Реферат по предмету "Транспорт"


Транспортные задачи

--PAGE_BREAK--
2     
Методы составления начального опорного плана

Как и в общем случае, решение транспортной задачи начинается с отыскания первого опорного плана (исходного базиса). Мы рас­смотрим два наиболее распространенных метода построения такого базиса. Суть обоих этих методов состоит в том, что базисный план составляется последова­тельно, в несколько шагов (точнее, m
+
n
-1шагов). На каждом из этих шагов заполняется одна клетка, притом так, что, либо пол­ностью удовлетворяется один из заказчиков (тот, в столбце кото­рого находится заполняемая клетка), либо полностью вывозится весь запас груза с одной из баз (с той, в строке которой находится заполняемая клетка).

В первом случае мы можем исключить столбец, содержащий заполненную на этом шаге клетку, и считать, что задача свелась к заполнению таблицы с числом столбцов, на единицу меньшим, чем было перед этим шагом, но с тем же количеством строк и с соот­ветственно измененным запасом груза на одной из баз (на той базе, которой был удовлетворен заказчик на данном шаге).

Во втором случае исключается строка, содержащая заполняемую клетку, и счи­тается, что таблица сузилась на одну строку при неизменном количестве столбцов и при соответствующем изменении потреб­ности заказчика, в столбце которого находится заполняемая клетка.

Начиная с первоначально данной таблицы и повторив m
+
n
-2раз описанный шаг, мы придем к “таблице”, состоящей из одной строки и одного столбца (иначе говоря, из одной пустой клетки). Другими словами, мы пришли к задаче с одной базой и с одним потребителем, причем потребности этого единственного заказчика равны запасу груза на этой единственной базе. Заполнив последнюю клетку, мы освобождаем последнюю базу и удовлетворяем потреб­ность последнего заказчика. В результате, совершив  m
+
n
-1шагов, мы и получим искомый опорный план.

Замечание. Может случиться, что уже на некотором (но не на последнем!) шаге потребность очередного заказчика окажется рав­ной запасу груза на очередной базе. Тогда после заполнения оче­редной клетки объем таблицы как бы одновременно уменьшается на одни столбец и на одну строку. Но и при этом мы должны считать, что уменьшение объема таблицы происходит либо на один столбец, а на базе сохраняется “остаток” равный нулю, либо на одну строку, а у заказчика еще осталась неудовлетворенная “потребность” в количестве нуля единиц груза, которая и удовле­творяется на одном из следующих шагов. Этот нуль (“запас” или “потребностью” – безразлично) надо записать в очередную заполняе­мую клетку на одном из последующих шагов. Так как при этом оказывается равной нулю одна из базисных неизвестных, то мы имеем дело с вырожденным случаем. Различие методов отыскания первого опорного плана состоит в различии способов набора заполняемой клетки.


3 Методы решения транспортной задачи

3.1 Диагональный метод, или метод северо-западного угла

При этом методе на каждом шаге построения первого опорного плана заполняется левая верхняя клетка (северо-западный угол) остав­шейся части таблицы. При таком методе заполнение таблицы начи­нается с клетки неизвестного x
11и заканчивается в клетке неизвест­ного x
mn, т. е. идет как бы по диагонали таблицы перевозок.

Пример.



Заполнение таблицы начинается с ее северо-западного угла, т. е. клетки с неизвестным x
11. Первая база A
1может полностью удовле­творить потребность первого заказчика B
1(a
1
=300,
b
1
=170,
a
1
>
b
1
). Полагая x
11
=170, вписываем это значение в клетку x
11и исключаем из рассмотрения первый столбец. На базе A
1остается измененный запас a
’=130. В оставшейся новой таблице с тремя строками A
1
,
A
2
,
A
3и четырьмя столбцами B
2
,
B
3
,
B
4
,
B
5; северо-западным углом будет клетка для неизвестного x12. Первая база с запасом a

