Реферат по предмету "Экология"


Альтернативные источники энергии 3

--PAGE_BREAK--Основная часть 1) Энергия воды


С середины нашего века началось изучение энергетических ресурсов, относящихся к  «возобновляемым источникам энергии».

Океан – гигантский аккумулятор и трансформатор солнечной энергии, преобразуемой в энергию течений, тепла и ветров. Энергия приливов – результат действия приливообразующих сил Луны и Солнца.

Энергетические ресурсы океана представляют большую ценность как возобновляемые и практически неисчерпаемые. Опыт эксплуатации уже действующих систем океанской энергетики показывает, что они не приносят какого-либо ощутимого ущерба океанской среде. При проектировании будущих систем океанской энергетики тщательно исследуется их воздействие на экологию.

а) Приливные электростанции


Уровень воды на морских побережьях в течение суток меняется три раза. Такие колебания особо заметны в заливах и устьях рек, впадающих в море. Древние греки объясняли колебание уровня воды волей повелителя морей Посейдона. В XVIIIв. английский физик Исаак Ньютон разгадал тайну морских приливов и отливов: огромные массы воды в мировом океане приводятся в движение силами притяжения Луны и Солнца. Через каждые 6 ч 12 мин прилив сменяется отливом. Максимальная амплитуда приливов в разных местах нашей планеты неодинакова и составляет от 4 до 20 м.

Для устройства простейшей приливной электростанции (ПЭС) нужен бассейн – перекрытый плотиной залив или устье реки. В плотине имеются водопропускные отверстия и установлены турбины. Во время прилива вода поступает в бассейн. Когда уровни воды в бассейне и море сравняются, затворы водопропускных отверстий закрываются. С наступлением отлива уровень воды в море понижается, и, когда напор становится достаточным, турбины и соединенные с ним электрогенераторы начинают работать, а вода из бассейна постепенно уходит. Считается экономически целесообразным строительство ПЭС в районах с приливными колебаниями уровня моря не менее 4 м. Проектная мощность ПЭС зависит от характера прилива в районе строительства станции, от объема и площади приливного бассейна, от числа турбин, установленных в теле плотины.

В приливных электростанциях двустороннего действия турбины работают при движении воды из моря в бассейн и обратно. ПЭС двустороннего действия способна вырабатывать электроэнергию непрерывно в течение 4-5 ч с перерывами в 1-2 ч четыре раза в сутки. Для увеличения времени работы турбин существуют более сложные схемы – с двумя, тремя и большим количеством бассейнов, однако стоимость таких проектов весьма высока.

Первая приливная электростанция мощностью 240 МВт была пущена в 1966 г. во Франции в устье реки Ранс, впадающей в Ла-Манш, где средняя амплитуда приливов составляет 8,4 м (Дополнение В). 24 гидроагрегата ПЭС вырабатывают в среднем за год 502 млн. кВт*час электроэнергии. Для этой станции   разработан приливный капсульный агрегат, позволяющий осуществлять три прямых и три обратных режима работы: как генератор, как  насос и как водопропускное отверстие, что обеспечивает эффективную эксплуатацию ПЭС. По оценкам специалистов, ПЭС на реке Ранс экономически оправдана, годовые издержки эксплуатации ниже, чем на гидроэлектростанциях, и составляют 4% капитальных вложений. Электростанция входит в энергосистему Франции и эффективно используется.

В 1968 г. на Баренцевом море, неда­леко от Мурманска, вступила в строй опытно-промышленная ПЭС проектной мощностью 800 кВт. Место ее строитель­ства – Кислая Губа представляет собой уз­кий залив шириной 150 м и длиной 450 м. Хотя мощность Кислогубской ПЭС неве­лика, ее сооружение имело важное значение для дальнейших исследовательских и про­ектно-конструкторских работ в области ис­пользования энергии приливов.

Существуют проекты крупных ПЭС мощностью 320 МВт (Кольская) и 4000 МВт (Мезенская) на Белом море, где амплитуда приливов составляет 7-10 м. Планируется использовать также огромный потенциал Охотского моря, где местами, например на Пенжинской губе, высота приливов составляет 12,9 м, а в Гижигинской губе – 12-14 м.

