Реферат по предмету "Транспорт"


Аэродинамическая компенсация рулей (элеронов)

«Аэродинамическая компенсация рулей (элеронов)» Выполнил курсант 662 к/о Качанова Юлия Проверил преподаватель: Соболь О.Ю Кировоград 2008 Содержание: 1. Назначение элеронов; 2. Требования; 3. Конструкция элеронов; 4. Аэродинамическая компенсация ; 5. Триммер; 6. Особенности эксплуатации; Литература.


1.Элероны - подвижные части крыла, расположенные у задней кромки крыла на его концах и отклоняемые одновременно в противоположные стороны. Отклонение одного элерона вверх, а другого вниз приводит к созданию поперечного момента, вызывающего крен самолета. 2. Требования к элеронам, кроме общих для всех агрегатов самолета требований, включают: - обеспечение эффективного управления на всех режимах полета ; - минимальное сопротивление в неотклоненом положении ; - минимальный


момент рыскания при крене, при этом разворот самолета должен происходить всторону крена ; - малые шарнирные моменты ; - полная весовая балансировка при наименьшей массе балансировочных грузов ; - исключение возможности заклинивания при деформациях крыла в полете; - простото монтажа и демонтажа элерона на крыле при обеспечении взаимозаменяемости. Удовлетворение основного требования (эффективность на всех режимах полета) достигается: исключением заклинивания элеронов при изгибе крыла в полете; весовой балансировкой элеронов; уменьшением


шарнирных моментов; уменьшением дополнительных сопротивлений в отклоненном и убранном положениях; уменьшением момента рыскания при отклонении элеронов и др. Эффективность элеронов зависит от относительных размеров хорды элеронов , относительного размаха элеронов и углов отклонения элерона . Значения этих параметров находятся в пределах ; ; отклонения элеронов вверх 25°, вниз 15 25°. При отклонении элерона вниз увеличивается угол атаки крыла, что при полете на больших углах атаки может


привести к срыву потока с данной половины крыла и к обратной управляемости. Поэтому углы отклонения элерона вниз ограничивают (делают отклонение элеронов вверх больше, чем вниз, т. е. дифференциальным). Большего отклонения элеронов вверх требуют и большая, как правило, кривизна верхней поверхности крыла и возникающая разность в сопротивлении крыльев при одинаковом отклонении элеронов вверх и вниз, приводящая к появлению разворачивающего момента


Му нежелаемого знака (к скольжению самолета вместо разворота). С увеличением площади крыла, занятой механизацией, а также с появлением интерцепторов размеры элеронов стали уменьшаться. Так, относительная площадь элеронов умень¬шается с 8 9 до 3 4 %, а значение — с 0,4 до 0,2. Стремление улучшить ВПХ на легких маневренных самолетах приводит к появлению «зависающих элеронов» с профилированной щелью перед эле¬роном — флайперонов, работающих как в элеронном режиме, так и в режиме


закрылков. Для уменьшения вероятности возникновения обратной управляе¬мости по крену — реверса элеронов — стали применять внешние и внутренние элероны (см. рис. 1) и интерцепторы. Причем внешние элероны применяют только на взлетно-посадочных режимах — на небольших скоростях полета, а внутренние, расположенные в более жесткой части крыла, используются в течение всего полета. Интерцепторы из-за эффекта запаздыва¬ния в изменении подъемной силы при их отклонении (срыв


потока наступает не сразу) используются совместно с элеронами, чтобы повысить эффективность поперечного управления. Однако стремление механизировать (особенно на ма¬невренных скоростных самолетах) всю заднюю кромку крыла приводит к тому, что вместо элеронов совместно с интерцепторами используются дифференциально отклоняемые половины стабилизатора. На самолетах без ГО органы управления на крыле, используемые для обеспечения поперечной и продольной управляемости, работают


как в элерон¬ном режиме, так и в режиме рулей высоты, и называются элеронами. В этом случае их площадь и углы отклонения больше, чем у самолетов обыч¬ной схемы, так как меньше плечо от ЦМ самолета до элевонов. 3. Конструкция элеронов (рис. 1). Элероны, как и другие органы управления самолетом (рули высоты и рули направления), по внешним формам и конструкции (по силовым элементам, образующим силовую схему, их назначению, конструкции и работе


при передаче нагрузок) аналогичны крылу. Как и конструкция крыла, конструкция элерона состоит из каркаса и обшивки. Каркас состоит из лонжерона, стрингеров, нервюр, диафрагм, усиливающих вырезы в носке элерона (рис. 1, а) под узлы крепления и приводы управления, устанавливаемые на лонжероне. Для уменьшения деформаций элерона увеличивают число его опор (как минимум до трех). Однако при изгибе крыла и элерона из-за разных их жесткостей на изгиб и нагрузок возникают силы, направленные


вдоль узлов навески элерона. Чтобы не было заклинива¬ния элеронов, среди узлов навески должны быть один - два узла, допускающих перемещение элерона вдоль размаха относительно узлов на крыле. Это узлы с двумя степенями свободы: либо кардан 17 (рис.1, г), либо торцевые узлы типа консольный болт 11 (рис. 1, б), ось которых совпадает с осью вращения элерона 4 (см. рис. 1, а) и вдоль оси которых элерон может свободно перемещаться.


