | Тип данных | Размер | Имя структуры данных | Описание |
CHERTDET | C | 30 | F (OD) | Чертеж* |
NOP | C | 3.0 | F (n) | Номер операции* |
NAMEOP | C | 19 | F (HOП) | Наименование операции |
NPR2 | N | 3 | N (*) | Номер перехода* |
SPR | C | 200 | Т (TXT) | Содержание перехода |
RI | C | 60 | N (PИ) | Режущий инструмент |
MI | C | 60 | N (MИ) | Мерительный инструмент |
NCX | N | 3.0 | F (Ц) | Цех выпускной |
D | D | 8 | D (DR) | Дата |
CHERT1 | C | 6 | D (OD1) | Чертеж > 30 |
Примечание. * - этим знаком
отмечены поля по которым возможна индексация (сортировка).
Недостатки комплекса программ SPT
Недостатки комплекса программ
заключаются в использовании операционной системы DOS и языка программирования и
управления системами баз данных Clipper. На сегодняшний день существует намного
больше СУБД, чем тогда, когда начиналась разработка данной системы, такие как
Borland InterBase Client/Server, Oracl Client/Server. Базы данных, используемые
в работе комплекса, используются не централизованно, а локально, для каждого
компьютера. Поэтому существует проблема синхронизации и актуальности баз данных
для разных пользователей. Сейчас - ведутся разработки системы баз данных
использующие технологию Клиент/Сервер, но когда будет внедрена такая система
неизвестно. Система не имеет никакой справочной системы и зависит от знаний и
умений одного программиста, специально ведущего и совершенствующего данную
систему. Система оставляет впечатление сооруженного "на скорую руку",
но реально работающего программного продукта. Система не предусматривает
некорректных действий со стороны пользователя и аварийно завершается при
возникновении любой ошибки. Нет механизма защиты и восстановления информации
после таких сбоев. Из-за системной платформы DOS дисковые операции реализуются
очень медленно, а при базах данных объемом в 20-30 Мб, это дает ощутимый эффект
замедления работы.
Программа написана на языке Borland C. Реализована
в виде исполняемого файла и не имеет баз данных. Проектирование техпроцесса
проходит в полуавтоматическом диалоговом режиме. Технолог, последовательно
отвечая на вопросы и вводя исходные параметры зубьев, дает возможность
программе самой выбрать и построить технологический процесс.
Функциональные возможности программы
Программа может построить
технологический процесс для следующих случаев:
обработка червячной фрезой;
обработка дисковыми фрезами;
обработка пальцевыми фрезами;
обработка конических шестерен и
колес с криволинейным зубом;
зубошлифовальная операция;
обработка глобоидальной пары;
зубодолбежная операция;
зубострогальная операция;
обработка червячных колес и
червяков с архимедовым профилем;
обработка зубчатых колес на
станке фирмы "Magg";
обработка шлицевых валов.
Так как программа имеет очень
широкий функциональный набор, я изучил первую функцию - обработка червячной
фрезой. После выбора этого пункта выбирается тип детали:
вал-шестерня;
колесо зубчатое.
Выбрав пункт первый, выбираем
вид операции:
зубофрезерная;
под зубошлифование.
Затем выбирается форма колеса:
прямозубое;
косозубое (левое);
косозубое (правое);
шеврон.
Затем технологом заполняются
параметры колеса:
модуль;
число зубьев;
тип материала: сталь
углеродистая или легированная;
степень прочности;
твердость;
угол зубьев;
шероховатость.
Затем выбирается модель станка
по его параметрам. И на заключительном этапе выбирается вид установки детали:
в патроне со стойкой;
на подставках;
на оправке;
на оправке с подставками;
в патроне с центром;
в приспособлении.
После этого на печать выдается,
автоматически сформированный, техпроцесс.
Недостатки программы составления техпроцесса
нарезки зубьев
Главный недостаток программы в
том, что она не использует баз данных, т.е. данные в ней заданы статически и
для изменения необходима полная перекомпиляция модифицированного исходного кода.
Операционной платформой также является DOS. Печать техпроцесса происходит сразу
автоматически напрямую на принтер, без возможности просмотреть и
отредактировать техпроцесс. Нет возможности использования техпроцесса-аналога. Нет
расчета маршрутно-нормировочных технологических карт.
Успешная деятельность
значительной части фирм и коллективов в промышленно развитых странах во многом
зависит от их способности накапливать и перерабатывать информацию. В наши дни
наблюдается быстрое развитие систем автоматизированного проектирования в таких
отраслях, как авиастроение, автомобилестроение, тяжелое машиностроение.
Наличие технологических
подразделений характерно именно для постсоветских предприятий. Поэтому, ни одна
зарубежная система не может оказать помощь в решении вопросов автоматизации
технологического проектирования. Следовательно, при поиске информации о
системах подобного рода можно ограничиться странами СНГ. Безусловным лидером
технологического прогресса среди этих стран является Россия. К сожалению,
информации об украинских производителях программного обеспечения для
автоматизированного проектирования найдено не было. Поэтому рассмотрим
несколько систем российского производства.