Работы в этой области ведутся и за рубежом. В 1985 г. пущена в эксплуатацию ПЭС в заливе Фанди в Канаде мощностью 20 МВт (амплитуда приливов здесь составляет 19,6 м). В Китае построены три приливные электростанции небольшой мощности. В Великобритании разрабатывается проект ПЭС мощностью 1000 МВт в устье реки Северн, где средняя амплитуда приливов составляет 16,3 м

С точки зрения экологии ПЭС имеет бесспорное преимущество перед тепловыми электростанциями, сжигающими нефть и каменный уголь. Благоприятные предпосылки для более широкого использования энергии морских приливов связаны с возможностью применения недавно созданной трубы Горлова, которая позволяет сооружать ПЭС без плотин, сокращая расходы на их строительство. Первые бесплотинные ПЭС намечено соорудить в ближайшие годы в Южной Корее.
    продолжение
--PAGE_BREAK--б) Энергия  волн      
 

Идея получения  электроэнергии от морских волн была  изложена еще в 1935 г. советским ученым К.Э. Циолковским.

        В основе работы волновых энергетических станций лежит  воздействие  волн на рабочие органы, выполненные в виде поплавков, маятников, лопастей, оболочек и т.п. Механическая энергия их перемещений  с помощью электрогенераторов преобразуется в электрическую. Когда буй качается по волне, уровень воды внутри него меняется. От этого воздух то выходит из него, то входит. Но движение воздуха возможно только лишь через верхнее отверстие (такова конструкция буя). А там установлена турбина, вращающаяся всегда в одном направлении независимо от того в каком направлении движется воздух. Даже довольно небольшие волны высотой 35 см заставляют турбину развивать более 2000 оборотов в минуту. Другой тип установки – что-то вроде стационарной микроэлектростанции. Внешне она похожа на ящик, установленный на опорах на небольшой глубине. Волны проникают в ящик и приводят в действие турбину. И здесь для работы достаточно совсем небольшого волнения моря. Даже волны высотой в 20 см зажигали лампочки общей мощностью 200 Вт.

        В настоящее время волноэнергетические установки используются для  энергопитания автономных буев, маяков, научных приборов. Попутно крупные волновые станции могут быть использованы для волнозащиты морских буровых платформ, открытых рейдов, марикультурных хозяйств. Началось промышленное использование волновой энергии. В мире  уже  около 400 маяков и навигационных буев получают питание от волновых установок. В Индии от волновой энергии работает плавучий маяк порта Мадрас. В Норвегии с 1985 г. действует первая в мире промышленная волновая станция мощностью 850 кВт.

        Создание волновых электростанций определяется оптимальным выбором акватории океана с устойчивым запасом волновой энергии, эффективной конструкцией станции, в которую встроены устройства сглаживания неравномерного режима волнения. Считается, что эффективно волновые станции могут  работать при использовании мощности около 80 кВт/м. Опыт эксплуатации существующих установок показал, что вырабатываемая ими электроэнергия пока в 2-3 раза дороже традиционной, но в будущем ожидается значительное снижение ее стоимости.    

        В волновых   установках с пневматическими  преобразователями под  действием волн воздушный поток периодически изменяет свое направление на обратное. Для этих условий и разработана турбина Уэллса, ротор которой обладает выпрямляющим действием, сохраняя неизменным  направление своего вращения при смене направления воздушного потока, следовательно, поддерживается неизменным и направление вращения генератора. Турбина нашла широкое применение в различных волноэнергетических установках.     

Волновая энергетическая установка «Каймей» («Морской свет») – самая мощная действующая энергетическая установка  с пневматическими преобразователями – построена в Японии в 1976 г. В своей работе она использует волны высотой до 6 – 10 м. На барже длиной 80 м, шириной 12 м и водоизмещением 500 т  установлены  22  воздушных камеры, открытые снизу. Каждая пара камер работает на одну турбину Уэллса. Общая мощность установки 1000 кВт. Первые испытания были проведены в 1978 – 1979 гг. близ города Цуруока. Энергия передавалась на берег по подводному кабелю длиной около 3 км.

