Реферат по предмету "Разное"


Анатомия мозга

А.А. ПСЕУНОК АНАТОМИЯ МОЗГАСпецкурс МАЙКОП 2002 УДК 612.17 (4-053) ББК 57.31 П 86 Печатается по решению редакционно-издательского совета Адыгейского государственного университетаРецензенты: кандидат биологических наук, доцент Хасанова Н.Н., кандидат педагогических наук, доцент Ханжиева А.Я.Псеунок А.А. Анатомия мозга. Спецкурс. – Майкоп: Изд-во ООО «Аякс», 2002. – 112 с.В спецкурсе изложены современные представления о классификации нервной системы, структуре головного и спинного мозга. Рассматриваются вопросы организации, функционирования и взаимодействия проекционных и ассоциативных систем головного и спинного мозга. Пособие предназначено для студентов, аспирантов, преподавателей, научных работников.© А.А. Псеунок, 2002.Предисловие Настоящий спецкурс включает тематику лекций и лабораторных занятий. Он представляет собой попытку соединить компактность издания и доступность изложения материала, с одной стороны, подробность и академичность – с другой. ^ Именно поэтому автор надеется увидеть своими читателями и студентов биологических факультетов высших учебных заведений, и научных работников, и абитуриентов. В основу спецкурса легли сведения из научной литературы по теме издания, проанализированные автором в процессе подготовки данного учебно-методического пособия. Спецкурс «Анатомия мозга» может быть полезен и для других специальностей в вузах в качестве курса по выбору в соответствии с государственными стандартами высшего профессионального образования, утвержденными Министерством образования РФ. ^ 1. Клеточная теория. Строение нервной клетки.Клеточная теория – одно из общепризнанных биологических обобщений, утверждающих единство принципа строения и развития мира растений и мира животных. Клеточная теория устанавливает общий структурный элемент растительных и животных организмов – клетку. В 1665 г. английский физик Гук в своей работе «Микрография» в числе прочих случайных наблюдений описывает строение пробки, на тонких срезах которой он нашел правильно расположенные пустоты. Эти пустоты Гук назвал «порами, или клетками». Наличие подобной структуры было известно ему и в некоторых других частях растений. Итальянский медик и натуралист Мальпиги, английский натуралист Грю в 70-х гг. XVII в. описали в разных органах растений «мешочки, или пузырьки» и показали широкое распространение растений клеточного строения. Клетки изображал на своих рисунках и голландский микроскопист А. Левенгук. Однако исследователи XVII в., показавшие распространенность «клеточного строения» растений, недопонимали значение открытия факта последнего – клетки. Клетки представлялись им пустотами в непрерывной массе растительных тканей. Стенки клеток Грю рассматривал как волокна, по причине чего он ввел термин «ткань», по аналогии с текстильной тканью. В XVII в. исследования микроскопического строения органов животных носили случайный характер и не дали каких-либо знаний об их клеточном строении. К XVIII в. относятся первые попытки умозрительного сопоставления микроструктуры клеток растений и животных. Вольф в своем труде «Теории зарождения» (1759) пытается сравнивать развитие микроскопического строения растений и животных. По Вольфу, зародыш как у растений, так и у животных развивается из бесструктурного вещества, в котором движение создают каналы (сосуды) и пустоты (клетки). Фактические данные, приводившиеся Вольфом, были им ошибочно истолкованы и не прибавили новых знаний к тому, что было известно микроскопистам XVII в. Однако теоретические представления в значительной мере предвосхитили идеи будущей клеточной теории. К попыткам сопоставить строение растений и животных относятся натурфилософские определения Окена о единстве живой природы. Он предугадал существование единого структурного элемента, лежащего в основе живого. Однако эта верная мысль не опиралась на факты, а потому привела Окена к неверной трактовке наблюдаемых явлений. Ф. Энгельс отмечал, что теория Окена показывала бессмыслицу, получившуюся в результате отрыва естествознания от философии. Вместо естественнонаучного разрешения вопроса натурфилософы пытались силой мышления открыть законы природы. Первая четверть XIX в. характеризуется значительным углублением представлений о клеточном строении растений, что было связано с существенными улучшениями в конструкции микроскопа, в частности, созданием ахроматических линз. Линк и Молднхоуэр устанавливают наличие у растительных клеток самостоятельных стенок. Выясняется, что клетка есть некая индивидуализированная, морфологически