1
=130 может полностью удовлетворить потребность второго заказчика B
2(a

1
=130,
b
2
=110,
a

1
>
b
2
). Полагаем x
12
=110, вписываем это значе­ние в клетку x
12и исключаем из рассмотрения второй столбец. На базе A
1остается новый остаток (запас) a
’’
1
=20. В оставшейся новой таблице с тремя строками A
1
,
A
2
,
A
3и тремя столбцами B
3
,
B
4
,
B
5северо-западным углом будет клетка для неизвестного x
13. Теперь третий заказчик B
3может принять весь запас с базы A1(a
’’
1
=20,
b
3
=100,
a
’’
1

b
3
). Полагаем x
13=20, вписываем это значение в клетку x
13
и исключаем из рассмотрения первую строку. У заказ­чика из B
3осталась еще не удовлетворенной потребность b

3
=80.

Теперь переходим к заполнению клетки для неизвестного x
23и т.д.

Через шесть шагов у нас останется одна база A
3с запасом груза (остатком от предыдущего шага) a

3
=200и один пункт B
5с потреб­ностью b
5
=200. Соответственно этому имеется одна свободная клетка, которую и заполняем, положив x
35
=200. План составлен. Базис образован неизвестными x
11
,
x
12
,
x
13
,
x
23
,
x
24
,
x
34
,
x
35. Правиль­ность составленного плана легко проверить, подсчитав суммы чисел, стоящих в заполненных клетках по строкам и столбцам.

Общий объем перевозок в тонно-километрах для этого плана составит



3.2  Метод наименьшей стоимости

При этом методе на каждом шаге построения опорного плана первою заполняется та клетка оставшейся части таблицы, которая имеет наименьший тариф. Если такая клетка не единственная, то заполняется любая из них.

Пример.



В данном случае заполнение таблицы начинается с клетки для неизвест­ного x
32, для которого мы имеем значение c
32
=10, наименьше из всех значений c
ij. Эта клетка находится на пересечении третьей строки и второго столбца, соответствующим третьей базе A
3и вто­рому заказчику B
2. Третья база A
3может полностью удовлетворить потребность второго заказчика B
2(a
3
=250,
b
2
=110,
a
3
>
b
2
). Пола­гая x
32
=110, вписываем это значение в клетку x
32и исключаем из рассмотрения второй столбец. На базе A
3остается изменённый запас a

3
=140. В оставшейся новой таблице с тремя строками A
1
,
A
2
,
A
3и четырьмя столбцами B
1
,
B
3
,
B
4
,
B
5клеткой с наименьшим значе­нием c
ijклетка, где c
34
=11. Заполняем описанным выше способом эту клетку и аналогично заполняем следующие клетки. В резуль­тате оказываются заполненными (в приведенной последовательности) следующие клетки:

.

На пятом шаге клеток с наименьшими значениями c
ijоказалось две (c
11
=
c
15
=70). Мы заполнили клетку для x
15, положив x
15
=180. Можно было выбрать для заполнения другую клетку, положив x
11
=170, что приведет в результате к другому опорному плану. Общий объем перевозок в тонно-километрах для этого плана составит

.

Замечание. В диагональном методе не учитываются величины тарифов, в методе же наименьшей стоимости эти величины учитываются, и часто последний метод приводит к плану с меньшими общими затратами (что и имеет место в нашем примере), хотя это и не обязательно.

Кроме рассмотренных выше способов иногда используется, так называемый, метод Фогеля. Суть его состоит в следующем: В распределительной таблице по строкам и столбцам определяется разность между двумя наименьшими тарифами. Отмечается наибольшая разность. Далее в строке (столбце) с наибольшей разностью заполняется клетка с наименьшим тарифом. Строки (столбцы) с нулевым остатком груза в дальнейшем в расчет не принимаются. На каждом этапе загружается только одна клетка. Распределение груза производится, как и ранее.

3.3 Метод потенциалов

Для перехода от одного базиса к другому при решении транспортной задачи используются так называемые циклы.

Циклом пересчета или короче, циклом в таблице перевозок называется последовательность неизвестных, удовлетворяющая следующим условиям:

Одно из неизвестных последовательности свободное, а все остальные – базисные.

Каждые два соседних в последовательности неизвестных лежат либо в одном столбце, либо в одной строке.