В  1985 г. в Норвегии в 46 км  к северо-западу  от города  Берген построена  промышленная  волновая станция, состоящая из двух установок. Первая установка на острове Тофтесталлен  работала  по пневматическому принципу. Она представляла собой железобетонную камеру, заглубленную в скале; над ней была установлена стальная башня   высотой 12,3 мм  и диаметром 3,6 м.  Входящие в камеру волны создавали  изменение объема воздуха. Возникающий поток    через систему    клапанов приводил  во вращение турбину и связанный с ней генератор мощностью 500 кВт, годовая выработка составляла  1,2 млн. кВт*ч. Зимним штормом  в конце  1988 г. башня  станции была разрушена. Разрабатывается  проект  новой башни из железобетона.

Конструкция второй установки состоит из конусовидного канала в ущелье  длиной около 170 м с бетонными стенками высотой 15 м  и шириной в основании 55 м, входящего в резервуар между островами, отделенный от моря дамбами, и плотины с энергетической  установкой. Волны, проходя по сужающемуся каналу, увеличивают свою высоту  с 1,1  до 15 м  и вливаются  в резервуар, уровень которого на 3 м выше  уровня моря. Из резервуара вода проходит через   низконапорные  гидротурбины  мощностью 350 кВт. Станция ежегодно производит до 2 млн. кВт*ч электроэнергии.

А в Великобритании  разрабатывается оригинальная   конструкция волновой энергетической установки типа «моллюск», в которой в качестве рабочих органов используются  мягкие оболочки – камеры. В   них  находится  воздух  под давлением, несколько  большим атмосферного. Накатом волн  камеры сжимаются, образуется замкнутый воздушный поток  из камер в каркас установки и обратно. На пути потока  установлены воздушные турбины Уэллса с электрогенераторами. Сейчас создается  опытная плавучая установка из 6 камер, укрепленных на каркасе длиной 120 м и высотой  8 м. Ожидаемая мощность 500 кВт*ч. Дальнейшие разработки показали, что   наибольший  эффект дает   расположение камер по кругу.  В Шотландии      на озере  Лох-Несс была  испытана установка, состоящая из 12 камер и 8 турбин. Теоретическая мощность такой установки до 1200 кВт.

Впервые  конструкция  волнового плота  была запатентована в СССР   еще в 1926 г. В 1978 г.  в Великобритании проводились испытания опытных моделей океанских электростанций, в основе которых лежит аналогичное решение. Волновой плот  Коккерела состоит из шарнирно соединенных секций,  перемещение которых относительно   друг друга   передается  насосам с электрогенераторами. Вся конструкция  удерживается  на месте якорями. Трехсекционный волновой плот  Коккерела длиной 100 м, шириной 50 м и высотой 10 м может дать мощность до 2 тыс. кВт.

        В СССР модель волнового плота испытывалась  в 70-х  гг. на Черном море. Она имела длину 12 м,  ширину  поплавков 0,4 м. На волнах высотой 0,5 м и длиной 10 – 15 м установка развивала мощность 150 кВт.

        Проект, известный под названием «утка Солтера»,  представляет собой преобразователь волновой энергии. Рабочей конструкцией является поплавок («утка»), профиль которого рассчитан по законам гидродинамики. В проекте предусматривается монтаж большого количества крупных поплавков, последовательно укрепленных на общем валу. Под действием волн поплавки приходят в движение и возвращаются в исходное положение силой собственного веса. При этом приводятся в действие насосы внутри вала, заполненного специально подготовленной водой. Через систему труб различного диаметра создается разность давления, приводящая в движение турбины, установленные между поплавками и поднятые над поверхностью моря. Вырабатываемая электроэнергия передается по подводному кабелю. Для более эффективного распределения нагрузок на валу следует устанавливать 20 – 30 поплавков. В 1978 г. была испытана модель установки, состоявшая из 20-ти поплавков диаметром 1 м. Выработанная мощность составили 10 кВт. Разработан проект более мощной установки из 20 – 30 поплавков диаметром 15 м, укрепленных на валу, длиной 1200 м. Предполагаемая мощность установки 45 тыс. кВт. Подобные системы, установленные у западных берегов Британских островов, могут обеспечить потребности Великобритании в электроэнергии.


