Реферат по предмету "Разное"


А. С. Холманский Физика мозга человека имеет две составляющие базовую физику общую для всех млекопитающих и физику мышления, присущую только человеку. Развитие ментальной составляющей структурно-функциональной орган

УДК 612 + 577.3 МОДЕЛИРОВАНИЕ ФИЗИКИ МОЗГА А.С. ХолманскийФизика мозга человека имеет две составляющие – базовую физику общую для всех млекопитающих и физику мышления, присущую только человеку. Развитие ментальной составляющей структурно-функциональной организации мозга в филогенезе связали с хиральным фактором внешней среды, а в онтогенезе – с социальным фактором. В основу чувствительности мозга к данным факторам положили односвязность его водной основы, механизм электромагнитной индукции и особенности термодинамики мозга в состоянии ночного сна. С целью унификации описания механизма электромагнитных процессов в мозгу ввели понятие квазифотона, объединяющее в себе все формы возбуждения электронных и молекулярно-клеточных структур мозга. Предложены эквивалентные схемы колебательных контуров элементов нейросети и макроструктур мозга. Сделаны оценки кинетических параметров (энергии активации, скорости) физических процессов, лежащих в основе энергоинформационного обмена мозга с внешней средой. Обсуждены механизмы работы оперативной (физической) и постоянной (химической) памяти мозга, включая модель нелокальных квантовых корреляций. Оглавление 1. Концептуальное введение 2. Электромагнитная индукция 2. 1. Колебательный контур 2. 2. Электромагнетизм нейрона 2. 3. Нейросети 2. 4. Капсулированные нервные окончания 2.4.1. Тельце Фатера Пачини 2.4.2. Глаз 3. Квазифотон 3.1. Типы квазифотонов 3.2. Метрика квазифотона 3.3. Метаболические квазифотоны 4. Термодинамика мозга 5. Физика организации мозга 5.1. Функциональная иерархия мозга 5.1.1. Кора больших полушарий 5.1.2. Таламус, желудочки мозга 5.1.3. Эпифиз 5.2. Кинетические параметры физики мозга 5.3. Нелокальные квантовые корреляции 5.3.1. Сознание и память 5.3.2. Механизм квантовых корреляций6. Заключение Литература^ 1. КОНЦЕПТУАЛЬНОЕ ВВЕДЕНИЕ Основным структурно-функциональным элементом мозга является нервная клетка. Она генерирует и проводит электрические импульсы – потенциалы действия (ПД). Связанное с ПД движение зарядов индуцирует локальные вихри электромагнитного (ЭМ) поля, которые, в принципе, можно определить как ЭМ-кванты или квазифотоны. Метрика, принцип и скорость движения квазифотона будут определяться электрофизическими свойствами и структурными особенностями нейрона и окружающей его среды. За энергоинформационное обеспечение механизма генерации импульсов и за синтез метаболитов ответственно тело клетки, ее ядро и дендриты. Аксоны в симбиозе с нейроглиями (олигодендроциты, астроциты) транслируют метаболиты и импульсы, реализуя их энергию и информацию через синтез и действия нейромедиаторов в синапсах. Дееспособность нервной клетки обеспечивает энергия реакции окисления глюкозы, которая в митохондриях трансформируется в энергию макроэргических связей АТФ. В нервных клетках энергия АТФ преобразуется в энергию квазифотонов, в энергию химических связей синтезируемых веществ, в кинетическую энергию метаболитов и молекул среды (тепло). За счет этой же энергии осуществляется рост аксонов, развитие нейронных сетей и нейроглиальных связей, которые, в частности, отвечают за механическую целостность цитоскелета мозга. Физико-химические свойства воды, составляющей основу жидкостных систем мозга (ликвора, крови), в полной мере ответственны за электрофизику мозга и за его термодинамические свойства, как на микро, так и на макро уровнях его организации. Таким образом, поведение мозга как единой физической системы в первую очередь подчинено классическим законам электрофизики и термодинамики сплошных коллоидных сред. В рамках данных законов осуществляется метаболизм нейрона, и мозг исполняет свои базовые функции, управляя гомеостазом и своевременно запуская механизм полового размножения. Соответствующая данным функциям физика мозга будет одинакова для всех млекопитающих, поэтому ее можно считать базовой. Именно это и позволяет экстраполировать результаты исследования мозга животных на мозг человека. Однако только организм гоминида (homo erectus) на этапе прямохождения приобрел чувствительность к фактору филогенеза геокосмического масштаба [1], под влиянием которого в условиях социальной среды в его мозгу стали формироваться и развиваться структуры