В то же время хотя бы одна из опор элерона должна быть неподвижной вдоль оси вращения элерона и фиксировать его положение относительно крыла (рис. 1, в). В самих узлах навески элерона должны устанавливаться подшипники, обеспечивающие свободное отклонение элеронов. Рис. 1. Конструкция элеронов и узлов их навески На рис. 1 показана конструкция элеронов 9, состоящих из двух однотипных секций, соединенных серьгами.


Они навешиваются на кронштейны 1, 3, установленные на стыках хвостовых частей усиленных нервюр 5 крыла, заднего лонжерона крыла 6 и балки 2 хвостовой части крыла. Здесь восемь опор 1, 3 на крыле и столько же узлов навески (3' и 1') на элеронах. В качестве торцевых опор для обеих секций элеронов применены опоры 1 и 1' типа консольный болт (см. рис. 1, б). Одна из опор такого типа (средняя) является общей для обеих секций.


На рис. 1, б справа — элерон 9, на торцевой нервюре которого установлен кронштейн с гнездом и сферическим подшипником узла 1' под консольный болт 11. Слева на этом же рисунке показан кронштейн 10 на усиленной нервюре 5 крыла, в гнезде которого (узел 1) закреплен консольный болт 11. Три близко расположенных кронштейна 3 на крыле и три средних узла навес¬ки 3' на элероне имеют только одну степень свободы и фиксируют положе¬ние элерона относительно крыла.


Эти узлы на элероне (рис. 1, в) выполнены в виде кронштейнов 14 с двумя проушинами, закрепленных на лонжероне эле¬рона 15. Верхними проушинами 13 элерон с помощью промежуточных серег 12 навешивается на кронштейны 3 крыла, а к нижним проушинам крепятся приводы 16 управления элеронами. На двух усиленных нервюрах, повышаю¬щих жесткость на кручение элерона, впереди его носка установлен сосредото¬ченный балансировочный груз 7 (см. рис. 4.12, а), обеспечивающий 100-про¬центную весовую балансировку


элерона (совпадение его ЦМ с осью вращения). Это необходимо для предотвращения изгибно-элеронного флаттера .Высокая жесткость на кручение небольшого по размаху элерона с большим числом (восемь) опор (см. рис. 1.) уменьшает его деформации, в том числе и закручивание. Последнее уменьшает опасность возникнове¬ния флаттера. Рис. 2. Аэродинамическая компенсация Задача весовой балансировки элерона (как и других рулей на самолете)


часто решается расположением в его носке распределенного по размаху груза (металлического прутка 18, рис. 1, д). Это в весовом отношении хуже из-за меньшего (чем в рассмотренном выше случае) плеча от оси вращения до груза. Но при этом обеспечивается не только статическая балансировка, а и динамическая — отсутствует закручи¬вание элерона от инерционных сил ба¬лансира и дополнительное сопротивле¬ние при его отклонении. Весовой балан¬сировки элерона можно достичь частич¬но за счет облегчения хвостовой части


элерона применением сотового заполни¬теля (рис. 1, е). В этом случае кроме повышения жесткости элерона можно еще получить и экономию в массе элеро¬на при его весовой балансировке. 4. Аэродинамическая компенса¬ция применяется для уменьшения шарнирных моментов в системе управления элеронами (рулями) Мш = Th = Уэла (рис. 2). На современных самолетах получили распространение осевая ком¬пенсация (рис.


2 а), внутренняя компенсация с мягкой диафрагмой (рис. 2, 6) и сервокомпенсация (рис. 3, в). П р и осевой компенсации уменьшают плечо а силы Yэл, относя ось вращения элерона назад к ЦД. Считается нормальным, если впереди оси вращения будет 25 30 % площади элерона ( , рис. 2, а). Осевая компенсация элеронов, показанных на рис. 1, составляет 31 % (смещена назад по хорде ось вращения 4 элерона (см. рис.


1, а) и кронштейны 14 узлов навески элеронов (см. рис. 1, в)). Внутренняя компенсация с мягкой диафрагмой разделяет полость между носком элерона и крылом на полости с повышенным Давлением— А и пониженным — Б, что создает дополнительный момент — (см. рис. 2, б), уменьшающий значение Mш. Это позволяет при том же значении уменьшить усилие


T в системе управления и на командных рычагах управления. Сервокомпенсация осуществляется за счет различных видов серво¬компенсаторов. Сервокомпенсатор — часть поверхности элерона (руля) у зад¬ней кромки, кинематически связанная с крылом (стабилизатором, килем) тягой 13 (рис. 4.14, в) таким образом, что при отклонении элерона (руля) 5 она откло¬няется в противоположную сторону, уменьшая шарнирный момент


Мш- Сравните рис. 2, а и 3, в. Величина Мш зависит как от угла отклонения элерона б, так и от скоростного напора q. При малых значениях б и особенно q сервокомпенсация не нужна, так как значение Мш и усилия на командных рычагах и без того малые. С увели¬чением же значений Мш сервокомпенсация становится нужной и тем в большей степени, чем больше значения q и б. Включение упругого элемента (пружины), имеющего предварительную затяжку, в систему управления


элерон — сервоком¬пенсатор (рис. 4.14, г) позволяет повысить «чувствительность» системы управления к q и б. При малых усилиях на рычагах управления (малы значения q и б) система элерон — сервокомпенсатор работает как единое целое (усилия на пружину 10 (см. рис. 3, г) меньше, чем усилия ее предварительной затяжки). С ростом значений q и б возрастают усилия в системе управления (в том числе, и в тяге 11).