Данные системы не ограничиваются
техпроцессами, связанными с токарными операциями, но являются универсальными
САПР ТП, пригодными для проектирования техпроцессов практически любого
производства. Некоторые из них (в частности, САПР Компас-АВТОПРОЕКТ и
T-FLEX/ТехноПро) являются частями комплексных САПР, предназначенных для всего
цикла проектирования изделий.
Система автоматизированного
проектирования технологических процессов АВТОПРОЕКТ 8.5 является частью
комплексной системы автоматизированного проектирования КОМПАС производства
российской фирмы АСКОН [4].
САПР АВТОПРОЕКТ 8.5 позволяет
резко повысить производительность труда технолога, сократить сроки и
трудоемкость технологической подготовки производства. В состав данного
интегрированного программного комплекса входят подсистемы проектирования
технологий: механообработки, штамповки, сборки, сварки, термообработки,
покрытий, нормирования трудоемкости технологических операций, расчета норм
расхода материалов, процедуры анализа технологических процессов, позволяющие
рассчитывать суммарную трудоемкость изготовления деталей и узлов, определять
материалоемкость и себестоимость изделия.
В основу работы системы
АВТОПРОЕКТ положен принцип заимствования ранее принятых технологических решений.
В процессе эксплуатации системы накапливаются: типовые, групповые, единичные
технологии, унифицированные операции, планы обработки конструктивных элементов
и поверхностей. При формировании текущей технологии пользователю предоставлен
удобный доступ к соответствующим архивам и библиотекам, хранящим накопленные
решения.
Система обеспечивает удобную
организацию баз данных и быстрый доступ к требуемой информации. Она обладает
хорошо организованным диалоговым интерфейсом, обеспечивающим легкое и наглядное
перемещение по всем базам данных. Приёмы работы с БД идентичны, что упрощает
процесс их сопровождения. Программа поддерживает диалоговый доступ к сведениям
об оборудовании, инструментах, материалах и т.д. В любой момент эти данные
могут быть выведены на экран, скорректированы или пополнены. В информационном
пространстве АВТОПРОЕКТ можно создавать новые информационные массивы,
корректировать состав и размерность их полей. Взаимодействие между таблицами
данных в АВТОПРОЕКТ построено на динамически формируемых SQL-запросах. Операторы
SQL генерируются либо автоматически, либо по шаблону, заданному пользователем.
Базы данных САПР АВТОПРОЕКТ
полностью открыты для структурной и содержательной корректировки. Поддерживаются
форматы файлов СУБД Paradox, FoxPro, dBase (для локальных рабочих мест). Имеющиеся
у пользователя файлы этих форматов легко включаются в базу данных АВТОПРОЕКТ
без изменения их месторасположения на диске и в сети. Данные могут
располагаться как на локальных станциях, так и на сервере.
Одним из основных преимуществ
АВТОПРОЕКТ является возможность модернизации системы без участия разработчика. Корректируется
состав и структура всех баз данных, настраиваются формы технологических
документов, подключаются новые программные модули. Гибкость программного и
информационного обеспечения позволяет быстро адаптировать систему к любым
производственным условиям.
Система автоматизированного
проектирования технологических процессов ТехноПро является частью комплексной
системы автоматизированного проектирования T-FLEX производства российских фирм
“ТопСистемы" и “Вектор" [5].
T-FLEX/ТехноПро формирует
операционные, маршрутно-операционные и маршрутные технологические карты, карты
контроля, ведомости оснастки, титульные листы и другие технологические
документы. На многих предприятиях используемые технологические карты отличаются
от карт принятых по ГОСТ, поэтому T-FLEX/ТехноПро обеспечивает создание
технологических документов произвольных форм, используя шаблоны Microsoft Word.
В T-FLEX/ТехноПро учтен опыт её
эксплуатации сотнями пользователей во всех уголках России, поэтому система
может использоваться и автономно с вводом информации с чертежей на бумаге.
В T-FLEX/ТехноПро наряду с
оригинальным методом проектирования по "общим технологическим процессам"
реализованы и традиционные методы: по типовому, групповому, технологическому
процессу-аналогу. Технолог сам выбирает метод проектирования, наиболее
подходящий в конкретном случае, а также способ его использования: автоматический,
полуавтоматический, диалоговый или их сочетание. Например, сборочные
технологические процессы можно проектировать в диалоге, изготовление корпусных
деталей - в полуавтоматическом режиме, а процессы изготовления тел вращения - в
автоматическом.
В T-FLEX/ТехноПро заложена
возможность ее обучения пользователями и самообучения системы на примерах
технологии конкретного производства. Обучение системы ведется технологическими
понятиями, без какого-либо формализованного языка программирования. Основой для
обучения системы являются технологические процессы изготовления конкретных
изделий, технология изготовления которых уже отлажена на производстве. По мере
наполнения баз данных система обретает возможность проектирования технологии
изготовления совершенно новых изделий, которых еще не было в производстве.