обособленная структура. В 1831 г. Моль доказывает, что даже такие, казалось бы, неклеточные структуры растений, как водоносные трубки, развиваются из клеток. Мейен в своей «Фитотомии» (1830) даёт ясное представление о растительных клетках, которые «бывают или одиночными, так что каждая клетка представляет собой особый индивид, как это встречается у водорослей и грибов, или же, образуя более высоко организованные растения, они соединяются в более и менее значительные массы». Мейен подчёркивает самостоятельность обмена веществ каждой клетки. В 1831 г. Роберт Браун описывает ядро и высказывает предположение, что оно является составной частью растительной клетки. К началу XIX в. относятся попытки сопоставления микроско­пической структуры растений и животных, которые можно обозначить как «ложные клеточные теории». Клеточное строение растений сравнивали с «клеточной тканью» (клетчаткой) животных, под которой понималась рыхлая соединительная ткань. При некоторых способах наблюдении, применявшихся тогда, например, вдувании воздуха, пластинки основного вещества этой ткани образуют нечто вроде камер, и так как клеткой называли всякую камеру, то эта ткань получила название «клеточной ткани». Сопоставление клеток растений и клетчатки животных было ложным и формальным; таковы сопоставления строения растений и животных, сделанные Ламарком и П.Н. Горяниновым, которых отдельные авторы безосновательно выдвигали в качестве создателей клеточной теории. Необоснованно также и приписывание создания клеточной теории Дютрошо, представления которого о микроскопическом строении животных были совершенно недостаточны для обоснования клеточного учения. Понятие о тканях животных было введено Вигиа в 1801 г., однако он выделял ткани на основании анатомического препарирования и не применял микроскопа. Развитие представлений о микроскопическом строении тканей животных связано прежде всего с исследованиями чешского учёного Пуркинье, создавшего в Бреславле большую школу. Пуркинье и его ученики (особенно следует выделить Г. Валентина), исследовав разнообразные ткани и органы млекопитающих и человека, выявили в первом и самом общем виде их микроскопическое строение, накопили огромный материал, без которого Шванну трудно было бы создать клеточную теорию. Пуркинье и Валентин неоднократно сравнивали отдельные клетки растений с частными микроскопическими тканевыми структурами животных, которые Пуркинье чаще всего называл «зернышками» (для некоторых животных структур в его школе применялся термин «клетка»). В 1837 г. Пуркинье выступил в Праге с серией докладов, в которых сообщил о своих наблюдениях над строением желудочных желез, нервной системы и т.д. В таблице, приложенной к его докладу, были даны ясные изображения некоторых клеток животных тканей. Тем не менее установить гомологию клеток растений и клеток животных Пуркинье не смог. Во-первых, под зёрнышками он понимал то клетки, то клеточные ядра; во-вторых, термин «клетка» тогда понимался буквально как «пространство, ограниченное стенками». Между тем Пуркинье знал, что «зёрнышки» животных тканей не представляют собой пространства, ограниченного стенками, а являются скоплениями какого-то вещества и не имеют внутри пустоты. Поэтому сопоставление клеток растений и «зёрнышек» животных Пуркинье вёл в плане аналогии, а не гомологии этих структур (понимая термины «аналогия» и «гомология» в современном смысле). Второй школой, где активно изучали микроскопическое строение животных тканей, была берлинская лаборатория Иоганнеса Мюллера. Сам Мюллер изучал микроскопическое строение спинной струны (хорды); его ученик Генле опубликовал исследование о кишечных ворсинках, в котором дал описание различных эпителиев и показал их клеточное строение. В лаборатории Мюллера были выполнены классические исследования Теодора Шванна, заложившие основание клеточной теории. Работе Шванна помогли, с одной стороны, исследования его предшественников (особенно школа Пуркинье и Генле), а с другой – то обстоятельство, что Шванн нашёл правильный принцип сравнения клеток растений и элементарных микроскопических структур животных. Клетки растений и животных во многом не похожи друг на друга, к тому же клетки животных тканей крайне разнообразны. Однако ядра у всех клеток весьма похожи; взяв в качестве критерия клеточной структуры ядро, Шванн смог установить гомологию и доказать соответствие в строении и росте элементарных микроскопических структур растений и животных. На значение ядра в клетке Шванна натолкнули исследования Шлейдена, у которого в 