ответственные за речь и мышление. Анатомические различия мозга современного человека и обезьяны ярко выражены в строении и объеме лобно-височных долей неокортекса. Ключевую роль в физике мышления играет структурно-функциональная асимметрия полушарий мозга, которая отсутствует у животных и имеет расово-половую дифференциацию у человека. Генезис данной асимметрии мог быть детерминирован перестройкой физики половых органов, рук, зрения и слуха на этапе прямохождения и в процессе развития навыков к сознательному труду. Исходя из этих данных, в основу когнитивных функций мозга положим физику лобно-височных долей неокортекса и хиральность коммуникаций мозга, как межполушарных и соматических, так и с внешней средой. Учитывая наличие в мозгу метастабильных и динамичных квазифотонов различных типов и энергий, можно предполагать их активное участие не только в метаболизме, но и в физике когнитивных функций в рамках законов классической квантовой механики. Природа внешнего универсального хирального фактора, как и природа хиральных квантов энергии в мозгу не обязательно должна совпадать с природой квазифотонов, метрика которых, тем не менее, может быть спиральной. Механизмы поглощения и действия в мозгу хиральных квантов энергии (например, нейтринной природы [1]) тесно связаны с физикой самоорганизации и фазовых переходов в кооперативных хиральных системах [2, 3]. Главный вопрос физики мозга состоит в моделировании механизма психофизического изоморфизма [4], который, по сути, суммирует в себе следующие процессы: – формирование на уровне атомно-молекулярной системы ЭМ-матрицы смысла-слова (мыслеформы); – распознавание и вербализация другой системой атомов содержания мыслеформы. Пространственно-временная разделенность двух физических систем, участвующих в формировании и распознавании мыслеформы предполагает физическое обособление мыслеформы в виде связанной системы дискретных форм материи, изоморфной ЭМ-матрице мыслеформы. Физическая обособленность мыслеформы является необходимым условием и для адекватности обмена информацией по механизму нелокальных квантовых корреляций. Идеальным, в этом смысле, носителем мыслеформы могут быть простейшие формы материи, предшествующие квантам полей и элементарным частицам. Тогда задача согласования и стыковки физики мышления с физикой базовых функций мозга сведется к проблеме вербализации фундаментальной динамической формы материи, способной благодаря своему движению становиться носителем энергии и информации [5]. Аксиоматику простейших форм материи (энергоформ) построили [6], опираясь на законы диалектики и экстраполируя достоверные положения классической и квантовой физики. Универсализм энергоформ (ЭФ) позволяет их использовать для моделирования мыслеформ, квазифотонов и предшественников элементарных частиц. Взаимодействия ЭФ с веществом мозга идут при посредничестве квазифотонов, сочетая фрактально-резонансный принцип действия ЭФ [6] с механизмом нелокальных квантовых корреляций [7]. К энергоформам и их конденсатам, по сути, относятся гипотетические «струны», «кварки», «вихри Абрикосова», «матрицы плотности» и другие абстрактные модели субэлементарных дискретных форм материи. В работе [8], при анализе термодинамики мыслительной деятельности мозга, на роль «рабочего тела» аппарата мышления был предложен газ гипотетических х-частиц (фермионов), распределенный, по нейронной сети коры мозга. Если попытка отнесения х-частиц к нейтрино безосновательна [4, 6], то некоторые особенности термодинамики х-частиц приемлемы для биоактивных ЭФ и квазифотонов. Таким образом, физику мышления можно обособить в рамках физики базовых функций мозга, отнеся к ее ведению уникальную способность вещества мозга при нормальных условиях резонансно поглощать, генерировать, селектировать, комбинировать и сохранять дискретные формы материи (энергоформы и квазифотоны), распознавая в их действиях смысл-слова, психическую или иную ментальную информацию. С целью обоснования применения энергоформ и квазифотонов для моделирования физики мышления в настоящей работе проанализировали структурно-функциональные особенности мозга и сделали оценки энергий активации (ЭМ-квантов) ключевых физико-химических процессов, обеспечивающих энергоинформационный обмен внутри мозга и между мозгом и внешней средой, к которой относится также и тело человека. Результаты анализа и оценок использовали для проведения экстраполяций известных физических закономерностей на уровень физики энергоформ. ^ 2. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ2. 1. Колебательный контур Кинематику ЭФ [6] иллюстрирует явление электромагнитной индукции (ЭМИ), которое формально подчиняется первому уравнению Максвелла [9]: rotE = - дB/дt , (1) где Е и В – взаимно ортогональные вектора напряженности вихревых электрического и магнитного полей. С помощью (1) для замкнутого контура с током получают уравнение для ЭДС самоиндукции (U): U = – L (dJ/dt) = – dФ/dt, (2) Где L – индуктивность контура; J – ток, а Ф = LJ – потокосцепление самоиндукции контура. Эффекты ЭМИ в различных структурах и средах живого организма, имеющих свои локальные магнитные (μ) и диэлектрические (ε) характеристики, подчиняются второму уравнению Максвелла: rotH = j + дD/дt , (3) где D = εoε E , B = μoμH, (4)j – ток смещения, а электродинамическая постоянная вакуума (εoμo) и среды связаны со скоростями распространения ЭМ-квантов в вакууме (C) и среде (V) соотношениями [9]:C = (εoμo)–1/2 , V = С(εμ)–1/2 = С/n (5)Экстраполяцию явления ЭМИ на уровень ЭФ [6] можно проиллюстрировать на примере колебательного контура (Рис 1). Рис 1. Колебательный контур – а) и его трансформированные формы, отвечающие началу колебаний – б) и четверти периода – в); с) – экстраполяция состояния контура в) на уровень энергоформы (ν/g-пара), имеющей импульс Р и эквивалентную массу mg .Для идеального контура частота гармонических электромагнитных колебаний задается формулой: w = (LC)–1/2 (6)Трансформация колебательного контура путем раскрытия конденсатора и сжатия катушки показана на Рис 1. Состояние б) отвечает схеме антенны, которая может, в принципе, принимать и излучать фотоны радиоволнового диапазона. При этом вихревые Е и В-поля заполняют все пространство. Трансформация в) отвечает состоянию колебательного контура, когда энергия Е-поля перешла в энергию вихревого В-поля. Конфигурацию ЭМ поля в состоянии в) можно отождествить с ЭФ (ν/g-пара [6]), связав ее импульс Р или энергию Е-поля, с импульсом тока до его закручивания в спирали катушки. Соответственно, вращательный момент тока или связанная с ним энергия В-поля будут отвечать моменту импульса ЭФ или ее эквивалентной массе (mg). При комбинации различных ν/g-пар собираются кванты полей (фотоны, гравитоны), а при их конденсации числом, равным числу Авогадро (6 1023), образуются элементарные частицы [6].^ 2. 2. Электромагнетизм нейрона Очевидно, что ЭМИ играет существенную роль в механизмах генерации и действия ЭФ электромагнитной природы в нервной системе человека. В основе ее коммуникативных и сигнальных функций лежит способность нервных клеток генерировать и проводить электрические импульсы. Электрофизику и метаболизм нервной системы и нейронов исследуют с помощью методов ЭКГ, ЭЭГ, МЭГ, ЯМР и позитронно-эмиссионной томографии (ПЭТ), термоэнцефалоскопии, психофармакологии и непосредственным зондированием нервных клеток микроэлектродами. Квантовые магнитометры (СКВИД), в принципе, позволяют регистрировать магнитное поле отдельного нейрона [10, 11]. Явления ЭМИ и резонанса, по-видимому, лежат в основе механизма чувствительности нервной системы к прямым воздействиям внешних ЭМ-излучений различного диапазона. Наличие в нервной системе LC-структур, в принципе, допускает «настройку» чувствительных элементов нервной системы на частоты как внутренних, так и внешних биогенных излучений по принципу гетеродинной связи. Для объяснения электрических свойств мембраны привлекают схему эквивалентного контура, в которой проводящие каналы для различных ионов моделируют источником ЭДС и омическим сопротивлением (R), а изоляционные свойства мембраны представляют емкостью (Рис 2). Рис 2. Эквивалентная электрическая модель мембраны нерва: батареи создают суммарный мембраны потенциал U, ионная проводимость обозначена сопротивлениями R, емкость мембраны – конденсатор С [12].Параллельное соединение нескольких контуров, показанных на Рис 2, моделирует мембрану нейрона [12]. Однако для модели нейрона центральной нервной системы, имеющего миелиновую оболочку, емкостной характеристики мембраны не достаточно. Действительно, в спиральной структуре миелина есть регулярные каналы (насечки) (Рис 3), которые в контексте эквивалентной электрической модели мембраны (Рис 2) вполне могут играть роль локальных катушек индуктивности. Число насечек на одном миелиновом сегменте волокна, тем больше, чем толще осевой цилиндр аксона [13]. Рис 3. Ультраструктура миелиновой мембраны нерва. а – общий вид насечки; б – увеличенное изображение насечки [13] Рис 4. Схема цитоплазматического канала (насечки) (1) в миелиновой оболочке (2) аксона. 