Реферат по предмету "Химия"


Белки, липиды и углеводы вирусов

--PAGE_BREAK--2.    Нуклеиновые кислоты вирусов

В отличие от клеток вирусы содержат лишь один вид нуклеиновой кислоты – либо РНК, либо ДНК. И та, и другая может быть хранителем наследственной информации, выполняя таким образом функции генома.

Вирусные нуклеиновые кислоты характеризуются поразительным разнообразием форм. Вирусный геном может быть представлен как однонитчатым, так и двунитчатыми молекулами РНК и ДНК. ДНК может быть как линейной, так и кольцевой молекулой, РНК – как непрерывной, так и фрагментированной и кольцевой молекулой (рис.3).



Рис.3. типы молекул вирусных ДНК и РНК.
ДНК: 1 – парвовирусов; 2 – фага
XI74; 3 – аденовирусов, вирусов герпеса; 4 – фага Т5; 5 – вирусов оспы; 6 – паповавирусов; 7 – вируса гепатита В.

РНК: 1 – пикорнавирусов, тогавирусов, парамиксовирусов, рабдовирусов; 2 – ортомиксовирусов, аренавирусов; 3 – буньявирусов; 4 – реовирусов; 5 – ретровирусов.
Геном вирусов включает[6]:

ü       Структурные гены, которые кодируют белки. Занимают примерно 95 % вирусной хромосомы. Белки вирусов можно разделить на несколько групп: структурные, ферменты, регуляторы.

ü       Регуляторные последовательности, которые не кодируют белки: промоторы, операторы и терминаторы.

ü       Прочие некодирующие участки (сайты), в том числе:

-    участок attP, обеспечивающий интеграцию вирусной хромосомы в хромосому клетки–хозяина;

-    участки cos– липкие концевые участки линейных вирусных хромосом, обеспечивающие замыкание линейной хромосомы в кольцевую форму.

Гены, кодирующие рРНК и тРНК, в геноме вирусов обычно отсутствуют. Однако в геноме крупного фага Т4 имеются гены, кодирующие несколько тРНК.

Геном вирусов отличается высокой плотности упаковки информации. Например, у фага φ Х174 в пределах одного гена может располагаться еще один ген (на рисунке кольцевая ДНК представлена в линейной форме). В частности, ген В находится в пределах гена А, а ген Е – в пределах гена D:



У мелкого РНК–содержащего фага f2 ген регуляторного белка, блокирующего лизис (созревание вирионов и разрушение клетки), перекрывается с двумя другими генами, удаленными друг от друга:

Экспрессия (транскрипция и трансляция) вирусных генов происходит в том случае, если геном вируса представлен двунитевой ДНК (у РНК–содержащих вирусов необходим перевод информации в ДНК). Из-за полярности ДНК транскрипция идет только в одном направлении, то есть ген имеет начало и конец. Тогда «правые» гены не будут транскрибироваться РНК–полимеразой, движущейся влево, и наоборот. При этом один и тот же ген может транскрибироваться с разных промоторов; в этом случае экспрессия генов контролируется разными механизмами[7].




2.1.         Вирусные ДНК


Молекулярная масса ирусных ДНК варьирует в широких пределах от 1×106 до 250×106. Самые большие вирусные геномы содержат несколько сотен генов, а самые маленькие содержат информацию, достаточную для синтеза лишь несколько белков.

В геномах, представленных двунитчатыми ДНК, информация обычно закодирована на обеих нитях ДНК. Это свидетельствует о максимальной экономии генетического материала у вирусов, что является неотъемлемым свойством их как генетической информации не может быть проведена по молекулярной массе молекул[8].

Хотя в основном структура ДНК уникальна, т.е. большинство нуклеотидных последовательностей встречаются лишь по одному разу, однако на концах молекул имеются повторы, когда в концевом фрагменте линейной ДНК повторяется ее начальный участок. Повторы могут быть прямыми и инвертированными[9].