1838 г. вышла работа «Материалы по фитогенезу». На основании этой статьи Шлейдена часто называют соавтором клеточной теории. Основная идея клеточной теории – соответствие клеток растений и элементарных структур животных – была чужда Шлейдену. В упомянутой работе он ставил лишь вопрос о том, как образуются клетки растений. Отвечая на него, Шлейден выдвинул теорию новообразования клеток из бесструктурного вещества, согласно которой сначала из мельчайшей зернистости конденсируется ядрышко, вокруг него образуется ядро, являющееся образователем клетки (цитобластом). Однако эта теория опиралась на неверные факты. В 1838 г. Шванн публикует 3 предварительных сообщения, а в 1839 г. появляется его классическое сочинение «Микроскопические исследования о соответствии в структуре и росте животных и растений», в самом заглавии которого выражена основная мысль клеточной теории. В первой части книги Шванн рассматривает строение хорды и хряща, показывая, что, несмотря на физиологическое различие этих органов, их элементарные структуры – клетки развиваются одинаково. Далее он доказывает, что микроскопические структуры других тканей и органов животного организма – это тоже клетки, вполне сравнимые с клетками хряща и хорды. Во второй части книги Шванн проводит сравнение клеток растений и клеток животных, показывая их соответствие. В третьей части он развивает теоретические положения и формулирует принципы своей клеточной теории. Именно исследования Шванна оформили клеточную теорию и доказали (на уровне знаний того времени и со множеством ошибок) единство элементарной структуры животных и растений. Теория явилась обобщением огромной важности. Ф. Энгельс в письме К. Марксу от 11 июля 1858 г. говорил о революционизирующем значении клеточного учения для естествознания того времени. Он включал учение о клетке в число трёх величайших открытий XIX в., обеспечивших бурное развитие естественных наук в том столетии. «Только со времени открытия, – писал Энгельс, – стало на твёрдую почву исследование органических, живых продуктов природы – как сравнительная анатомия и физиология, так и эмбриология. Покров тайны, окутавший процесс возникновения, роста и структуры клеточных организмов, был сорван. Непостижимое до того времени чудо предстало в виде процесса, происходящего согласно тождественному по существу для всех многоклеточных организмов закону». Л.С. Ценковский писал ещё в 1856 г., что учение о клетке соединило и направило к одной цели разрозненные стремления ботаников и зоологов. Значение клеточной теории для утверждения эволюционного учения неоднократно подчёркивал К.А. Тимирязев. Неслучайно эволюционная идея, сформулированная Ламарком в 1809 г., не получила признания, а эволюционная теория, выдвинутая в 1859 г. Ч. Дарвином, привлекла всеобщее внимание и приобрела многочисленных сторонников. Именно в эти 50 лет шло бурными темпами развитие клеточной теории, давшей одно из самых веских доказательств единства всей живой природы. С 40-х гг. XIX в. учение о клетке оказывается в центре внимания всей биологии и бурно развивается во второй его половине, превратившись в самостоятельную отрасль науки – цитологию. Для дальнейшего развития клеточной теории существенное значение имело ее распространение на протистов (простейших), которые были признаны свободно живущими клетками (Сибольд, 1848). С течением времени изменяется представление о композиции клетки; выясняется второстепенное значение клеточной оболочки, которая ранее признавалась самой существенной частью клетки; выдвигается на первый план значение протоплазмы и ядра клеток (Моль, Кон, Л.С. Ценковский, Лейдиг, Гексли), что нашло своё выражение в определении клетки, данном М. Шульце в 1861 г.: «Клетка – это комочек протоплазмы с содержащимся внутри ядром». Брюкко в 1861 г. теоретически постулирует сложное строение клетки, определяемой им как «элементарный организм», выясняет далее развитую Шлейдоном и Шванном теорию клеткообразования из бесструктурного вещества (цитобластемы). Обнаружено, что способом образования новых клеток является клеточное деление, которое впервые было изучено Молем на нитчатых водорослях. В опровержении теории цитобластемы на ботаническом материале большую роль сыграли исследования Неголи и Н.И. Желе. Деление тканевых клеток у животных было открыто в 1841 г. Ремарком. Выяснилось, что дробление бластов есть серия последовательных делений (Биштюф, Н.