    продолжение
--PAGE_BREAK--в) Энергия  течений


        Наиболее  мощные течения океана – потенциальный источник энергии. Современный уровень техники позволяет извлекать энергию течений при скорости потока более 1 м/с. При этом мощность от 1 м2 поперечного сечения потока составляет около 1 кВт. Перспективным представляется использование таких мощных течений, как Гольфстрим и Куросио, несущих соответственно 83 и 55 млн. м3 воды со скоростью до 2 м/с, и Флоридского течения (30 млн. м3, скорость до 1,8 м/с).

        Для океанской  энергетики представляют интерес течения в проливах Гибралтарском, Ла-Манш, Курильских. Однако создание океанских электростанций на  энергии течений связано пока с рядом технических трудностей, прежде всего с созданием энергетических установок больших размеров, представляющих угрозу судоходству.

        Программа «Кориолис» предусматривает установку во Флоридском проливе в 30 км восточнее города Майами 242 турбин с двумя рабочими колесами диаметром 168 м,  вращающимися в противоположных направлениях. Пара  рабочих колес размещается внутри полой камеры из алюминия,  обеспечивающей плавучесть турбины. Для повышения эффективности лопасти колес предполагается сделать достаточно гибкими. Вся система «Кориолис» общей длиной 60 км будет  ориентирована по основному потоку; ширина ее  при    расположении турбин в 22 ряда по 11 турбин в каждом составит 30 км. Агрегаты предполагается отбуксировать к месту установки и заглубить на 30 м, чтобы не препятствовать судоходству.

После того как большая часть Южного Пассатного течения проникает в Карибское море и Мексиканский залив, вода возвращается оттуда в Атлантику через Флоридский залив. Ширина течения становится минимальной – 80 км. При этом оно убыстряет свое движение до 2 м/с. Когда же Флоридское течение усиливается Антильским, расход воды достигает максимума. Развивается сила, вполне достаточная, чтобы привести в движение турбину с размашистыми лопастями, вал которой соединен с электрогенератором. Дальше – передача тока по подводному кабелю на берег.

Материал турбины- алюминий. Срок службы – 80 лет. Ее постоянное место – под водой. Подъем на поверхность воды только для профилактического ремонта. Ее работа практически не зависит от глубины погружения и температуры воды. Лопасти вращаются медленно, и небольшие рыбы могут свободно проплывать через турбину. А вот крупным вход закрыт предохранительной сеткой.

Американские инженеры, считают, что строительство такого сооружения даже дешевле, чем возведение тепловых электростанций. Здесь не нужно возводить здание, прокладывать дороги, устраивать склады. Да и эксплуатационные расходы существенно меньше.

        Полезная мощность каждой турбины с учетом затрат на эксплуатацию и потерь при передаче на берег составит 43 МВт, что позволит удовлетворить потребности штата Флориды (США) на 10%.

        Первый опытный образец подобной турбины диаметром 1,5 м был испытан во Флоридском проливе. Разработан также проект турбины с рабочим колесом диаметром 12 м и мощностью 400 кВт.

2) Энергия ветра


Уже очень давно, видя, какие разрушения могут приносить бури и ураганы, человек задумывался над тем, нельзя ли использовать энергию ветра.

Ветряные мельницы с крыльями-парусами из ткани первыми начали сооружать древние персы свыше 1,5 тыс. лет назад. В дальнейшем ветряные мельницы совершенствовались. В Европе они не только мололи муку, но и откачивали воду, сбивали масло, как, например в Голландии. Первый электрогенератор был сконструирован в Дании в 1890 г. Через 20 лет в стране работали уже сотни подобных установок.

Энергия ветра очень велика. Ее запасы по оценкам Всемирной метеорологической организации, составляют 170 трлн кВт*ч в год. Эту энергию можно получать, не загрязняя окружающую среду. Но у ветра есть два существенных недостатка: его энергия сильно рассеяна в пространстве и он непредсказуем – часто меняет направление, вдруг затихает даже в самых ветреных районах земного шара, а иногда достигает такой силы, что ломает ветряки.