Программной средой для
реализации T-FLEX/ТехноПро выбрана наиболее популярная система управления
базами данных (СУБД) Microsoft Access. Можно с уверенностью сказать, что СУБД Microsoft Access
имеется на каждом предприятии России, так как она входит в комплект Microsoft Office.
Это позволяет осуществлять сопряжение системы с такими базами данных, как SQL Microsoft Server,
ORACLE, Sybase, Paradox, FoxPro и многими другими. Имеется возможность использования
ранее созданных на предприятии баз данных по оборудованию, приспособлениям,
инструментам.
Система автоматизированного
проектирования технологических процессов TECHCARD разработана в российском НПП
“ИНТЕРМЕХ" [6].
TECHCARD представляет собой
программно-методический комплекс систем автоматизации проектирования,
используемый при технологической подготовке производства.
В состав комплекса для
организации рабочего места технолога входят:
система автоматизации
проектирования технологических процессов обработки деталей для различных видов
производств;
система автоматизированного
проектирования машиностроительных чертежей для построения и оформления
операционных эскизов или любых графических изображений, выводимых в
технологический документ, работающая в среде AutoCAD;
система организации и ведения
архива конструкторской и технологической документации;
база данных технологического
назначения, содержащая следующую информацию:
а) иллюстрированный
классификатор, паспортные данные и размещение оборудования по цехам и участкам;
б) иллюстрированный
классификатор и анкетные данные средств технологического оснащения (приспособления,
режущий, вспомогательный и измерительный инструмент);
в) применяемые основные и
вспомогательные материалы;
г) виды заготовок и их
применяемость по сортаменту;
д) классификатор технологических
операций с выбором любых параметров;
е) классификатор типовых
переходов;
ж) справочные данные для
заполнения параметров операционной технологии;
з) библиотека типовых
технологических процессов на различные виды производств;
и) рекомендуемые режимы
обработки;
к) нормативы времени на основные
виды работ.
TECHCARD позволяет:
создавать любые новые и
редактировать имеющиеся формы бланков технологической документации;
включать в состав одного бланка
текст и графические изображения;
быстро редактировать документы,
управлять оформлением и выводом на печать документов;
создавать и сопровождать базу
данных с возможностью достаточно удобной работы по адаптации к условиям
предприятия;
создавать графические библиотеки
типовых элементов, типовых операций с привязкой к ним типовых технологических
решений;
создавать расцеховочный маршрут
обработки детали;
проектировать технологический
процесс обработки детали в диалоговом режиме на основе аналога, типового
техпроцесса или с использованием базы данных;
обеспечить автоматизированное
проектирование техпроцессов с расчетом заготовок, режимов обработки и
нормированием для различных видов производств;
производить автоматизированный
подбор оснастки и оборудования;
оперативно настраивать вид и
состав комплекта технологических документов на различные типы производств;
обеспечить взаимосвязь с
системой ведения архива технической документации SEARCH для организации и
ведения архива технологических документов;
обеспечить взаимосвязь с
системой разработки конструкторской документации CADMECH для проектирования и
оформления операционных эскизов и карт наладок.
Комплекс можно использовать в
технологических подразделениях и технических отделах, как крупных предприятий,
так и небольших производственных организаций, применяющих автоматизированные
рабочие места технологов на базе автономных персональных компьютеров и
локальных сетей. Комплекс работает с промышленными СУБД Oracle или InterBase под управлением Microsoft Windows 95/98/NT4/2000.
Данная система разработана на
кафедре "Автоматизированные станочные системы" Тульского
Государственного Университета [7].
Наличие единого банка
конструкторских и технологических проектных решений позволяет избежать столь
характерного "рассыпания" на локальные проектные решения и добиться
подлинной интеграции.
Модули системы функционируют на
рабочем месте технолога, конструктора, нормировщика, маршрутчика, - поэтому
весь интерфейс полностью выражен в терминах предметной области пользователя и
не пугает его словами типа "файл" или "блокировка записи" (разумеется,
система работает в сети). Таким образом, при внедрении сохраняется
преемственность с традиционной бумажной технологией и не возникает
психологический барьер.
Максимальная автоматизация
рутинных, нетворческих операций: данная система автоматически проводит
изменения в проектных решениях с выпуском извещений (80% рабочего времени при
бумажной технологии уходит на проведение изменений), рассчитывает нормы расхода
производственных материалов с учетом всех технологических отходов и потерь (а
это еще и существенная экономия материала), а также делает многое другое.
Система полностью соответствует
требованиям ЕСТП и ЕСКД. Все формируемые документы выполнены строго по
стандарту.
Вся система до последнего файла
документирована, имеются подробные руководства пользователя и системного
программиста по каждому модулю. Система передается заказчику вместе с исходными
текстами программ, что позволяет их модифицировать силами специалистов самого
предприятия.
Предусмотрена не только
автоматизация, но и оптимизация: например, методами Т. Саати решается задача
формирования оптимальной ограничительной нормали предприятия.