А. Келликер). Идея о всеобщем распространении клеточного деления как способа образования новых клеток закрепляется Р. Вирховом в виде афоризма: «Всякая клетка – из другой клетки» В развитии клеточной теории в XIX в. всё более остро встают противоречия, отражающие двойственный характер клеточного учения, развивавшегося под эгидой механистического представления о природе. Уже у Шванна встречается попытка рассматривать организм как сумму клеток. Эта тенденция получает особое развитие в «Целлюлярной патологии» Вирхова (1858). Работы Вирхова имели противоречивое значение для развития клеточного учения. Их положительная сторона заключалась в распространении клеточной теории на область патологии, что способствовало признанию универсальности клеточного учения. Труды Вирхова закрепили крушение ложной теории цитобластемы Шлейдона и Шванна, привлекли внимание к протоплазме и ядру, признанным и наиболее существенными частями клетки. С другой стороны, именно Вирхов направил развитие клеточной теории по пути чисто механистической трактовки организма. Отрицательные стороны вирховского представления об организме связаны с «персонификацией» клетки, которая возводилась в степень самостоятельного существа, вследствие чего организм рассматривался не как целое, а как сумма клеток; полностью игнорировалось значение неклеточных структур, переоценивались местные процессы. Такое представление об организме было антиисторическим, не учитывающим развития органической природы. Всё это привело к тому, что клеточная теория со второй половины XIX в. приобретала всё более метафизический характер, усиленный «Целлюлярной физиологией» Ферворна, рассматривавшего любой физиологический процесс, протекающий в организме, как простую сумму физиологических проявлений отдельных клеток. Завершением этой линии развития клеточной теории явилась механистическая теория «клеточного государства», пропагандировавшаяся Геккелем и др., согласно которой организм сравнивался с государством, а его клетки – с гражданами. Подобная теория уничтожала представление о целостности организма. Такое направление в развитии клеточной теории подверглось острой критике ещё в прошлом столетии. В 1860 г. с критикой вирховского представления о клетке выступил Н.М. Сеченов. Позднее клеточная теория подверглась критическим оценкам со стороны других авторов. Наиболее серьезные и принципиальные возражения были сделаны Гертвигом, А.Г. Гурвичем (1904), М. Гейденгайном (1907), Добеллом (1911). Однако критики клеточного учения исходили из разных методологических позиций, иногда выдвигая положения не менее метафизические, чем те, которые они критиковали. Такой характер носила, в частности, попытка умалить значение клеточного расчленения организма и выдвинуть на первый план неклеточные (симпластические) структуры. С широкой критикой клеточного учения выступил чешский гистолог Студничка (1929, 1934). В СССР с критикой догматической стороны клеточной теории выступал А.В. Номилов. В 30-х гг. XX в. возникла дискуссия по клеточной теории, в которой, кроме А.В. Номилова, приняли участие Е.Н. Вермель, А.А. Заварзин, З.С. Кацнельсон, В.Н. Лаврентьев, В.Я. Рубашкин, В.К. Шмидт и др. В этот период в выступлениях как критиков, так и сторонников клеточной теории наряду с положительными моментами были и преувеличения. Всё же дискуссия способствовала очищению клеточной теории от механистического налёта и выработки более правильной точки зрения. В 50-х гг. О.Б. Лепешинская выдвинула «новую клеточную теорию» в противовес «вирховианству». В ее основу было положено представление, что не только в филогенезе, но и в онтогенезе клетки развиваются из некоего неклеточного живого вещества, причём самый способ клеткообразования О.Б. Лепешинская изображала в духе давно отвергнутой теории цитобластемы. Критическая проверка фактов, положенных О.Б. Лепешинской и её приверженцами в основу выдвигаемой ею теории, не подтвердила данных о развитии клеточных ядер из безъядерного «живого вещества». Современная клеточная теория исходит из того, что клеточная структура является главнейшей формой существования жизни, присущей как растениям, так и животным; в аналогии жизненных проявлений клеток и в их гомологии, основанной на общих закономерностях развития, заключается одно из важнейших доказательств единства живой природы, её общих корней. Расчленение на клетки, происшедшее на ранних этапах развития живой материи, создавало огромную поверхность клеточных мембран, что внесло коренные изменения в ход обменных процессов. Как выяснилось, кариокинез как форма деления распространен у всех многоклеточных и протистов. Расчленение на клетки обеспечило возможность глубокой дифференцировки тканевых структур, создало