Способность к приобретению кольцевой формы, которая потенциально заложена в концевых прямых и инвертированных повторах, имеет большое значение для вирусов. Кольцевая форма обеспечивает устойчивость ДНК к экзонуклеазам. Стадия образования кольцевой формы обязательна для процесса интеграции ДНК с клеточным геномом. Наконец, кольцевые формы представляют собой удобный и эффективный способ регуляции транскрипции и репликации ДНК.

В составе вирионов, содержащих однонитчатую ДНК, обычно содержатся молекулы ДНК одной полярности. Исключение составляют адноассоциированные вирусы, вирионы которых содержат ДНК либо одной полярности (условно называемой «плюс»), либо ДНК с противоположным знаком (условно «минус»). Поэтому тотальный препарат вируса состоит из двух типов частиц, содержащих по одной молекуле «плюс»- или «минус»-ДНК.

Инфекционный процесс при заражении этими вирусами возникает лишь при проникновении в клетку частиц обоих типов.

Первый этап репликации вирусов связан с проникновением вирусной нуклеиновой кислоты в клетку организма-хозяина. Этому процессу могут способствовать специальные ферменты, входящие в состав капсида или внешней оболочки вириона, причем оболочка остается снаружи клетки или вирион теряет ее сразу после проникновения внутрь клетки. Вирус находит подходящую для его размножения клетку, контактируя отдельными участками своего капсида (или внешней оболочки) со специфическими рецепторами на поверхности клетки по типу «ключ – замок». Если специфические («узнающие») рецепторы на поверхности клетки отсутствуют, то клетка не чувствительна к вирусной инфекции: вирус в нее не проникает[10].

Для того чтобы реализовать свою генетическую информацию, проникшая в клетку вирусная ДНК транскрибируется специальными ферментами в мРНК. Образовавшаяся мРНК перемещается к клеточным «фабрикам» синтеза белка – рибосомам, где она заменяет клеточные «послания» собственными «инструкциями» и транслируется (прочитывается), в результате чего синтезируются вирусные белки. Сама же вирусная ДНК многократно удваивается (дуплицируется) при участии другого набора ферментов, как вирусных, так и принадлежащих клетке.

Синтезированный белок, который используется для строительства капсида, и размноженная во многих копиях вирусная ДНК объединяются и формируют новые, «дочерние» вирионы. Сформированное вирусное потомство покидает использованную клетку и заражает новые: цикл репродукции вируса повторяется. Некоторые вирусы во время отпочковывания от поверхности клетки захватывают часть клеточной мембраны, в которую «заблаговременно» встроились вирусные белки, и таким образом приобретают оболочку. Что касается клетки-хозяина, то она в итоге оказывается поврежденной или даже полностью разрушенной[11].

У некоторых ДНК-содержащих вирусов сам цикл репродукции в клетке не связан с немедленной репликацией вирусной ДНК; вместо этого вирусная ДНК встраивается (интегрируется) в ДНК клетки-хозяина. На этой стадии вирус как единое структурное образование исчезает: его геном становится частью генетического аппарата клетки и даже реплицируется в составе клеточной ДНК во время деления клетки. Однако впоследствии, иногда через много лет, вирус может появиться вновь – запускается механизм синтеза вирусных белков, которые, объединяясь с вирусной ДНК, формируют новые вирионы[12].


    продолжение
--PAGE_BREAK--2.2.         Вирусные РНК


Из нескольких сотен известных в настоящее время вирусов человека и животных РНК-геном содержит около 80% вирусов. Способность РНК хранить наследственную информацию является уникальной особенностью вируса.

У просто организованных и некоторых сложно организованных вирусов вирусная РНК в отсутствие белка может вызвать инфекционный процесс. Впервые инфекционная активность РНК вируса табачной мозаики была продемонстрирована Х.Френкель-Конратом и соавт. в 1957г. и А. Гирером и Г.Шраммом в 1958г. Впоследствии положение об инфекционной активности РНК было перенесено на все РНК-содержащие вирусы, однако долголетние усилия доказать это для таких вирусов, как вирусы гриппа, парамиксовирусы, рабдовирусы (так называемые минус-нитевые вирусы), оказались бесплодными: у этих вирусов инфекционной структурой являются не РНК, а комплекс РНК с внутренними белками. Таким образом, геномная РНК может обладать инфекционной активностью в зависимости от своей структуры[13].