Система реализована в двух
вариантах: под DOS и под Windows, причем DOS-версия предъявляет минимальные
требования к компьютеру (286/VGA уже подойдет), что позволит наконец-то найти
стоящее применение заводскому парку старых машин.
Краткая информация о некоторых
модулях системы:
модуль "Оболочка" в
стиле Windows - обеспечивает вызов всех остальных модулей, обработку
документооборота, отслеживание изменений, разграничение доступа;
модуль "Ведение
конструкторской документации" позволяет конструктору вводить в банк
проектных решений перечни деталей и сборочных единиц (ДСЕ) изделий;
модуль "Обслуживание
выборок" выполняет структурно-иерархический анализ изделия и формирует
выборку ДСЕ с указанием количественной применяемости каждой из них без
ограничения числа уровней вхождения. Модуль также формирует ведомости расхода
материалов на изделие;
модуль "Punch" выполняет
параметрическое проектирование конструктивно однородных изделий (например,
средств технологического оснащения). Конструктор получает на экране модель
сборки и меняет на ней размеры, добиваясь нужной геометрии. Модуль повышает
производительность труда в 16. .20 раз;
модуль "Нормат" автоматизирует
расчет материальных норм при механообработке. Нормативные базы позволяют
назначить припуски, ширину реза, отход на зажим, выбрать материал из имеющихся
в стандарте или в нормали;
модуль "ТехПро" позволяет
создать собственный классификатор изделий (по любому признаку) и затем создать
маршрутно-операционный техпроцесс, причем на экране отображается привычная
технологу карта. Сразу же выполняется временное нормирование операций;
модуль "Генфор" формирует
любые выходные документы: технологические карты, маршруты, ведомости материалов
и т.д. при помощи встроенного языка описания документов, позволяющего гибко
настраивать систему под любые стандарты и нормали;
модуль "Графическая база
данных СТО" представляет собой гибкий классификатор СТО, содержащий как
таблицы с размерными параметрами, так и выводимые на экран чертежи.
Созданная в МГТУ "СТАНКИН"
система автоматизированного технологического проектирования "ТЕМП" представляет
собой набор инструментальных средств для проектирования технологической
документации с различной степенью автоматизации [8].
За 15 лет применения
программно-методического комплекса "ТЕМП" разработчиками системы
совместно с пользователями накоплен опыт автоматизации работ для следующих
переделов: механообработка, лакокрасочные покрытия, окраска порошковыми
красками, окраска в электрическом поле, штамповка, сборочные и
сборочно-сварочные технологические процессы. Для каждого из переделов допустимо
проектирование различными методиками: от работы в диалоге и синтеза на основе
типовых решений до автоматического проектирования комплекта технологической
документации. При этом проектирование документов может быть осуществлено как по
отечественным, так и по международным стандартам.
В ходе проектирования
обеспечивается комплексный контроль технологической документации, ведение
архива и редактирование программ ЧПУ, расчет режимов резания и нормирование
времени по различным специализациям и различным методикам, нормирование расхода
материалов, интеграция документов различных специализаций. Например, генерация
полуфабрикатов маршрутно-операционных карт технологических процессов различных
специализаций на основе материальной спецификации, расчет расценок на
изготовление изделия и формирование многих других сводных документов (таких
как, ведомости оснастки и оборудования, документы по расчету загрузки
оборудования, работа с конструкторскими спецификациями и документами по составу
изделий). На базе этих сквозных документов реализовано решение таких задач как
расчет применяемости деталей в изделии, интеграция с базами данных по составу
изделий, материалов, специальных средств измерения, с конструкторскими
системами, системами управления производством, автоматизированное управление
процессом технологического проектирования и т.д.
На данный момент существуют два
варианта реализации системы. Полная версия системы с максимальным объемом
функциональных возможностей реализована в операционной среде MS-DOS, для хранения
данных была использована СУБД Btrieve. Использование данной версии не
предъявляет высоких требований к вычислительной технике. В эксплуатации могут
участвовать персональные компьютеры практически всех поколений (начиная с
ПК-286), что является большим преимуществом в условиях спада производственной
деятельности машиностроительных предприятий. Вместе с тем сокращение сроков
проектирования и повышение качества получаемых результатов путем использования
ПМК "ТЕМП" положительно влияют на экономическую ситуацию предприятия,
создавая потенциал для повышения экономической эффективности деятельности
предприятия, не требуя значительных капиталовложений для компьютеризации
деятельности технологических служб производства.
Параллельно с использованием
базовой версии системы создается новая версия на базе современных средств
вычислительной техники и технологии программирования.
Новая версия системы
ориентирована на графический интерфейс Windows 3.1, Windows 95 и Windows NT и
является не просто Windows-переложением предыдущего DOS-варианта, а его
дальнейшим развитием в направлении объединения функций системы в типовые
технологические задачи.