3 – аксоплазма [13].Краевая структура миелиновых оболочек в области перехватов Ранвье образует катушки из спиралей паранодальных петлей длиной порядка 1 мкм, сообщающихся с аксоплазмой через специальные окна. Если эти образования рассматривать как катушки индуктивности (Рис 5 - 7), то они будут играть существенную роль в сальтаторном механизме проводимости аксона.Рис 5. Электронная фотография перехвата Ранвье, периферийного нерва [17]. Рис 6. Схема строения перехвата Ранвье. 1 – щель перехвата; 2 – мякотный конус; 5 – компактный миелин; 6 – расщепление основных плотных линий в области перехвата; 7 – осевой цилиндр (аксоплазма); 8 – цитоплазма шванновской клетки [13]. Рис 7. Схема краевых спиралей петлей миелиновой оболочки в области перехвата Ранвье. 1 – цитоплазма; 2 – миелин; 3 – аксоплазма [13].Различия электродинамических свойств аксоплазмы, мембраны и межклеточной жидкости, обусловленные различием их ионно-молекулярного состава и структуры, должны наложить свой отпечаток на механизм генерации ПД. Стимул, запускающий перезарядку мембраны, может быть как физической, так и химической природы, а само перераспределение зарядов может в той или иной пропорции сочетать перенос ионов через мембрану и их адсорбцию на ее поверхностях [14]. С ионными токами перезарядки поверхности мембраны аксона будут связаны импульсные токи смещения в паранодальных петлях и спиральных каналах насечек, что позволяет их уподобить магнитным диполям [9]. С кинетикой нарастания и последующей релаксации мембранного потенциала коррелирует кинетика ионных токов и токов смещения в аксоне, мембране и паранодальных петлях миелиновой оболочки. Поскольку фаза нарастания ПД длится около 0,1 – 0,2 мс, а время релаксации мембранного потенциала порядка ~1 мс [15], то и импульсные токи смещения, соответствующие фазе нарастания будут на порядок больше токов релаксации. Изменение заряда на внутренней стороне мембраны аксона в области перехвата Ранвье порождает волну поляризации или ток смещения в паранодальной области миелинового сегмента [16]. Величина данного возмущения будет экспоненциально затухать с расстоянием [17], а скорость распространения не превысит скорости движения ПД в немиелизированном нерве (порядка 1 м/с). Наличие окон связи паранодальных петель с аксоплазмой [16] обеспечивает преобразование волны поляризации в кольцевой ток смещения в спиралях петель. Таким образом, генерирование ПД в перехвате Ранвье сопряжено с индуцированием и излучением-отшнуровкой вихревых ЭМ-квантов, метрику которых моделируют ЭМ-вихри в) и с) на Рис 1. Возможно, что именно в этом и заключается главная функция концевых катушек миелиновых оболочек и спиралей насечек. Направление вектора плотности потока ЭМ-энергии (вектор Пойтинга) будет определяться знаком спирали. Данный фактор хиральности нейрона обеспечит односторонность распространения ЭМ-кванта, а значит, и ПД по миелизированному нерву. При достижении ЭМ-кванта со скоростью V (5) концевой катушки миелинового сегмента он может сыграть роль стимула для генерации ПД в следующем перехвате Ранвье. В данной модели сальтаторной проводимости нейрона скорость движения спайка будет лимитироваться процессом возбуждения тока в концевых катушках, время которого порядка 10–6 c (1 мкм : 1 м/с). При этом средняя скорость передачи ПД с одного конца миелинового сегмента на другой при его длине порядка 100 мкм и определит скорость сальтаторного механизма проводимости ~100 м/с. Используя значение разности потенциалов, отвечающую ПД типичного нейрона (U ~ 70 мВ [15]), оценим величину электрической энергии, которая затрачивается на возбуждение ПД в перехвате Ранвье при сальтаторном механизме проводимости нейрона. Для этого представим перехват в виде цилиндрического конденсатора, обкладки которого образованы из мембраны нейрона и длина равна длине перехвата (f). Изменение энергии конденсатора (W), можно оценить по формуле: W = (U2C)/2 . (8) Величина С для цилиндрического конденсатора с расстоянием между обкладками (d) и радиусом внутреннего цилиндра (R) при условии d « R будет равнаС = (2πεoε f)/[ln(1+d/R)] ≈ (2πεoε fR)/d а величина W = (U2 πεoε fR)/d (9)Подставим в (9) такие значения для нерва с R = 5 мкм [17]: U ~ 0,07В; εo= 8,85 10–12 Ф/м; ε ~ 5; f ~ 10–7 м; d ~ 10–8 м , получим W ~ 510–17 