широкие возможности замены изношенных и патологически измененных частей организма. В силу всего этого совершенствование клеточной структуры явилось главным направлением эволюционного развития как у растений, так и у животных, и клеточное строение прочно удержалось у большинства современных организмов. Вместе с тем, на наш взгляд, должны быть подвергнуты переоценке догматические и методологически неправильные положения клеточной теории: Клеточная структура является главной, но не единственной формой существования жизни. В развитии органического мира был период, когда не существовало обособления кариоплазмы в виде морфологически выраженного ядра; различные формы доклеточного строения встречаются у современных организмов (бактериофаги, вирусы, спирохеты, различные группы бактерий, сине-зелёные водоросли). Клеточная теория рассматривала организм как сумму клеток, а жизнепроявления организма растворяла в сумме жизнепроявлений составляющих его клеток. Этим игнорировалась целостность организма, закономерности целого подменялись суммой частей. Метафизичность такого сведения целого к сумме частей была достаточно ярко показана ещё Ф. Энгельсом. Считая клетку всеобщим структурным элементом, клеточная теория рассматривала как вполне гомологичные структуры тканевые клетки и гаметы, протисты и бластомеры. Применимость понятия клетки к протистам является дискуссионным вопросом клеточного учения. Наряду с мнением Добелла и А.А. Заварзина, возражавших против сопоставления протистов и клеток многоклеточных, имелось мнение Гартмана, В.Н. Беклемишева, В.А. Догеля и других, считавших правильным такое сопоставление. Недооценка значения целостности протистов как самостоятельных организмов приводит на практике к тому, что факты, установленные на протистах, безоговорочно переносятся на тканевые клетки, а это ведёт к ошибочным заключениям. В тканевых клетках, половых клетках, протистах проявляется общая клеточная организация, выражающаяся в морфологическом выделении кариоплазмы в виде ядра; однако эти структуры нельзя считать качественно равноценными, вынося за пределы понятия «клетка» все их специфические особенности. Догматическая клеточная теория игнорировала специфичность неклеточных структур в организме или даже признавала их, как это делал Вирхов, неживыми. В действительности, в организме кроме клеток есть неклеточные ядерные структуры (синцитии, симпласты) и безъядерное межклеточное вещество, обладающее способностью к метаболизму и потому живое. Установить специфичность их жизнепроявлений и значение для организма является задачей современной цитологии. Проблема части и целого разрешались ортодоксальной клеточной теорией метафизически: всё внимание переносилось на части организма – клетки или «элементарные организмы». Диалектика как всеобщий универсальный метод учит нас, что новое возникает не в результате сложения частей, а вследствие развития, связанного с закрепленным в процессе этого развития взаимоотношением частей. В отличие от «организмистов», отечественные цитологи исходят из положения, что целостность организма является результатом естественных, материальных взаимосвязей, вполне доступных исследованию и раскрытию. Клетки многоклеточного организма не являются индивидуумами, способными существовать самостоятельно. Так называемые культуры клеток вне организма представляют собой искусственно создаваемые биологические системы, а не культуры индивидуализированных клеток. Клетка не может быть оторвана от окружающей среды. Современные данные по клонированию животных клеток в Республике Корея (1998) подтверждают это. Сосредоточение всего внимания на отдельных клетках неизбежно приводит к унификации и механистическому пониманию организма как суммы частей. В курсе анатомии центральной нервной системы (ЦНС) нас в первую очередь интересует не общее представление о клетке, а конкретно – нервная клетка, нервная ткань.Нервная ткань – основная ткань нервной системы, выполняющая в организме функции восприятия раздражения и проведения возбуждения. Элементы нервной ткани в процессе филогенеза животных приобрели высокую возбудимость и способность быстро проводить нервные импульсы. Основной структурной функциональной единицей нервной ткани является нервная клетка (нейрон). Нервные клетки связаны друг с другом при помощи особых контактов – синапсов, по которым передаётся возбуждение от нейрона на нейрон. Нервные клетки окружены нейроглией – клетками нервной ткани, выполняющими опорную и трофическую функции.^ Развитие и гистогенез нервной ткани.