Три последовательных неизвестных не могут находиться в одном столбце или в одной строке.

Если, начиная с какого-либо неизвестного, мы будем последовательно переходить от одного к следующему за нимнеизвестному то, через несколько шагов мы вернемся к исходному неизвестному.

Второе условие означает, что у двух соседних неизвестных в цикле либо первые, либо вторые индексы одинаковы.

Если каждые два соседних неизвестных цикла соединить отрезком прямой, то будет получено геометрическое изображение цикла – замкнутая ломаная из чередующихся горизонтальных и вертикальных звеньев, одна из вершин которой находится в свободной клетке, а остальные — в базисных клетках.

Можно доказать, что для любой свободной клетки таблицы перевозок существует один и только один цикл, содержащий свободное неизвестное из этой клетки, и что число вершин в цикле всегда четно.

Так, например, в таблице перевозок, составленной по диагональному методу при решения задачи из предыдущего пункта, неизвестному x
21соответствует цикл x
21
,
x
23
,
x
13
,
x
11
,
x
21и т.д.

Пусть теперь мы имеем некоторую свободную клетку с соответствующим ей циклом. Если мы изменим значение свободного неизвестного, увеличив его на некоторое число , то, переходя последовательно от одной вершины цикла к другой, мы должны будем в силу неизменности сумм по строкам и по столбцам поочередно уменьшать и увеличивать значения неизвестных в цикле на то же число. Например, в указанном выше цикле для свободного неизвестного  получим:

старые значения: x
21
=0,
x
32
=80,
x
13
=20,
x
11
=170,
x
21
=0;

новые значения: x’21=
x
,
x

32
=80-
x
,
x

13
=20+
x
,
x

11
=170-
x
,
x

21
=
x

Очевидно, если снабдить вершины цикла поочередно знаками “+” и “–“, приписав вершине в свободной клетке знак “+”, то можно сказать, что в вершинах со знаком “+” число  прибавляется к прежнему значению неизвестного, находящегося в этой вершине, а в вершинах со знаком “–“ это число  вычитается из прежнего значения неизвестного, находящегося в этой вершине.

Замечание. Так как число вершин в цикле всегда четно, то, возвращаясь в свободную клетку, мы должны будем приписать ей знак “+”, т. е. тот знак, который ей уже приписан при выходе из нее. Это очень существенное обстоятельство, так как иначе мы пришли бы к противоречию. Безразлично также, в каком направлении обходится цикл при “означивании” вершин.

Если в качестве  выбрать наименьшее из чисел, стоящих в вершинах, снабженных знаком “–“, то, по крайней мере, одно из прежних базисных неизвестных примет значение нуль, и мы можем перевести его в число свободных неизвестных, сделав вместо него базисным то неизвестное, которое было свободным.

Так, например, в рассмотренном выше цикле имеем отрицательные вершины x
23и x
11; следовательно, выбрав x
=
min
(80;170)=80, мы получаем:

старые значения: x
21
=0,
x
32
=80,
x
13
=20,
x
11
=170,
x
21
=0;

новые значения: x

21
=80,
x

32=
,
x

13
=100,
x

11
=90,
x

21
=80

т. е. вместо прежнего базисного решения получаем новое базисное решение:




Выбор в качестве Xминимального среди чисел, стоящих в отрицательных вершинах цикла, обеспечивает допустимость нового базиса.

Если минимальное значение среди базисных неизвестных, стоящих в отрицательных вершинах цикла, принимается не в одной отрицательной вершине, то свободной оставляют только одну из них, а в других клетках с тем же минимальным значением пишут нули. В этом случае новое базисное решение будет вырожденным.

Может случиться, что и само минимальное значение среди чисел в отрицательных клетках равно нулю. Тогда преобразование таб­лицы перевозок сведется к перестановке этого нуля в свободную клетку. Значения всех неизвестных при этом остаются неизменными, но решения считаются различными, так как различны базисы. Оба решения вырождены.

Описанное выше преобразование таблицы перевозок, в результате которого преобразуется базис, называется пересчетом по циклу.