Дж или 3107 Дж/моль. (10)Такая же величина W получится, если подставить в (8) значение С = 10–2 Ф/м2 [17] при тех же параметрах перехвата Ранвье и величине U. Величина (10) сравнима с энергией, выделяемой при окислении ~10 молекул глюкозы и при гидролизе ~103 молекул АТФ. Известно [12, 17], что при гидролизе одной молекулы АТФ через мембрану проходят ~3 иона Na+ в обмен на два иона К+, а при возбуждении ПД плотность потока ионов Na+ через мембрану перехвата составляет JNa ~ 4103 ионов/мкм2. Тогда число вошедших в аксон ионов Na+ будет равно JNa(2πRf) ~ 104, им соответствует ~3103 молекул АТФ, суммарная энергия которых по порядку величины согласуется с (10). При концентрации АТФ в аксоплазме аксона кальмара ~1 ммоль на 1 кг Н2О [12], общее число молекул АТФ в цилиндре перехвата Ранвье (радиуса 5 мкм и длиной 1 мкм) будет равно ~ 4 107 молекул. Следовательно, величина W составит только 0,01% от полного энергетического ресурса перехвата Ранвье. Очевидно, что энергия ЭМ-кванта, играющего роль стимула генерации ПД в перехвате Ранвье будет на один, два порядка меньше величины W. Например, за верхний предел энергии ЭМ-кванта можно взять энергию фотона с длиной волны 600 нм (4 10–19 Дж), которой достаточно, чтобы возбудить сигнал в рецепторной клетке сетчатки глаза [15].^ 2. 3. Нейросети Подчинение нейрофизики закону ЭМИ можно формализовать, введя в эквивалентную электрическую схему мембраны нерва с миелиновой оболочкой вместе с конденсатором еще катушку индуктивности (Рис 8). Такая модификация эквивалентной схемы, преобразуя ее в колебательный контур, существенно расширяет диапазон электрофизических свойств нейрона. Рис 8. Модифицированная электрическая схема мембраны нерва. Rm , U – ионный канал; С – емкость мембраны; L – индуктивность глиальных миелиновых спиралей мембраны; Rin – сопротивление аксоплазмы.Помимо этого, введение катушек индуктивности в электрическую схему мембраны нерва позволяет смоделировать фактор хиральности нейрона и связать его с механизмом дифференциации нервных сигналов на возбуждающие и тормозящие. Сочетание фактора хиральности с биохимическим фактором (синаптические связи) наделяет логический элемент нейронных сетей возможностью кодировать сигналы «да» и «нет» (Рис 9). Рис 9. Модифицированная функциональная схема формального нейрона [18]. Хn – биохимические, Zn – электрофизические факторы активности нейрона; Y («да»), Y* («нет») – аналоги возбуждающего и тормозящего сигналов. Кроме того, генерируемые в нейросети ЭМ-кванты или квазифотоны можно объединить в динамичную квантовую систему (Бозе-газ) и представить мозг процессором, элементной базой которого служит вся совокупность многоуровневой иерархии нейрон-нейронных и нейроглиальных связей. При этом оперативность квантового уровня организации нейросети будет лимитироваться величиной V (5) и время передачи и обработки сигнала в масштабе нейросети от 1 мкм до 10 см будет меняться в диапазоне от 10–15 до 10–10 с. Первое значение сопоставимо с временем жизни синглетного электронно-возбужденного состояния молекулы (оптический квазифотон), а второе с характерным временем жизни тетраэдрических кластеров воды. ^ 2. 4. КАПСУЛИРОВАННЫЕ НЕРВНЫЕ ОКОНЧАНИЯ2.4.1. Тельце Фатера Пачини ЭМИ можно привлечь и для объяснения механизма генерации электрических импульсов в капсулированных нервных окончаниях. Наиболее важным для физики мозга представителем такого рода окончаний является тельце Фатера-Пачини (ТФП) (Рис 10). ТФП в изобилии присутствуют в подкожном слое ладоней и стоп, в женских гениталиях и в соединительных тканях внутренних органов [19]. Рис 10. Капсулированное окончание нерва – тельце Фатера-Пачини [19]. Линейные размеры достигают 1-2 мм.Очевидно, что ТФП помимо сенсорной функции могут акцептировать гравитационную и геомагнитную энергии и одновременно исполнять роль генераторов ЭМ-квантов. Предполагают [19], что в основе механизма генерации ПД в ТФП лежит биохимический отклик ТФП на его механическую деформацию. Однако, изоморфизм ТФП и сложных электромагнитных устройств, имеющих на стержне две вложенных одна в другую катушек индуктивности, позволяет предположить участие ЭМИ в механизме генерации ПД. Деформация ТФП, будучи сопряжена с изменениями его индукционных или емкостных характеристик, может приводить к возбуждению электромагнитных импульсов, стимулирующих генерацию ПД. В этом случае снижение величин L и С в соответствие с формулой (6) должно привести к возрастанию