Нервная ткань развивается из наружного зародышевого листка – эктодермы. Именно в наружном покрове древних хордовых появились первичные чувствительные клетки, с эволюцией которых связывается развитие нервной системы. В процессе развития эктодерма расчленяется на две чётко детерминированные части: нервную и кожную. Нервная часть эктодермы (или нейроэктодерма) состоит из собственно нервной и ганглиозной пластинок (нервного гребня). Из первой развивается ЦНС, из второй – периферическая, в том числе спинномозговые и черепные нервы, вегетативные ганглии и ряд других производных, генетически связанных с нервной тканью (мозговые оболочки, периферическая глия, пигментные клетки и пр.).Мезенхима – соединительная ткань зародышей многоклеточных животных организмов на ранних стадиях развития. Из неё развивается рыхлая соединительная ткань, клетки крови, эндотелий сосудов, кости, хрящи, связки, сухожилия, мышцы. Из кожной (эпидермальной) части эктодермы несколько позже развиваются особые участки – плакоды, территориально не вошедшие в состав нейроэктодермы, но в качественном отношении составляющие с ней одно целое. Из плакод развиваются – в последовательном порядке – линза глаза, слуховой орган с соответствующими ганглиями, ганглий лицевого нерва и органы боковой линии низших позвоночных. Орган обоняния, которому до последнего времени неправильно присваивали плакодное происхождение, в действительности развивается из передней части нейроэктодермы. На ранних стадиях зародышевого развития гистологическое строение нервной и эпидермальной частей эктодермы сходно. У амфибий, рыб, рептилий и птиц она состоит из заполненных желточными гранулами и пигментом или из прозрачных клеток с округлыми и вытянутыми ядрами. Клетки интенсивно размножаются митотическим путём и располагаются вначале в один слой, затем нервный зачаток приобретает многослойное строение. Митотическое деление клеток – один из способов деления нервных клеток. На следующем этапе развития нервная пластинка начинает погружаться внутрь тела зародыша (в мезодерму) по своей средней линии, образуя так называемый нервный желобок, который вскоре превращается в нервную трубку. В месте смыкания краёв нервного желобка от нервной трубки отходят справа и слева два симметричных выроста, которые в совокупности называются ганглионарной (или ганглиозной) пластинкой. Из нервной трубки развиваются спинной и головной мозг. Развитие спинного мозга сопровождается разрастанием боковых стенок нервной трубки, в то время как элементы будущей крыши и дна спинного мозга значительно отстают в своём развитии. Просвет нервной трубки превращается в спинномозговой канал. Разрастание нервной трубки в мозговые пузыри в области будущего головного мозга протекает несколько замедленней. Это связано с неравномерным ростом отдельных частей передней части нервной трубки и повышением давления жидкости, образующейся в ней путём секреционного процесса. Так как давление жидкости направлено вдоль длинной оси нервной трубки, на её переднем конце образуются три вздутия или связанных между собой мозговых пузыря: передний мозг (prosencephalon), средний мозг (mesencephalon) и задний мозг (rhombencephalon). Первоначальное расположение мозговых пузырей по одной прямой линии, являющейся продолжением спинного мозга, у высших позвоночных, а особенно у человека, вскоре изменяется. Передний мозговой пузырь подразделяется на два: зачаток большого, или конечного мозга – telencephalon, и зачаток промежуточного мозга – diencephalon, из боковых стенок которого развиваются глазные пузыри (позже бокалы) – зачатки сетчатки глаз. Средний мозговой пузырь, оставаясь неразделенным, даёт начало среднему мозгу. Задний мозговой пузырь подразделяется на зачатки мозжечка и моста (metencephalon) и продолговатого мозга ( myelencephalon), без резкой границы переходящего в эмбриональный спинной мозг. Благодаря усиленному росту мозговых пузырей образуются три изгиба: 1) теменной, на уровне среднего мозгового пузыря, имеющий вентральное направление; 2) затылочный, в области заднего мозгового пузыря в месте перехода спинного мозга в продолговатый, также имеющий вентральное направление, и 3) находящийся между теменным и затылочным – мостовой, направленный в дорсальную сторону. Дальнейшее преобразование перечисленных отделов головного мозга заключается в неравномерном росте отдельных частей его стенок, образовании различных стенок и борозд.^ Серое и белое вещество.