Структура вирусных РНК чрезвычайно разнообразна. У вирусов обнаружены однонитчатые и двунитчатые, линейные, фрагментированные и кольцевые РНК. РНК-геном в основном является гаплоидным, но геном ретровирусов – диплоидный, т.е. состоит из двух идентичных молекул РНК.

Однонитчатые РНК.Молекулы однонитчатых вирусных РНК существуют в форме одиночной полинуклеотидной цепи со спирализированными ДНК-подобными участками. При этом некомплементарные нуклеотиды, разделяющие комплементарные участки, могут выводиться из состава сперализованных участков в форме различных «петель» и «выступов» (рис.4). Суммарный процент спирализации вирусных РНК не обнаруживает каких-либо особенностей по сравнению с таковыми у клеточных РНК.

Вирусы, содержащие однонитчатые РНК, делятся на две группы. У вирусов первой группы вирусный геном обладает функциями информационной РНК, т.е. может непосрдственной переносить закодированную в нем информацию на рибосомы. По предложению Д.Балтимора (1971), РНК со свойствами информационной условно обозначена знаком «плюс» и в связи с этим вирусы, содержащие такие РНК (пикорнавирусы, тогавирусы, коронавирусы, ретровирусы), обозначены как «плюс-нитевые» вирусы, или вирусы с позитивным геномом[14].



Рис. 4. Вторичная структура вирусных РНК (схема).
Вторая группы РНК-содержащих вирусов содержит геном в виде однонитчатой РНК, которая сама не обладает функциями иРНК. В этом случае функцию иРНК выполняет РНК, комплементарная геному. Синтез этой РНК (транскрипция) осуществляется в зараженной клетке на матрице геномной РНК с помощью вирусспецифического фермента – транскриптазы. В составе «минус-нитевых» вирусов обязательно присутствие собственного фермента, осуществляющего транскрипцию геномной РНК и синтез иРНК, т.к. аналога такого фермента в клетках нет. Геном этих вирусов условно обозначают как «минус»-РНК, а вирусы этой группы как «минус-нитевые» вирусы, или вирусы с негаивным геномом. К этим вирусам относятся ортомиксовирусы, парамиксовирусы, буньявирусы, рабдовирусы. РНК этих вирусов не способна вызвать инфекционный процесс.

В соответствии с разными свойствами вирусных РНК между двумя группами вирусов есть и структурные различия. Поскольку РНК «плюс-нитевых» вирусов выполняет функцию иРНК, она имеет специфические структурные особенности, характерные для 5¢— и 3¢-концов этих РНК.

5¢-Конец клеточных и вирусных РНК обычно имеет структуру так называемой шапочки (по-английски «сар»):



где m
7
Gпредставляет собой 7-метилгуанин, присоединенный через пирофосфатную связь к гуаниловому нуклеотиду, сахарный остаток которого также метилирован по второму углеродному атому. На 3¢-конце информационных РНК имеются поли(А), количество которых достигает 200 и выше. Эти модификации концов иРНК, осуществляемые после синтеза полинуклеотидной цепи, имеют существенное значение для функции иРНК: «шапочка» нужна для специфического узнавания РНК рибосомами, функции поли(И) менее точно определены и, по-видимому, заключается в придании стабильности молекулам иРНК.

Такими же модифицированными концами обладают геномные РНК «плюс-нитевых» вирусов. Исключение составляет 5¢-конец геномной РНК вируса полиомиелита, которая не содержит «шапочку», и вместо нее имеет на 5¢-конце ковалентно присоединенный к остатку урацила низкомолекулярный терминальный белок. Геномные РНК «минус-нитевых» вирусов не имеют ни «шапочки», ни поли(А); модифицированные концы характерны для иРНК этих вирусов, синтезирующихся в клетке на матрице вирионной РНК и комплементарных ей. Геномная РНК ретровирусов, хотя и являетс «плюс-нитевой», однако не содержит «шапочку»; эту структуру содержит гомологичная РНК, синтезируемая на матрице интегрированной провирусной ДНК.