Проанализировав системы
автоматического проектирования, существующие на сегодняшний день, представим
результаты анализа в виде таблицы А.1 представленой в приложении А. В таблице
представлен анализ анализ основных систем с точки зрения интерфейса
пользователя. Оценка велась по десятибальной шкале. АРМ-Технолога сильно
отстает от других систем автоматизированного проектирования, так как разработан
для ОС DOS, в которой отсутствовали элементы интерфейса,
появившиеся в ОС Windows. Это является одной из
основных причин для разработки программно - методического комплекса с более
удобным и совершенным интерфейсом.
На основании анализа разработаем
предложения по совершенствованию существующей системы. Из-за того, что
программное обеспечение САПР ТП разрабатывалось в рамках существовавших на
момент создания технических и инструментальных возможностей, система
накладывает ряд ограничений. Система работает на платформе DOS и в ней
отсутствуют механизмы работы через технологию Active X и COM, что делает
невозможным интеграцию системы с другими программами, установленными на
компьютере. При составлении технологического процесса плохо организована работа
текстового редактора. Сложно организованы операции копирования и переноса строк.
Особенность реализации механизма выполнения программ в среде АРМ-Технолога,
заключается в интенсивном используют жесткого диска, связанным с чтением
управляющих строк из файлов. Отсутствует интерактивная контекстная помощь. Составление
техпроцесса в системе, неквалифицированным пользователем, занимает длительное
время из-за специфического интерфейса и особенностей работы в системе. Слабо
работает механизм восстановления после сбоев.
Описанные ограничения и
недостатки могут быть устранены перепроектированием базы данных техпроцессов,
разработкой соответствующих приложений записи, чтения, сортировки и обработки
необходимых данных. При составлении техпроцесса можно использовать таблицы
соответствий, которые хранят информацию для однозначного автоматического выбора
технологических решений. Для этого база данных дополняется рядом таблиц, в
которые записывается исходная информация, необходимая для синтеза техпроцесса и
расчета пооперационных норм времени. Ввод информации о детали ведется на основе
графического представления с использованием комплексной групповой детали.
Дальнейшее развитие САПР ТП
связано с моделированием процесса обработки и визуализацией текущего состояния
объемной модели объекта (детали) при последовательной его обработке.
Графическая технология
проектирования техпроцесса на основе токарных операций позволит исключить
субъективные ошибки и даст возможность иллюстрировать выходную форму
техпроцесса изометрическими изображениями ключевых состояний объекта.
Информация, представляющая
текущее состояние разрабатываемого техпроцесса, должно быть можно сохранить в
любой момент проектирования и загрузить для продолжения разработки с любого
этапа. Подобная возможность - неотъемлемая часть любой системы САПР, и должна
присутствовать и в САПР ТП токарных операций.
Естественным также является и
изменение интерфейса системы. Имеющийся в настоящее время интерфейс
DOS-приложения не выдерживает никакой критики с точки зрения современных
представлений об интерфейсе пользователя. Поэтому, изменяя общую схему
взаимодействия с пользователем при разработке техпроцесса, необходимо
переработать интерфейс для приведения его в соответствие с требованиями
стандарта CUA (Common User Access).
При проектировании токарных
операций возможна существенная автоматизация процесса составления техпроцесса. В
логику программы необходимо заложить таблицу соответствий, по которой будет
выбираться последовательность обработки детали, станки, режущий инструмент,
вспомогательный инструмент, измерительный инструмент, приспособления. Для более
наглядного представления процесса обработки детали в базу данных следует
заложить графические материалы, дающие представление об оборудовании, станках,
режущем и прочем инструменте, динамике обработки деталей.
Для выбора средств
проектирования нужно сначала определиться с требованиями, предъявляемыми к
таким средствам. Во-первых, проектируемый ПМК создается как standalone
Win32-приложение, то есть программа, являющаяся выполняемым EXE-модулем Windows.
Следовательно, выбранное средство разработки должно создавать именно такие
модули. Во-вторых, необходимы средства для создания программ, работающих с
базами данных. В-третьих, из-за ограниченности времени разработки,
проектирование должно быть максимально быстрым. Это обеспечивается
RAD-средствами.
Учитывая требования, я выбираю
для разработки программно - методического комплекса среду быстрой разработки Delphi v.5.0 Enterprise. Эта среда обладает необходимыми функциональными
качествами [9]:
позволяет создавать выполняемые
модули Windows, не требующие никаких дополнительных библиотек для работы;
есть возможность работы с базами
данных различных типов;
обеспечивают быструю визуальную
разработку интерфейса пользователя.
Для оценки выбранного средства
разработки я разработал критерии, по которым следует оценивать, учитывая их
важность, и выставил им весовые коэффициенты. В таблице 1.6 приведены критерии
и соответствующие им весовые коэффициенты. Числовые значения коэффициентов
приняты субъективно, исходя из важности критериев для разработки ПМК.