частоты генерации стимулов (w), а значит, и частоты следования ПД, что и наблюдается на опыте [19]. Отметим, что при отсутствии внешней деформации ТФП их фоновую активность в качестве «генераторов» квазифотонов может обеспечивать ритмическая деформация клетчатки вокруг ТФП, отвечающая пульсации кровеносной системы. Не исключено также, что LC-контур в структуре ТФП при движениях рук и ног может резонансно поглощать энергию геомагнитного поля.2.4.2. Глаз Глаз можно считать интегральным капсулированным окончанием большого числа аксонов зрительного нерва. Его основная функция – преобразование фронта фотонов видимого диапазона в сложную пространственно-временную мозаику ПД и квазифотонов. Электрическая энергия (импульс) поглощенного сетчаткой фотона стимулирует генерацию в ней ПД и частично преобразуется в импульс спайка зрительного нерва. В такой роли выступают около 10% от попадающих в глаз фотонов, остальные 90% поглощаются оптическими средами глаза [19]. При поглощении фотонов, как в сетчатке, так в других элементах глаза высока вероятность генерации состояний с внутри- и межмолекулярным переносом заряда в донорно-акцепторых фрагментах (D+δ–A–δ). Такие метастабильные состояния называются экситонами. Кинетика процесса релаксации экситонов в сетчатке коррелирует с кинетикой генерации ПД. Достаточно большое время жизни и высокая фотостационарная концентрация этих состояний обусловливают дипольную поляризацию поверхности сетчатки [20]. Перемещение зарядов сетчатки при движении глаз индуцирует вихревые магнитные поля (ЭМ-вихрь), максимальная плотность энергии которых достигается в лобных и височных долях, а также в пазухах черепа (верхнечелюстных, клиновидных, лобных) (Рис 11). Известно [11], что в данных областях локализованы функции внимания и самосознания, поэтому ЭМ-вихри глаз могут принимать прямое участие в их активации. С учетом этого предположим, что глаза и их нервная система наряду со своей сенсорной функцией играют доминирующую роль в физике когнитивных функций мозга. Именно поэтому при усиленной умственной работе, даже не связанной с чтением, сильно устают глазные мышцы, что провоцирует развитие специфического рисунка морщин вокруг глаз. Отметим, что при врожденном поражении отделов ЦНС, ответственных за формирование наглядных представлений внешнего мира («центральная врожденная слепота»), ребенок обречен остаться идиотом.Рис 11. Распределение магнитной индукции при различных движениях глаз (а, б, с) [20, 21] и схема потоков магнитной индукции во фронтальной проекции (д). Пол. – магнитное поле направлено внутрь, отр. – наружу объекта. Величина В-поля пропорциональна радиусу кружка. А), б) – горизонтальное движение глаз справа налево в пределах угла в 55о; с) – движение глаз снизу вверх. На Рис 11е показаны области мозга (вид спереди), ответственные за самосознание: красным цветом выделена медиальная префронтальная кора (связывает самоощущения и память о себе); желтым – предклинье (активация ретроспективной памяти о себе) [11].Геометрия вихревых B- и D-полей глаз задается траекториями зарядов сетчатки и мышц при движении глаз в вертикальном и горизонтальном направлениях. Локализация максимального значения В-поля при горизонтальном перемещении глаз в срединной точке (Рис 11а) указывает на суммирование в этой точке В-полей от обоих глаз. Такое возможно при условии, если метрики вихрей индуцируемых правым и левым глазам зеркально симметричны. Не исключено, что хиральность электромагнитного стимула, а значит, и знаки миелиновых спиралей нервов правого и левого глаза противоположны. Можно представить, что ЭМ-вихри индуцируют в ликворе продольной щели между полушариями зеркально симметричные пары ЭФ, их слияние, в принципе, может давать квазифотон и такой механизм генерации ЭМ-квантов, очевидно, лежит в основе экзотермического процесса рекомбинации двух разноименных электрических зарядов. Очевидно, что организующее действие ЭМ-вихрей глаз в процессе формирования самосознания ребенка обусловливает образование в медиальной префронтальной области коры нейронов уникальной формы, называемых клетками-веретенами [11, 15]. Аналогичные реакции слияния-рекомбинации ЭФ, индуцируемых в правом и левом полушарии, могут идти также и в ликворе третьего и четвертого желудочков, принимая активную роль в их биоэнергетике. Упрощенная схема фронтальной проекции D-, B-вихрей глаз показана на Рис 11д. Крестик в центре глаза обозначает уходящий в плоскость рисунка