Заметим, что неизвестные, не входящие в цикл, этим преобразованием не затрагиваются, их значения остаютсянеизменными и каж­дое из них остается либо в группе базисных, либо в группе свобод­ных неизвестных, как и до пересчета.

Выясним теперь, как пересчет по циклу влияет на общий объем затрат на перевозки и при каком условии эти затраты становятся меньше.

Пусть x
pq– некоторое свободное неизвестное, для которого мы построили цикл и осуществили пересчет по циклу с некоторым числом x. Если вершине цикла, находящейся в i-й строке и j-м столбце таблицы перевозок, приписан знак “+”, то значение неизвестного x
ij, находящегося в этой вершине, увеличивается на x, что в свою очередь вызывает увеличение затрат на c
ij
x. где c
ij– тариф, соответствующий этой клетке; если же указанной вершине приписан знак “–”, то значение неизвестного x
ijуменьшается на x, что вызывает уменьшение затрат на c
ij
x.

Сложим тарифы, соответствующие положительным вершинам цикла, и вычтем из этой суммы сумму тарифов, соответствующих отрицательным вершинам цикла; полученную разность S
pqназовем алгебраической суммой тарифов для данного свободного неизвестного x
pq. Подсчет алгебраической суммы тарифов можно истолковать и так: припишем тарифам те же знаки, которые приписаны соответствующим вершинам цикла, тогда алгебраическая сумма тарифов равна сумме таких тарифов со знаком (“относительных тарифов”).

Теперь, очевидно, мы можем, заключить, что в целом при пере­счете но циклу, соответствующему свободному неизвестному x
pqобщий объем затрат на перевозки изменится на произведение алгеб­раической суммы тарифов на x, т. е. на величину S
pq
x. Следовательно, если алгебраическая сумма тарифов для некоторого свобод­ного неизвестного x
pqотрицательна (S
pq
, то пересчет по циклу, соответствующему этому неизвестному, приводит к уменьшению общей суммы затрат на реализацию плана перевозок. Если же алгебраическая сумма тарифов положительна (S
pq
>0), то пересчет по соответствующему циклу приведет к увеличению общей суммы затрат. И, наконец, если алгебраическая сумма тарифов равна нулю (S
pq
=0), то пересчет по соответствующему циклу не изменит общую сумму затрат (два различных базисных плана требуют одинаковых затрат на их реализацию).

Так, например, для цикла x
21
,
x
23
,
x
13
,
x
11
,
x
21в рассмотренной задаче алгебраическая сумма тарифов

.

Значит, пересчет по этому циклу снижает расходы. И действитель­но, осуществив такой пересчет, мы получаем план, по которому объем перевозок в тонно-километрах составляет



тогда как по исходному плану он составил . Имеем снижение объема перевозок на 1200 тонно-километров, что и следовало ожидать, так как алгебраическая сумма тарифов в дан­номслучае равна –15, а пересчет по циклу осуществляется с помощью числа x=80 (изменение затрат -15Ч80=-1200).

Вычисление алгебраической суммы тарифов для каждого из сво­бодных неизвестных можно производить без построения соответ­ствующего цикла, пользуясь, так называемыми, потенциалами. При­пишем каждой базе A
i, некоторое число u
iи каждому потребителю B
jнекоторое число v
j:

,

так что

,                                               (4.1)

где c
ij– тарифы, соответствующие клеткам, заполненным базис­ными неизвестными. Эти числа u
iи v
jназываются потенциалами соответствующих баз и потребителей.

Зная потенциалы, легко вычислить алгебраическую сумму тари­фов. Действительно, если в алгебраической сумме тарифов по циклу, соответствующему свободному неизвестному x
pq, заменить тарифы базисных клеток их выражениями через потенциалы по формулам (4.1), то, в силу чередования знаков при вершинах цикла, все потенциалы, кроме u
pи v
qсократятся, и мы получим:

.

Так, например, для цикла x
21
,
x
23
,
x
13
,
x
11
,
x
21в рассмотренной выше задаче имеем

.