Гистогенез нервной ткани удаётся проследить с момента образования нервной трубки. Её клетки, называемые медуллобластами, образуют эпителиеподобный многорядный слой. Ядра медуллобластов лежат на разных уровнях, а цитоплазматические достигают своими суженными концами наружной пограничной перепонки, отделяющей нервную трубку от окружающей её мезенхимы, и внутренней пограничной перепонки, выстилающей просвет нервной трубки. Утолщение боковых стенок нервной трубки связано с пролиферацией и округлением клеток, смещающихся к её просвету. В совокупности эти делящиеся митотическим путём клетки образуют внутренний терминальный (зародышевый), или камбиальный, средний, или плащевой, слой, и расположенный более поверхностно наружный слой. Цитоплазма клетки наружного слоя, разрыхляясь, образует губчатую сеть, которая называется краевой зоной, или вуалью. Клетки, образовавшие губчатую сеть краевой зоны, называются спонгиобластами. Из спонгиобластов развиваются элементы нейроглии: астроциты, спонгиобласты, будущие нервные клетки – нейробласты. На этих стадиях нейробласты отличаются по величине своих ядер, которые значительно крупнее, чем у спонгиобластов. Клетки внутреннего камбиального слоя, удлиняясь, а затем принимая характерную для призматического эпителия форму, превращаются в эпендиму, которая выстилает просвет спинномозгового канала и желудочков головного мозга. На своей апикальной (верхушечной) поверхности клетки эпендимы несут мерцательные реснички. Спонгиобласты и нейробласты среднего слоя спинного мозга составляют зачаток серого вещества. Отростки нейробластов, передвигающиеся в наружный слой, дифференцируются в проводящие пути. Эти отростки окружаются развивающимися из спонгиобластов астроцитами и олигодендроцитами и образуют зачаток белого вещества спинного мозга. Тело будущей нервной клетки покрывается снаружи глиальными клетками. Эти клетки получили название клеток-сателлитов. Также сателлиты образуют капсулу вегетативных нейробластов. Отростки нейробласта сопровождаются особыми вспомогательными глиальными элементами – шванновскими клетками. Последние представляют собой разновидность глии, которая закладывается вместе с нейробластами в ганглионарной пластинке. ^ Шванновские клетки – разновидность клеток нейроглии, образующих мякотную миелиновую оболочку нейронов. Нервная клетка будущих передних рогов спинного мозга посылает свой аксон через передние корешки к развивающимся мышцам или железистым клеткам. В нервной трубке в задних рогах одновременно формируются будущие ассоциативные нервные клетки, отличающиеся короткими отростками. Протоплазма растущих аксонов нейробластов обнаруживает способность к росту, амебоидному движению и активному «самостоятельному» передвижению между другими тканевыми элементами. На своей вершине растущий аксон несёт конусовидное утолщение – колбу роста. Изучение нейробластов в условиях прижизненных наблюдений тканевых культур и при помощи электронной оптики показало, что аксон растёт по межклеточным промежуткам в виде тонкого цитоплазматического тяжа. Вскоре у периферических нервных волокон появляются мякотные, состоящие из миелина, оболочки, которые образуются в процессе дифференцировки шванновских клеток. В ряде случаев миелин отсутствует; тогда, в отличие от мякотных, говорят о безмякотных нервных волокнах. В последнее время при помощи электронной оптики прослежены особенности развития периферических миелиновых (мякотных) и лишенных миелина (безмякотных) нервных волокон. Первоначально растущий аксон лежит, примыкая к поверхности шванновских клеток, а затем вдавливается в её цитоплазму, увлекая за собой поверхностную плазматическую оболочку (мембрану), вследствие чего образуется так называемый мезаксон. Вокруг аксона на участках оболочки шванновской клетки в местах соприкосновения её складок с аксоном синтезируется миелин. В дальнейшем вернувшиеся поверхности оболочки шванновской клетки начинают обвивать осевой цилиндр, разрастаясь при этом наподобие спирали. Предполагают, что процесс спирального разрастания мембраны сопряжён с вращением шванновской клетки вокруг аксона. В итоге концентрические слои миелина оттесняют ядро шванновской клетки на периферию. По всей своей длине аксон входит в контакт с чередующимися шванновскими клетками. Через промежутки порядка 1 мм миелин прерывается, оставляя открытыми участки мембраны аксона (перехваты Ранвье). В безмякотных нервных волокнах шванновские клетки образуют сплошные синцитиальные тяжи, которые «заселяются» группами аксонов. Миелинизация начинается у человека на 4-м месяце внутриутробной жизни и заканчивается лишь после рождения. В мозговых пузырях процессы протекают аналогичным образом, но с тем существенным отличием, что серое вещество развивается не только в средних слоях, но и на поверхности мозговых пузырей, где образуется сложная слоистая кора больших полушарий и мозжечка. Особую проблему составляет вопрос о причинах ориентации нервных волокон среди тканей развивающегося эмбриона. По этому поводу существует несколько теорий. Согласно механической теории, или теории стереотропизма, нейробласты и их отростки распределяются благодаря механическим факторам, связанным с ультраструктурой (стереоструктурой), т.