спайк зрительного нерва. Данная схема совпадает также с распределением силовых линий магнитного диполя, ориентированного по линии носа. Это согласуется также с тем фактом, что пористые кости стенок носа, клиновидной пазухи и решетчатой кости имеют высокое значение остаточной намагниченности [30]. В подтверждение важной роли глаз в когнитивной физике мозга говорит наличие сложных взаимоотношений между энергетикой глаз и базовым ритмом электрофизики мозга (альфа-ритмом): - альфа-ритм имеют только высшие млекопитающие [22] и он устанавливается синхронно с половым созреванием, после чего он не фиксируется в лобных долях [15]; - альфа-ритм, как и бета-ритм, может локализоваться обособленно в правом- или левом полушарии мозга [23]; - альфа-ритм исчезает при потере сознания и открывании глаз, однако у слепых он либо плохо выражен, либо отсутствует [15];- частоту альфа-ритма (~10 Гц) соотносится с частотой стоячей ЭМ-волны в сферическом резонаторе, который образует поверхность Земли и ее ионосфера [24].Стекловидное тело глаза в фоновом режиме может конденсировать ЭМ-энергию внешней среды и, возможно, энергию солнечного нейтрино [1, 6], напрямую питая этой энергией мозг. В пользу данного предположения свидетельствуют данные: – быстрое движение глаз в фазе парадоксального сна (фаза-БДГ) сопряжено с интенсификацией физики мозга [15]; – образование специфического пятипальцевого рельефа на поверхности глазницы, обращенной к мозгу и искривление линии носа [25]; – мышцы глазного яблока спонтанно подергиваются с частотой 20 – 150 Гц (микросаккады, тремор) [15]; – граничащий со стекловидным телом слой ганглиозных клеток сетчатки в темноте и при закрытых глазах проявляют фоновую активность с частотой от 1 до ~20 импульсов в секунду [26]; - воздействие на закрытые глаза механического давления и импульсного магнитного поля инициирует «видение» белого света (фосфены) [15, 27] - увеличение интенсивности света ведет к возрастанию частоты генерации ПД в зрительном нерве [15]; - хрусталик и стекловидное тело глаза оптически активны [28, 29]; - гликолиз глюкозы в стекловидном теле дает наряду с АТФ еще хиральную молочную кислоту [15]; - характерное время гидродинамики глаза составляет ~900 с, за это время обновляется половина жидкости стекловидного тела [15].Онтогенез асимметрии зрения, обоняния, слуха, лица (искривление носа) и половых органов синхронизован с процессом стабилизации частоты альфа-ритма [31] и за 12 – 13 лет повторяет этап филогенеза, соответствующий прямохождению. Причем уже к двум годам, когда ребенок начинает самостоятельно ходить, в генезис асимметрии мозга включается энергетика ТФП стоп и физика половых органов, гендерные особенности которой накладывают свой отпечаток на топологию и функции мозга мужчины и женщины [32]. 3. КВАЗИФОТОН 3.1. Типы квазифотонов Для описания свойств различных конденсированных сред широко используют понятие квазичастица [33]. Поскольку содержание воды в мозгу достигает ~75% [15], его можно считать высококонцентрированным коллоидным раствором. Для описания механизмов энергоинформационных процессов, лежащих в основе физики мозга, удобно использовать понятие квазифотона, как обобщение ЭМ-кванта. Таким образом, квазифотон является носителем избыточной энергии электромагнитного поля, локализованной на электроне или на системе электронов той или иной упорядоченной атомно-молекулярной структуры. Предшественником квазифотона могут быть фотон или ЭМ-квант, в случае их поглощения системой. В зависимости от энергии фотона и электронной структуры системы метрика, время жизни и судьба квазифотона варьируются в широких пределах. Физика квазифотонов генетически наследует законы атомно-молекулярной спектроскопии и свойства возбужденных состояний молекул различных типов (электронные, колебательные, трансляционные, вращательные) [34]. Смешанным электронно-ядерным конфигурациям возбужденных состояний будут отвечать вращательные и колебательные квазифотоны, а чисто электронным возбужденным состояниям – оптические квазифотоны. Примерами оптического квазифотона служат, ЭМ-стимул генерирующий ПД, экситон или электронно-возбужденное состояние молекулы. Колебательный квазифотон в упругой связанной структуре подобен фонону. Вращательный квазифотон в системе связанных ядерных или электронных спинов можно отождествить с магноном [33]. Квазифотоны могут быть свободными и связанными в зависимости от свойств среды и механизма взаимодействия