Для базисных клеток сумма потенциалов строки и столбца, в которых находится эта клетка, равна тарифу, соответствующему этой клетке; если же клетка для неизвестного x
pqсвободная, то сумму потенциалов

                                                           (4.2)

называют косвенным тарифом этой клетки. Следовательно, алгеб­раическая сумма тарифов для свободной клетки x
pqравна разности ее настоящего (“истинного”) и косвенного тарифов:

                                                             (4.3)

Из (4.3) следует, что если косвенный тариф для данной свобод­ной клетки больше её истинного тарифа, то алгебраическая сумма тарифов по циклу, соответствующему этой клетке, будет отрица­тельна; если же косвенный тариф меньше истинного, то алгебраи­ческая сумма тарифов положительна, и, наконец, если косвенный тариф равен истинному, то алгебраическая сумма тарифов равна нулю.

Потенциалы можно найти из системы равенств (4.1), рассматри­вая их как систему m
+
n
-1уравнений с m+nнеизвестными. Так как неизвестных здесь на единицу больше, чем уравнений, то, по крайней мере, один из потенциалов мы можем выбрать произвольно, положив, например, u
1
=0; тогда остальные потенциалы легко опре­деляются из уравнений (4.1).

Например, для плана, полученного по диагональному методу в рассмотренной выше задаче, имеем



Система содержит семь уравнений с восемью неизвестными. Выбирая произвольно значение c
j
1, находим последовательно из пер­вых трех уравнений значения v
1
=70-
u
1, v
2
=50-
u
1, v
3
=15-
u
1, затем из четвертого уравнения – u
2
=40-
v
3, из пятого уравнения – v
4
=60-
u
2, из шестого уравнения u
3
=11-
v
4и, наконец, из седь­мого уравнения – v
5
=25-
u
3.

Положив, например, u
1
=0, получаем значения потенциалов:

 

Найдем теперь косвенные тарифы для свободных клеток и сравним их с истинными тарифами:



Для клеток с неизвестными  и  косвенные тарифы больше истинных. Следовательно, для них мы будем иметь отрицательные алгебраические суммы тарифов:



Значение S
21
=-15мы уже имели раньше, вычисляя алгебраиче­скую сумму тарифов для этой клетки непосредственно по циклу.

Замечание 1. Подсчитывая косвенные тарифы как суммы соответ­ствующих потенциалов, полезно не пропускать и клетки с базисны­ми неизвестными (заполненные клетки). Для этих клеток сумма потенциалов равна истинному тарифу; последнее может служить проверкой правильности найденных значении потенциалов.

Замечание 2. Можно показать, что если сумму всех затрат по данному плану перевозок выразить через свободные неизвестные [для этого надо исключить базисные неизвестные из выражения для S, см. формулу (2.4)], то коэффициент при каждом из таких неизвестных будет равен алгебраической сумме тарифов по циклу, соответствующему ей в таблице перевозок. Это еще раз подтверждает, что пересчет по циклам является специфической формой применения симплекс-метода к решению транспортной задачи.

Критерий оптимальности базисного решения транспортной задачи. Методы отыскания оптимального решения.

Из сказанного в предыдущем пункте вытекает следующий кри­терий оптимальности базисного решения транспортной задачи: если для некоторого базисного плана перевозок алгебраические суммы тарифов по циклам для всех свободных клеток неотрицательны, то этот план оптимальный.

Отсюда вытекает способ отыскания оптимального решения транспортной задачи, состоящий в том, что, имея некоторое базис­ное решение, вычисляют алгебраические суммы тарифов для всех свободных клеток. Если критерий оптимальности выполнен, то дан­ное решение является оптимальным; если же имеются клетки с отрицательными алгебраическими суммами тарифов, то переходят к новому базису, производя пересчет по циклу, соответствующему одной из таких клеток. Полученное таким образом новое базисное решение будет лучше исходного – затраты на его реализацию будут меньшими. Для нового решения также проверяют выполнимость критерия оптимальности и в случае необходимости снова совершаютпересчет по циклу для одной из клеток с отрицательной алгебраиче­ской суммой тарифов и т. д.

Через конечное число шагов приходят к искомому оптимальному базисному решению.