Когда усилия на пружину станут больше, чем усилия ее предварительной затяжки, двухплечный рычаг 12 провернется и через тягу 13 отклонит сервокомпенсатор 9 в сторону, противоположную отклонению элерона 5, уменьшая значения Мш. Такой ком¬пенсатор называется пружинным сервокомпенсатором. Применяется он обычно вместе с другими видами компенсации (например, с осевой компенсацией). Недостатком такой компенсации является уменьшение эффективности элерона, так как направление усилий


Yэл и Yск противоположно (см. рис. 4.14, в). Кроме того, сервокомпенсатор может послужить причиной возникновения опас¬ных вибраций (особенно при недостаточной затяжке пружин 10 и плохой регулировке длины тяги 13). Конструкция сервокомпенсатора подобна конст¬рукции триммера, назначение и конструкция которого будут рассмотрены ниже. 5. Триммер 1 (см. рис. 2, в и рис. 3, а)— вспомогательная рулевая поверхность, расположенная в хвостовой части элерона (руля) 5 и предназна¬ченная


для уменьшения (снятия) усилий на рычагах управления самолетом при изменении режима полета. Сила на триммере Yт, подобно тому, как и сила Yск, создает момент Mт=Yтb относительно оси вращения руля, уменьшающий шарнирный момент Mш = Th. Это приводит к уменьшению потребных усилий T в системе управления и, в конечном счете, к уменьшению усилий на командных рычагах управления.


Эти усилия могут быть снижены вплоть до нуля при Мт=Уэла (см. рис. 3, а). Конструкция триммера показана на рис. 4.14, б. Она типична для рулевой поверхности, в том числе и для сервокомпенсатора, и состоит из каркаса и обшивки. Каркас — из лонжеронов 3, нервюр 2, диафрагм 4, узлов навески 6, кронштейна с проушиной 8 для тяги управления 7. Для легких маневренных самолетов конструкция триммера может быть выполнена из маг¬ниевого


литья в виде двух склепанных половин, разрезанных по хорде. Внутри для облегчения удален ненужный (по условиям обеспечения прочности) материал. Управление обычно электромеханическое из кабины пилота, сам электромеханизм управления (ЭМУ) можно располагать в носке руля, умень¬шая тем самым затраты массы на весовую балансировку руля. Рис. 3. Триммер. Конструкция триммера и узлов его навески и управления.


Конструкция сервокомпенсаторов 6. Нагружается элерон (руль), как и другие подвижные части крыла (оперения), аэродинамическими силами и реакциями опор. Расчетная нагрузка элерона (руля) пропорциональна его площади S, и скоростному напору q. По размаху элерона (руля) эта нагрузка распределяется пропорционально хордам, по хорде — по закону трапеции. Для элерона , а распределенная нагрузка . Здесь К — коэффициент, задаваемый нормами прочности; / — коэффициент безопасности.


На рис. 4.15, а показаны реакции в опорах: — от воздушной нагрузки и — от сил в тягах привода управления. Определить эти реакции для многоопорной балки — элерона можно, используя метод сил или уравнение трех моментов На рис. 4, а показана схема сил, а на рис. 5, б — эпюры Q, M и Мк для секций элерона, конструкция которого рассматривалась выше (см. рис. 4.12). Из сказанного следует, что элерон как многопролетная балка от воздуш¬ной нагрузки и реакций


на опорах Rqi работает на изгиб в плоскости, перпендикулярной плоскости хорд элерона, а в плоскости хорд — от реакций Rтi. Ha кручение элерон работает как балка, защемленная в плоскости тяг приводов управления. Скачки в эпюре Мк, равные Rixi, вызваны несовпа¬дением оси жесткости (ОЖ) с осью вращения. Такой характер нагружения и работы элерона типичен для многоопорных конструкций элеронов. Имея эпюры Q, M и Мк, можно подобрать сечения силовых элементов элерона.


Расположение на близком расстоянии узлов навески 3 (см. рис. 4.12) с тягами приводов управления и сосредоточенного выносного груза поз¬воляет рациональнее использовать материал в этой зоне, требующей большой жесткости на кручение. Силы Rqi и Rтi будут нагружать уси¬ленные нервюры крыла и раздаваться ими на стенки лонжеронов и обшивку. Рис. 4. Нагрузки на элерон и эпюры Q, M и Мк Литература :


1. Конструкция самолетов, Г.И.Житомирский – Москва «Машиностроение» 1991 г. – с.144. 2. Конструкция самолетов, О.А.Гребеньков – Москва «Машиностроение» 1984 г. – с.87.



Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.