Строительство, содержание, ремонт ветроустановок, круглосуточно работающих в любую погоду под открытым небом, стоит недешево. Ветроэлектростанция такой же мощности, как ГЭС, ТЭЦ или АЭС, по сравнению с ними должна занимать большую площадь. К тому же ветроэлектростанции небезвредны: они мешают полетам птиц и насекомых, шумят, отражают радиоволны вращающимися лопастями, создавая помехи приему телепередач в близлежащих населенных пунктах.

Принцип работы ветроустановок очень прост: лопасти, которые вращаются за счет силы ветра, через вал передают механическую энергию к электрогенератору. Тот в свою очередь вырабатывает электроэнергию.

Для получения энергии ветра применяют раз­ные конструкции: многолопастные «ромашки»; винты вроде самолетных пропеллеров с тремя, двумя и даже одной лопастью (тогда у нее есть груз проти­вовес); вертикальные роторы, напоминающие разре­занную вдоль и насажанную на ось бочку; некое по­добие «вставшего дыбом» вертолетного винта: на­ружные концы его лопастей загнуты вверх и соеди­нены между собой. Вертикальные конструкции хо­роши тем, что улавливают ветер любого направле­ния. Остальным приходится разворачиваться по ветру.

Чтобы как-то компенсировать изменчивость ветра, сооружают огромные «ветреные фермы». Ветродвигатели там стоят рядами на обширном пространстве и работают на единую сеть. На одном краю «фермы» может дуть ветер, на другом в это время тихо. Ветряки нельзя ставить слишком близко, чтобы они не загораживали друг друга. Поэтому ферма занимает много места. Такие фермы есть в США (Дополнения Б), во Франции, в Англии, в Украине (АР Крым), а в Дании «ветряную ферму» разместили на прибрежном мелководье Северного моря: там она никому не мешает и ветер устойчивее, чем на суше.

Чтобы снизить зависимость от непостоянного направления и силы ветра, в систему включают маховики, частично сглаживающие порывы ветра, и разного рода аккумуляторы. Чаще всего они электрические. Но применяют также воздушные (ветряк нагнетает воздух в баллоны; выходя оттуда, его ровная струя вращает турбину с электрогенератором) и гидравлические (силой ветра вода поднимается на определенную высоту, а, падая вниз, вращает турбину). Ставят также электролизные аккумуляторы. Ветряк дает электрический ток, разлагающий воду на кислород и водород. Их запасают в баллонах и по мере необходимости сжигают в топливном элементе (т.е. в химическом реакторе, где энергия горючего превращается в электричество) либо в газовой турбине, вновь получая ток, но уже без резких колебаний напряжения, связанного с капризами ветра.

Сейчас в мире работает более 30 тыс. ветроустановок различной мощности. Германия получает от ветра 10% своей электроэнергии, а всей Западной Европе ветер дает 2500 МВт электроэнергии. По мере того как ветряные электростанции окупаются, а их конструкции совершенствуются, цена воздушного электричества падает. Так, в 1993 г. во Франции себестоимость 1 кВт*ч электроэнергии, полученной на ветростанции, равнялась 40 сантимам, а к 2000 году она снизилась в 1,5 раза. Правда энергия АЭС обходится всего в 12 сантимов за 1 кВт*ч.


    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Анализ деятельности фондов обязательного медицинского страхования
Реферат Анализ банка Снежинский
Реферат Основание для избрания меры пресечения
Реферат Анализ кредитоспособности заемщика и оценка рисков отделения Сбербанка России
Реферат Анализ деятельности фондов обязательного медицинского страхования оценка их роль в финансировании 2
Реферат Аналіз ризику факторингової діяльності банківських структур
Реферат Анализ привлеченных средств
Реферат Анализ кредитного портфеля
Реферат Аудиторський звіт ВАТ Райффайзен банк Аваль за 2007 рік
Реферат Нормирование ионизирующих излучений
Реферат Банк как коммерческая организация 2
Реферат Любовь в повести А.И.Куприна Гранатовый браслет
Реферат Анализ ликвидности банка
Реферат Анализ операций коммерческих банков с векселями
Реферат Анализ ресурсной базы на примере филиала АСБ Беларусбанк