Существуют вирусы, содержащие как «плсю-нитевые», так и «минус-нитевые» РНК гены (амбисенс-вирусы). В ним относятся аренавирусы.

В основном однонитчатые РНК являются линейными молекулами, однако РНК-фрагменты буньявирусов обнаружены в виде кольцевой формы. Кольцевая форма возникает за счет образования водородных связей между концами молекул.

Двунитчатые РНК. Этот необычный для клетки тип нуклеиновой кислоты, впервые обнаруженный у реовирусов, широко распространен среди вирусов животных, растений и бактерий. Вирусы, содежащие подобный геном, называют диплорнавирусы.

Общей особенностью диплорнавирусов является фрагментированное состояние генома. Так, геном реовирусов состоит из 10 фрагментов, ротавирусов – из 11 фрагментов[15].
Рассмотрим процесс заражения на примере ВИЧ-инфицирования.

ВИЧ относится к ретровирусам. Его геном представлен линейной одноцепочечной молекулой РНК (это плюс–цепь, или мРНК). ВИЧ – это сложный вирус. В состав вириона входит нуклеокапсид (собственно вирион) и внешняя липопротеиновая оболочка. В состав нуклеокапсида входит РНК (две молекулы) и 13 вирусных белков, в том числе, и обратная транскриптаза (ревертаза). В состав липопротеиновой оболочки вириона входят фрагменты мембран погибших лимфоцитов, содержащие комплекс из двух особых белков: гликопротеидов gp41 и gp120. Белок gp120 распознает Т–лимфоциты, а белок gp41 «пробивает» мембрану Т–лимфоцита и обеспечивает проникновение нуклеокапсида в клетку[16].

В инфицированной клетке на матрице вирусной РНК с помощью вирусной обратной транскриптазы синтезируется минус–цепь ДНК, а на ней – плюс–цепь ДНК. Вирусная РНК при этом разрушается. Образовавшаяся двухцепочечная ДНК встраивается в определенный участок одной из хромосом клетки хозяина. Интегрированная ДНК-копия вирусного генома представляет собой провирус. В таком состоянии ретровирус может долгое время сосуществовать с инфицированным организмом – вирусоносителем. Однако, получив определенные молекулярные сигналы, с провирусной ДНК инициируется транскрипция вирусной мРНК, а с нее – синтез вирусных белков. Затем происходит самосборка множества вирусных частиц и их выход из клетки. Клетка хозяина (лимфоцит) погибает, а часть ее мембран образует липопротеиновую оболочку вируса. Гибель Т-хелперов и приводит к развитию СПИДа.




    продолжение
--PAGE_BREAK--3.    Белки, липиды и углеводы вирусов 3.1.         Белки вирусов


Количество структурных белков в составе вирусной частицы варьирует в широких пределах в зависимости от сложности организации вириона. Наибо­лее просто организованный вирус табачной мозаики со­держит всего один небольшой белок с молекулярной массой 17—18- 103, некоторые фаги содержат 2—3 белка, просто организованные вирусы животных — 3—4 белка. Сложно устроенные вирусы, такие как вирусы оспы, содержат более 30 структурных белков[17].

Структурные белки делятся на 2 группы:

1)         капсидные белки, образующие капсид, т. е. футляр для нуклеиновой кислоты вируса (от лат. сарза — вме­стилище), и входящие в состав капсида геномные белки, и ферменты;

2)    суперкапсидные белки, входящие в состав суперкапсида, т. е. наружной вирусной оболочки.

Поскольку суперкапсид называют также «пеплос», эти белки называют пепломерами.

Просто организованные вирусы, представляющие собой нуклеокапсид, содержат только капсидные белки. Сложно организованные вирусы содержат капсидные и суперкапсидные белки.