ее элементов. Таким образом, метрико-динамические характеристики квазифотонов будут определяться типом химических связей и видом межмолекулярных взаимодействий, которые определяют степень упорядоченности среды. Энергия квазифотонов различных типов меняется в широком диапазоне, верхней границей которого можно считать энергию квазифотона стимулирующего генерацию ПД в перехвате Ранвье (~10–19 Дж). За низший предел энергии квазифотона можно принять энергию вихревого ЭМ-поля, генерируемого движением глаз. Плотность данной энергии при В ~ 4 пТ имеет порядок: Е = В2/(2μоμ) ~ 10–23 Дж/см3 или ~0,01 кДж/моль в см3. (11)Степень влияния данного поля на магнитно-восприимчивые микро и макро структуры и среды мозга будет определяться величиной плотности энергии: Е = (М В)/2,где М - удельная намагниченность (удельная плотность магнитных моментов - m), равная:М = Σ m. В случае кольцевых токов любой природы (J) m = J ΔS, где ΔS – площадь поверхности, охватываемой током. Причем поляризационный эффект магнитного поля может усиливаться под влиянием теплового движения частиц среды [36]. Сравнима с величиной (11) энергия теплового эффекта от светового раздражения глаз крысы, который проявляется повышением локальной температуры зрительной коры мозга на ~0,06о С [11]. Величина энергии квазифотона отвечающего данному кванту тепловой энергии составит ~10–24 Дж или ~10–3 кДж/моль. В диапазон 10–3 – 102 кДж/моль попадает энергия биогенного МКВ-излучения (λ = 100 – 1 мм, Е = 10–3 – 0,1 кДж/моль) [37]; в том числе и энергия резонансных частот воды (λ ~ 6 мм, Е = 0,02 кДж/моль) [38]. Известно [3], что энергия активации процессов ассоциирования сахаров и квантов биогенного МКВ-излучения на один-два порядка меньше тепловой энергии и сравнима по порядку величины с (11). Отсюда следует, что в процессах самоорганизации жидких сред мозга ключевую роль играют квазифотоны вращательного типа и физика лобно-височных долей, ответственная за когнитивные функции мозга, непосредственно связана с электрофизикой глаз.^ 3.2. Метрика квазифотона Элементарной структурной ячейкой жидкой воды является динамический тетраэдр, образованный из четырех молекул воды, связанных между собой водородными связями. Пятая молекула воды или соразмерная с ней молекула или атом могут находиться в центре тетраэдра, тогда он называется центрированным тетраэдром (Рис 13). Благодаря водородным связям, вода эффективно взаимодействует с растворенными молекулами, расширяя тем самым спектр их физико-химических свойств. Данная особенность водных коллоидов и гелей особенно важна для физики мозга, поскольку его межклеточные объемы, как правило, сравнимы с размерами биомолекул, клеток и органелл [35]. В силу этого следует предполагать существенное влияние эпитаксиального эффекта на процессы, регулирующие межнейронные и нейроглиальные взаимодействия. Известно, например, что в химических реакциях, протекающих в оптически активной среде или на поверхности кварца, возрастает выход хиральных продуктов. Увеличению эпитаксиального эффекта мембран и стенок различных органов, помимо посредничества воды, очевидно, способствуют связанные или адсорбированные поверхностью полипептидные и полисахаридные цепочки, а также микроворсинки (Рис 12) [15, 17]. Эпитаксиальный эффект и присутствие хиральных сахаров сказывается на кинетике обратимой адсорбции ионов и нейромедиаторов на поверхностях мембран нейронов как в перехватах Ранвье, так и в синапсах [14]. Рис. 12. Схема мембраны и выходящих из нее полисахаридных и полипептидных цепочекМетаболиты, имеющие заряд, диполь, механический или магнитный моменты, а также хиральность, влияя на электродинамическую постоянную (εμ) среды, метрику и динамику надмолекулярных структур, могут в широких пределах менять кооперативные свойства растворов, эффективность генерации и механизм движения квазифотонов. Это относится, прежде всего, к ионам (Na+, K+, Cl–, Р3+) (Таблица 1) и к молекулам, играющим роль переносчиков, акцепторов и преобразователей квазифотонов (кислород, углекислый газ, вода, сахара, АТФ, нейромедиаторы, гормоны, ферменты). Рис 13. Схема слияния двух зеркально симметричных подвижных ЭФ (ν/g-пар) в покоящийся квазифотон с тетраэдрической метрикой (а) и схема электронных орбиталей молекулы воды (б)Основным механизмом движения квазифотонов будет их резонансное поглощение и переизлучение молекулами среды, метаболитами и надмолеку


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.