Таблица 1.6 - Критерии оценки
средств разработки
Критерий | Весовой коэффициент |
Визуальная разработка приложений | 0.9 |
Функциональность интерфейса | 0.7 |
Подсистема помощи | 0.7 |
Интегрированная среда разработчика | 0.8 |
Требования к компьютеру | 0.7 |
Мощность языка | 0.5 |
Простота языка | 0.6 |
Степень ознакомленности со средством проектирования | 1 |
Работа с базами данных | 0.9 |
Возможность расширения | 0.4 |
“Визуальная разработка
приложений” - критерий, характеризующий возможности по проектированию
интерфейса пользователя в режиме WYSIWYG. “Функциональность интерфейса” -
критерий, характеризующий простоту и дружественность интерфейса. “Подсистема
помощи” - критерий, характеризующий полноту и удобство использования справочной
системы. “Интегрированная система разработчика” - критерий, характеризующий
удобство разработки программ, то есть наличие средств отладки и прочих
интегрированных вспомогательных инструментов. “Требования к компьютеру” - критерий,
характеризующий минимальные требования к аппаратному и программному
обеспечению, обеспечивающему нормальную работу. “Мощность языка" - критерий,
характеризующий возможности базового языка программирования. “Простота языка"
- критерий, характеризующий ясность и понятность базового языка
программирования. “Степень ознакомленности со средством проектирования” - критерий,
характеризующий степень ознакомленности с рассматриваемым средством разработки.
“Работа с базами данных” - критерий для оценки возможностей средства разработки
по созданию приложений, работающих с базами данных различных типов. “Возможность
расширения” - критерий, характеризующий возможность расширения стандартных
инструментов и средств.
В таблице 1.7 приведена оценка
выбранного средства разработки по десяти критериям. Так же, как и весовые
коэффициенты критериев, оценка произведена субъективно, исходя из личных
взглядов на оцениваемый продукт.
Таблица 1.7 - Оценка средства
разработки
Критерий | Delphi |
Визуальная разработка приложений | 0.9 |
Функциональность интерфейса | 0.7 |
Подсистема помощи | 0.9 |
Интегрированная среда разработчика | 0.6 |
Требования к компьютеру | 0.8 |
Мощность языка | 0.8 |
Простота языка | 0.7 |
Степень ознакомленности со средством проектирования | 1 |
Работа с базами данных | 1 |
Возможность расширения | 1 |
Оценка с учетом весовых
коэффициентов производится по формуле (1.1):
где Оц - суммарная взвешенная
оценка средства разработки;
Крi - оценка средства
разработки по i-му критерию;
Всi - весовой
коэффициент для i-го критерия; n - количество критериев.
Суммарная взвешенная оценка для
Delphi:
Оц= (0.9*0.9) + (0.7*0.7) + (0.7*0.9)
+ (0.8*0.6) + (0.7*0.8) + (0.5*0.8) + (0.6*0.7) + (1*1) + (0.9*1) + (0.4*1) =6.09.
Полученная оценка является
достаточной для того, что бы для разработки интерфейса программно-методического
комплекса, использовать среду RAD Borland Delphi
5 Enterprise.
При проектировании
технологического процесса значительная роль отводиться работе с базами данных. Именно
в них сведены основные данные необходимые для проектирования, от актуальности и
наполнения этих баз зависит качество спроектированного технологического
процесса.
Для проектирования
технологического процесса, состоящего из токарных операций, необходимы
следующие основные базы данных:
оборудования (станков);
режущего инструмента;
измерительного инструмента;
вспомогательного инструмента;
приспособлений;
обрабатываемого материала;
способов установки и крепления
детали;
точностных и чистовых
характеристик обрабатываемых поверхностей.
База данных станков включает в
себя сведения, приведенные в таблице 1.8 База содержит не только данные
необходимые при составлении технологического процесса, но и справочные и
обучающие.
Таблица 1.8 -
Структура базы данных по оборудованию для проектирования техпроцесса обработки
Имя поля | Тип данных | Размер | Ключ | Ограничение на данные | Назначение |
TypeStanok | Alfa | 30 | - | Тип станка | |
Model | Alfa | 30 | - | Модель станка | |
MaxDiamNadStan | Integer | >0 | Максимальный диаметр обрабатываемой детали над станиной, мм | ||
MaxDiamNadSup | Integer | >0 | Максимальный диаметр обрабатываемой детали над суппортом, мм | ||
MegCentr | Integer | >0 | Межцентровое расстояние, мм | ||
PredPod | Alfa | 50 | Пределы подач | ||
NumStup | Integer | >=0 | Число ступеней | ||
PowerP | Float | >0 | Мощность главного привода, кВт | ||
MinChastVrach | Float | >0 | Минимальная частота вращения, об/мин | ||
MaxChastVrach | Float | >0 | Максимальная частота вращения, об/мин | ||
TMax | Float | >0 | Максимальный припуск обрабатываемый на станке, мм | ||
Nu | Float | >0 | КПД станка, доли | ||
Pxct | Float | >0 | Максимальная сила подачи суппорта, Н | ||
Vid | TGraphic | Внешний вид станка | |||
Kinem | TGraphic | Кинематика обработки детали | |||
Tochn | Alfa | 20 | Чистовой или черновой обработки | ||
Kod | Autoincrement | * | Код станка в базе данных | ||
Rezcederg | Alfa | 60 | Параметры резцедержателя | ||
MaxMass | float | >0 | Максимальная масса детали |
База данных по режущему
инструменту содержит информацию, необходимую для расчета режимной части
техпроцесса. Информация о режущем инструменте, используемая в ходе
проектирования техпроцесса, приведена в таблице 1.9.