Капсидные белки. Первоначальное представление о том, что капсидные белки являются всего лишь инерт­ной оболочкой для вирусной нуклеиновой кислоты, сложи­лось на основании изучения наиболее просто организо­ванного вируса табачной мозаики, частица которого со­стоит из одной молекулы РНК и одного типа белка, образующего чехол для РНК. Однако такое представление неправильно. Хотя основной функцией капсидных белков является функция защиты вирусного генома от неблагоприятных воздействий внешней среды, у многих вирусов в составе капсида есть белки и с другими функциями. Поэтому термин «капсид» далеко выходит за пределы представления о нем как о футляре или чехле для вирус­ной нуклеиновой кислоты.

В составе капсида некоторых вирусов (пикорнавирусы, паповавирусы, аденовирусы) содержатся белки, ковалентно связанные с вирусным геномом (геномные белки). Эти белки являются терминальными, т. е. соединенными с концом вирусной нуклеиновой кислоты. Функции их неразрывно связаны с функциями генома и их регуля­цией.

У ряда сложно организованных вирусов в составе кап­сида имеются ферменты, осуществляющие транскрипцию и репликацию вирусного генома — РНК и ДНК (РНК- и ДНК-полимеразы), а также ферменты, модифицирую­щие концы иРНК. Если ферменты и геномные белки представлены единичными молекулами, то капсидные бел­ки представлены множественными молекулами. Эти белки и формируют капсидную оболочку, в которую у сложно организованных вирусов вставлены молекулы белков с дру­гими функциями.

Основным принципом строения капсидной оболочки вирусов является принцип субьединичности, т. е. построе­ние капсидной оболочки из субъединиц-капсомеров, обра­зованных идентичными полипептидными цепями. Пра­вильно построенные белковые субъединицы — капсомеры возникают благодаря способности вирусных капсидных белков к самосборке. Самосборка объясняется тем, что упорядоченная структура — капсид имеет наименьшую свободную энергию по сравнению с неупорядоченными белковыми молекулами. Сборка капсидной оболочки из субъединиц запрограммирована в первичной структуре белка и происходит самопроизвольно или при взаимо­действии с нуклеиновой кислотой.

Суперкапсидные белки. Гликопротеиды. Суперкапсидные белки, или пепломеры, располагаются в липопротеидной оболочке (суперкапсиде или пеплосе) сложно устроенных вирусов. Они либо пронизывают насквозь липидный бислой как, например, гликопротеиды альфа-вирусов (вируса леса Семлики), либо не доходят до внутренней поверхности. Эти белки являются типичны­ми внутримембранными белками и имеют много общего с клеточными мембранными белками. Как и последние, суперкапсидные белки обычно гликозилированы. Углевод­ные цепочки прикреплены к молекуле полипептида в опре­деленных участках. Гликозилирование осуществляют кле­точные ферменты, поэтому один и тот же вирус, проду­цируемый разными видами клеток, может иметь разные углеводные остатки: может варьировать как состав угле­водов, так и длина углеводной цепочки и место прикреп­ления ее к полипептидному остову[18].

У большинства вирусов гликопротеиды формируют «шипы» на поверхности вирусной частицы, длина которых достигает 7—10 им. Шипы представляют собой морфоло­гические субъединицы, построенные из нескольких моле­кул одного и того же белка. Вирусы гриппа имеют два типа шипов, построенных соответственно из гемагглютинина и нейраминидазы. Парамиксовирусы также имеют два типа шипов, построенных соответственно из двух гликопротеидов (НИ и Р), рабдовирусы имеют только один гликопротеид и, соответственно, один тип шипов, а альфа-вирусы имеют два или три гликопротеида, формирующих один тип шипов.

Гликопротеиды являются амфипатическими молекула­ми: они состоят из наружной, гидрофильной части, кото­рая содержит на конце аминогруппу ДО -конец), и погру­женной в липидный бислой, гидрофобной части, которая содержит на погруженном конце гидроксильную группу (С-конец). С-концом полипетид «заякоривается» в липид ном бислое. Есть, однако, и исключения из этого общего положения: нейраминидаза вируса гриппа взаимодействует с липидным бислоем не С-, а N-концом.