е. мицеллярной ориентацией окружающих тканей. По теории хемотаксиса, или нейротропизма, направление роста аксона определяется особого рода секретом, вырабатываемым в тканях, который притягивает к колбе роста аксона. Согласно теории нейробиотаксиса, распределение нервных волокон в тканях определяется различиями в электрических биопотенциалах между дендритами и аксоном нейробласта. Направление и ориентация растущих нервных волокон наряду с перечисленными внешними факторами определяются также внутренней пространственной цитоплазматической структурой тела и отростков нейробластов. На поздних стадиях дифференцировки нейробласт, как правило, теряет способность делению.^ Глия (нейроглия).Глия или нейроглия – это клетки в головном и спинном мозге, своими телами и отростками заполняющие пространство между нейронами и мозговыми капиллярами. Каждая клетка ЦНС окружается протоплазматическими астроцитами с цитоплазмой, содержащей малое количество фибриллярных нитей. Волокна нервных клеток в белом веществе окружены фиброзными астроцитами, в цитоплазме которых присутствует большое количество фибриллярного материала. Фиброзные астроциты заполняют пространство между пучками миелизированных нервных волокон. Эти крупные клетки в составе глии похожи на раскрывшиеся бутоны астр, отсюда и их название – астроциты. Олигодендроциты родственны астроцитам, но отличаются меньшими размерами и более мелкими ядрами, а также более слаборазвитыми ветвистыми отростками. Они связаны непосредственно с телами нейронов и нервными волокнами, поэтому их часто рассматривают в качестве центральных гомологов шванновских клеток. Мелкие микроглиальные клетки похожи на паучков. Они отличаются характером своих отростков и очень небольшими темными ядрами. Эти клетки равномерно рассеяны как в головном, так и спинном мозге. Таким образом, глия образует очень сложную сеть, состоящую из клеточных тел и отростков. В ячейке этой сети, как в сотах, располагаются нервные клетки и их отростки. И только в области контактов, т.е. на месте синапсов нервных клеток, имеет место «прорыв» в глиальной прокладке. Нейроглия играет роль опоры для отростков. Скопления нервных клеток с окружающей их глией называются ганглиями. В условиях патологии глия отличается высокой реактивностью и, в отличие от нейронов, способностью к пролиферации. Глиальные клетки участвуют как в дегенеративных, так и регенеративных процессах, связанных с травмами, сосудистыми расстройствами или нейроинфекциями. Способностью к активной миграции и фагоцитозу особенно отличаются микроглиальные клетки. Особое место в нервной ткани занимает эпендимный призматический эпителий – нейроэпителий, выстилающий спинномозговой канал и желудочки головного мозга. У эмбрионов и новорожденных он несёт мерцательные реснички. Что касается крупных сосудов, которые находятся в нервной ткани, то они на всем протяжении сопровождаются соединительной тканью и покрыты глиальными, образованными астроцитами, пограничными мембр


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Грошові кошти та організація розрахунків на підприємствах. Розрахунок планування прибутку. Розрахунок загального та чистого прибутку, їх розподіл і використання. Санація підприємства
Реферат Залоговые операции банков и их учет
Реферат Same Sex Parents Essay Research Paper Same
Реферат Анализ и проектирование системы мотивации деятельности на предприятии
Реферат American GovernmentEconomics Essay Research Paper Most of
Реферат An Enemy Of The People Essay Research
Реферат Передача и кодирование сигнала в сетчатке глаза
Реферат Суб’єкти кримінального процесу
Реферат Введение в германскую филологию
Реферат Иван Иванович Лажечников. Басурман
Реферат Государственное муниципальное управление
Реферат Невласні інтеграли Поняття та різновиди невласних інтегралів
Реферат The Infamous Jay Gould Essay Research Paper
Реферат Алексеев, В. И. Петрография пород-коллекторов нефти и газа. Метод указ к лаб работам. Спб.: Спгги, 2008
Реферат Программирование графики и обработка событий