В случае если алгебраические суммы тарифов для всех свобод­ных клеток положительны, мы имеем единственное оптимальное решение; если же алгебраические суммы тарифов для всех свобод­ных клеток неотрицательны, но среди них имеются алгебраические суммы тарифов, равные нулю, то оптимальное решение не единствен­ное: при пересчете по циклу для клетки с нулевой алгебраической суммой тарифов мы получим оптимальное же решение, но от­личное от исходного (затраты по обоим планам будут одина­ковыми).

В зависимости от методов подсчета алгебраических сумм тари­фов для свободных клеток различают два метода отыскания опти­мального решения транспортной задачи:

Распределительный метод. При этом методе для каждой пустой клетки строят цикл и для каждого цикла непосредственно вычисляют алгебраическую сумму тарифов.

Метод потенциалов. При этом методе предварительно находят потенциалы баз и потребителей, а затем вычисляют для каждой пустой клетки алгебраическую сумму тарифов с помощью потен­циалов.

Преимущества метода потенциалов по сравнению с распредели­тельным методом состоят в том, что отпадает необходимость построения циклов для каждой из пустых клеток и упрощается вычисление алгебраических сумм тарифов. Цикл строится только один – тот, по которому производится пересчет.

Применяя метод потенциалов, можно говорить не о знаке алгебраических сумм тарифов, а о сравнении косвенных тарифов с истинными. Требование неотрицательности алгебраических сумм тарифов заменяется условием, что косвенные тарифы не превосхо­дят истинных.

Следует иметь в виду, что потенциалы (так же как и циклы) для каждого нового базисного плана определяются заново.

Выше рассматривалась закрытая модель транспортной задачи, с правильным балансом, когда выполняется условие (1.3). В случае выполнения (1.4) (открытая модель) баланс транспортной задачи может нарушаться в 2-ух направлениях:

1. Сумма запасов в пунктах отправления превышает сумму поданных заявок (транспортная задача с избытком запасов):

 å

а
i >
å
bj (
где
i=1,...,m; j=1,...,n );

2. Сумма поданных заявок превышает наличные запасы (транспортная задача с избытком заявок): 

 å

а
i
å
bj (
где
i=1,...,m; j=1,...,n );

Рассмотрим последовательно эти два случая:

Транспортная задача с избытком запасов.

Сведем её к ранее рассмотренной транспортной задаче с правильным балансом. Для этого, сверх имеющихся n пунктов назначения В1, B2,…, Bn, введём ещё один, фиктивный, пункт назначения Bn+1, которому припишем фиктивную заявку, равную избытку запасов над заявками 

 
bn+1 =
å

а
i —
å
bj (
где
i=1,...,m; j=1,...,n ),

а стоимость перевозок из всех пунктов отправления в фиктивный пункт назначения bn+1 будем считать равной нулю. Введением фиктивного пункта назначения B n+1 с его заявкой  bn+1 мы сравняли баланс транспортной задачи, и теперь ее можно решать, как обычную транспортную задачу с правильным балансом.

    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Загальна характеристика відділу голонасінних Біологія хвойних Чергування поколінь у сосни звич
Реферат Цифровая защита фидеров контактной сети постоянного тока ЦЗАФ-3,3 кВ, эффективность использования, выбор уставок в границах Тайгинской дистанции электроснабжения
Реферат Период Патристики Аврелий Августин
Реферат Пути повышения эффективности логистических систем на промышленных предприятиях
Реферат Китай - самая многонаселенная страна мира
Реферат Правовые проблемы беженцев и вынужденных переселенцев в РФ
Реферат UNIX та Internet робота з віддаленим компютером
Реферат Основные методы функциональной диагностики ишемической болезни сердца
Реферат Появится ли в России герой нашего времени
Реферат Китай и США в сфере обеспечения информационной безопасности
Реферат Параметричний тест Гольдфельда-Квандта
Реферат Принцип разделения властей в конституции США 1787 г. (курсовая работа)
Реферат История русского искусства. Архитектура
Реферат Формування органів державної влади ЗУНР
Реферат Учет затрат и себестоимость продукции животноводства