Основной функцией гликопротеидов является взаимо­действие со специфическими рецепторами клеточной поверхности. Благодаря этим белкам осуществляется рас­познавание специфических клеточных рецепторов и прик­репление к ним вирусной частицы, т. е. адсорбция вируса на клетке. Поэтому гликопротеиды, выполняющие эту функцию, называют вирусными прикрепительными белка­ми.

Другой функцией гликопротеидов является участие в слиянии вирусной и клеточной мембран, т. е. в событии, ведущем к проникновению вирусных частиц в клетку. Ви­русные белки слияния ответственны за такие процессы, как гемолиз и слияние плазматических мембран соседних кле­ток, приводящие к образованию гигантских клеток, синци-тиев и симпластов.

«Адресная   функция»   вирусных   белков. Вирусы вызывают инфекционный процесс у относительно небольшого круга хозяев. Вирус должен «узнать» чувст­вительную клетку, которая сможет обеспечить продукцию полноценного вирусного потомства. Если бы вирус прони­кал в любую клетку, которая встретилась на его пути, это привело бы к исчезновению вирусов в результате деструк­ции "«родительской» вирусной частицы и отсутствия вирус­ного потомства. В процессе эволюции у вирусов выраба­тывалась так называемая адресная функция, т. е. поиск чувствительного хозяина среди бесконечного числа нечув­ствительных клеток. Эта функция реализуется путем на­личия специальных белков на поверхности вирусной ча­стицы,  которые узнают специфический рецептор на по­верхности чувствительной клетки.

Неструктурные белки. Неструктурные белки изучены гораздо хуже, чем структурные, поскольку их выделяют не из очищенных препаратов вирусов, а из зараженных клеток, и возникают трудности в их идентификации и очи­стке от клеточных белков.

К неструктурным белкам относятся:

1)    предшественники вирусных белков, которые отлича­ются от других неструктурных белков нестабильностью в зараженной клетке в результате быстрого нарезания на структурные белки;

2)   ферменты синтеза РНК и ДНК (РНК- и ДНК-26 полимеразы), обеспечивающие транскрипцию и реплика­цию вирусного генома;

3)  белки-регуляторы;

4)   ферменты,  модифицирующие вирусные  белки,  на­пример протеиназы и протеинкиназы.

Однако многие неструктурные белки при ряде вирус­ных   инфекций   еще   не   идентифицированы   и   функции их не  определены.  Типы  структурных  и  неструктурных белков просто и сложно устроенных вирусов и их функции показаны на схеме (рис.6).

Белки просто устроенных вирусов











Предшественники структурных









Капсидные









Структурные







Полимеразы









Геномные

















Ферменты, модифицирующие белки



 Неструктурные























Функции не идентифицированы







Белки сложно устроенных вирусов









Капсидные



Предшественники структурных























В составе капсида



Геномные



Полимеразы





















Структурные  





Полимеразы



Регуляторы синтеза РНК, ДНК



Неструктурные



















В составе суперкапсида



Белки слияния



Функции не идентифицированы



























Ферменты, модифицир- ующие белки































Прикрепительные











Рис. 6. Типы  структурных  и  неструктурных белков просто и сложно устроенных вирусов.


    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Британская Западная Африка
Реферат Разработка крупной станции технического обслуживания для диагностики, ремонта, технического обслуживания легковых автомобилей
Реферат физическая химия
Реферат Основные организационные и экономические проблемы библиотечного дела в России на современном этапе
Реферат Биологические, космические воздействия и их характеристики
Реферат Кейнсианская революция Д.Кейнс Общая теория занятости процента и денег
Реферат «Письмо Татьяны к Онегину» иего роль в раскрытии проблематики романа А. С. Пушкина «Евгений Онегин»
Реферат Естественнонаучное знание и его особенности
Реферат Международный стандарт бухгалтерского учета
Реферат Потребность в питательных веществах крупного рогатого скота
Реферат Влияние гидродинамического режима движения жидких потоков без и с протеканием быстрой химической реакции на внешний теплообмен
Реферат Скорость вращения галактик
Реферат Зарождение политических знаний
Реферат 3 Ulr яфвпмэ-впкьъърг' ъч
Реферат Проявление солнечной активности в геофизических параметрах