Таблица 1.9 - Структура базы
данных режущего инструмента (резцы)
Имя поля | Тип данных | Размер | Ключ | Ограничение на данные | Назначение |
Name | Alfa | 30 | Наименование | ||
RazmDerg | Alfa | 30 | Размер державки | ||
MatReg | Alfa | 30 | Материал режущей части | ||
PeredDeg | float | >0 | Передний угол g, рад | ||
MainDeg | float | >0 | Главный угол в плане, рад | ||
VspomDeg | float | >0 | Вспомогательный угол в плане, рад. | ||
RadVer | float | >0 | Радиус вершины резца, мм | ||
Tst | integer | >0 | Период стойкости инструмента, мин. | ||
MatDerg | alfa | 30 | Материал державки | ||
Vid | TGraphics | Внешний вид инструмента | |||
Kod | Autoincrement | Код инструмента в базе данных |
Эта структура базы данных только
по резцам. На токарном оборудовании обработка производится не только резцами,
но и:
сверлами;
метчиками;
развертками;
зенкерами;
плашками.
Кроме резания на токарном
оборудовании производится так же шлифовка, полировка, накатка, раскатка. Для
этих инструментов необходимо использовать базы данных, составленные для каждого
инструмента индивидуально.
База данных по измерительному
инструменту используется для осуществления контрольно-измерительных операций во
время обработки. База содержит сведения, приведенные в таблице 1.10
Таблица 1.10 - Структура базы
данных измерительного инструмента
Имя поля | Тип данных | Размер | Ключ | Ограничение на данные | Назначение |
Name | alfa | 30 | * | Наименование инструмента | |
PredIzm | Integer | >0 | Пределы измерения | ||
TochIzm | Integer | >0 | Точность измерения | ||
Kod | Autoincrement | * | Код инструмента в базе данных | ||
База данных по обрабатываемому
материалу используется для расчетов режимов резания и определения группы
стружки. Структура базы данных приведена в таблице 1.11
Таблица 1.11 - Структура базы
данных обрабатываемого материала
Имя поля | Тип данных | Размер | Ключ | Ограничение на данные | Назначение |
Marka | alfa | 30 | * | Марка материала | |
GrStr | alfa | 2 | Группа стружки | ||
Proch | float | >0 | Предел прочности, МПа | ||
Tek | float | Предел текучести, МПа | |||
KoefObrab | float | >0 | Коэффициент обрабатываемости | ||
Kod | Autoincrement | * | Код материала в базе данных |
Вспомогательный инструмент
используется для установки режущего инструмента на станок, как переходник. Структура
базы данных по вспомогательному инструменту представлена в таблице 1.12.
Таблица 1.12 - Структура
базы данных по вспомогательному режущему осевому инструменту
Имя поля | Тип данных | Размер | Ключ | Ограничение на данные | Назначение |
Name | alfa | 30 | * | Обозначение вспомогательного инструмента | |
Diam | integer | >0 | Диаметр отверстия для хвостовика, мм | ||
Dlina | float | >0 | Длина вспомогательного интсрумента, мм | ||
KonusM | float | >0 | Конус Морзе, рад | ||
Kod | Autoincrement | Код инструмента в базе данных |
При проектировании
технологического процесса обработки детали, когда составляется план и
выбирается метод обработки, одновременно с выбором станка надо установить,
какое приспособление необходимо для выполнения на данном станке намеченной
операции. Приспособление используется для установки и обработки детали на
станке [10]. Пример структуры базы данных для 3-х кулачкового патрона приведена
в таблице 1.13.
Таблица 1.13 - Структура базы
данных для 3-х кулачкового патрона
Имя поля | Тип данных | Размер | Ключ | Ограничение на данные | Назначение |
Name | alfa | 30 | * | Наименование приспособления | |
MaxDiamZakr | Integer | >0 | Максимальный диаметр закрепления, мм | ||
GabRazm | alfa | 30 | Габаритные размеры приспособления | ||
MaxUsZakr | integer | >0 | Максимальное усилие закрепления, Н | ||
TypePriv | alfa | 30 | Тип привода | ||
Kod | autoincrement | Код приспособления в базе данных |
Вспомогательными базами данных,
необходимыми для работы программно - методического комплекса, являются:
база данных классификатора;
база данных комплексных деталей;
тексты обработки поверхностей,
переходов;
база данных типовых
технологических процессов для комплексных деталей;
база данных комментариев;
база данных наименований видов
работ.
нормативов вспомогательных работ
на токарные операции;
нормативов резания;
нормативов на вспомогательные
работы;
база данных условий обработки;
база исходных данных
индивидуальных деталей;
Так же новым оригинальным
технологическим решением является использование таблиц соответствий, содержащих
условия принятия технологических решений и сами решения, оформленные в виде
файлов базы данных. При помощи них задается выбор:
припусков на операцию;
плана обработки поверхностей;
припусков на операцию.
Для хранения неиспользуемых
техпроцессов и индивидуальных деталей предполагается использовать архивы:
готовых техпроцессов;
незавершенных техпроцессов;
готовых индивидуальных деталей;
незавершенных готовых деталей.
Программное обеспечение - совокупность
программ, представленных в заданной форме, вместе с необходимой программной
документацией.
Определим задачи, встающие перед
проектировщиком программно - методического комплекса для проектирования
техпроцессов.
Во-первых, необходимо предусмотреть
средства для хранения и манипулирования информацией, требуемой в процессе
проектирования техпроцессов. Для этого необходимо создать полноценную базу
данных. В нее входят как набор таблиц с данными, так и программные средства для
администрирования базы.
Во-вторых, требуется разработка
собственно самих средств проектирования техпроцессов. Эти средства можно
разделить на три категории: средства автоматического проектирования типовых
техпроцессов, средства полуавтоматического проектирования оригинальных
техпроцессов и средства ручного редактирования спроектированных техпроцессов.
Третье - то без чего трудно
обойтись практически любой программе - средства ввода-вывода. Сюда можно
отнести как средства ввода-вывода текущего состояния комплекса, так и средства
фиксации результатов проектирования в виде файлов, содержащих маршруты
техпроцессов. Кроме того, средства для обмена данными с внешними базами данных.
Детальная декомпозиция целей
проектирования программно - методического комплекса в виде иерархического
дерева - графа целей - представлена на рисунке 1.2.
Учитывая мировой опыт
проектирования сложных программных продуктов, используем модульный подход для
реализации программного комплекса. Модульная структура облегчает расширение
системы и адаптирование в соответствии с требованиями пользователя [11]. Разобьем
программно-методический комплекс на структурные модули, каждый из которых
выполняет свой комплекс функций.
Результат работы программного
комплекса и качество спроектированного техпроцесса зависит, в большей степени,
от качества и наполнения баз данных. Модуль работы с базами данных должен
обеспечивать выполнение следующих функций:
ввод информации в БД;
редактирование баз данных;
просмотр баз данных;
контроль корректности вводимых
данных;
возможность сортировки данных по
уникальному и составному ключу;
быстрый поиск в базах данных;
резервная архивация баз данных.
Первым этапом работы с
программно-методическим комплексом при разработке техпроцесса является выбор
комплексной детали, для описания индивидуальной детали.
Эту функцию должен выполнять
модуль ввода исходных данных.
! | Как писать дипломную работу Инструкция и советы по написанию качественной дипломной работы. |
! | Структура дипломной работы Сколько глав должно быть в работе, что должен содержать каждый из разделов. |
! | Оформление дипломных работ Требования к оформлению дипломных работ по ГОСТ. Основные методические указания. |
! | Источники для написания Что можно использовать в качестве источника для дипломной работы, а от чего лучше отказаться. |
! | Скачивание бесплатных работ Подводные камни и проблемы возникающие при сдаче бесплатно скачанной и не переработанной работы. |
! | Особенности дипломных проектов Чем отличается дипломный проект от дипломной работы. Описание особенностей. |
→ | по экономике Для студентов экономических специальностей. |
→ | по праву Для студентов юридических специальностей. |
→ | по педагогике Для студентов педагогических специальностей. |
→ | по психологии Для студентов специальностей связанных с психологией. |
→ | технических дипломов Для студентов технических специальностей. |
→ | выпускная работа бакалавра Требование к выпускной работе бакалавра. Как правило сдается на 4 курсе института. |
→ | магистерская диссертация Требования к магистерским диссертациям. Как правило сдается на 5,6 курсе обучения. |
Дипломная работа | Формирование устных вычислительных навыков пятиклассников при изучении темы "Десятичные дроби" |
Дипломная работа | Технологии работы социального педагога с многодетной семьей |
Дипломная работа | Человеко-машинный интерфейс, разработка эргономичного интерфейса |
Дипломная работа | Организация туристско-экскурсионной деятельности на т/к "Русский стиль" Солонешенского района Алтайского края |
Дипломная работа | Разработка мероприятий по повышению эффективности коммерческой деятельности предприятия |
Дипломная работа | Совершенствование системы аттестации персонала предприятия на примере офиса продаж ОАО "МТС" |
Дипломная работа | Разработка системы менеджмента качества на предприятии |
Дипломная работа | Организация учета и контроля на предприятиях жилищно-коммунального хозяйства |
Дипломная работа | ЭКСПРЕСС-АНАЛИЗ ФИНАНСОВОГО СОСТОЯНИЯ ООО «АКТ «ФАРТОВ» |
Дипломная работа | Психическая коммуникация |