Реферат по предмету "Разное"


«Реактивное движение»

Специальная средняя сменная школа №10 ученик 11-го класса Задворошный Владислав МихайловичРеферат по физике на тему: «Реактивное движение»К. Э. Циолковскийг. Санкт-Петербург 2002 г. Содержание. Реактивное движение--------------------------------------------------------------- стр.3 Межконтинентальная баллистическая ракета--------------------------------- стр.6 Заключение--------------------------------------------------------------------------- стр.8Список использованной литературы-------------------------------------------- стр.8 Реактивно движение.В течение многих веков человечество мечтало о космических по­лё­тах. Писатели-фантасты предлагали самые разные средства для дости­же­ния этой цели. В XVII веке появился рассказ французского писателя Сирано де Бержерака о полёте на Луну. Герой этого рас­сказа добрался до Луны в же­лезной повозке, над которой он всё время подбрасывал сильный магнит. Притягиваясь к нему, повозка всё выше поднималась над Землёй, пока не достигла Луны. А ба­рон Мюнхгаузен рассказывал, что забрался на Луну по стеблю боба. Но ни один учёный, ни один писатель-фантаст за многие века не смог на­звать единственного находящегося в распоряжении чело­ве­ка средства, с помощью которого можно преодолеть силу земного при­тяжения и улететь в космос. Это смог осуществить русский учё­­­ный Константин Эдуардович Циолковский (1857-1935). Он показал, что единственный аппарат, спо­соб­ный преодолеть силу тяжести - это ракета, т.е. аппарат с реактивным двига­телем, ис­поль­зующим горючее и окислитель, находящиеся на самом аппа­рате. Законы Ньютона позволяют объяснить очень важное меха­ническое явление — реактивное движение. Так называют движе­ние тела, возникающее при отделении от него с какой-либо ско­ростью некоторой его части. Возьмем, например, детский резиновый шарик, надуем его и отпустим. Мы увидим, что, когда воздух начнет выходить из него в одну сторону, сам шарик полетит в другую. Это и есть реактив­ное движение. По принципу реактивного движения передвигаются некоторые представители животного мира, например кальмары и осьминоги. Периодически выбрасывая вбираемую в себя воду, они способны развивать скорость до 60—70 км/ч. Аналогичным образом пере­мещаются медузы, каракатицы и некоторые другие животные. Примеры реактивного движения можно обнаружить и в мире растений. Например, созревшие плоды «бешеного» огурца при самом легком прикосновении отскакивают от плодоножки и из отверстия, образовавшегося на месте отделившейся ножки, с силой выбрасывается горькая жидкость с семенами; сами огурцы при этом отлетают в противоположном направлении. Реактивное движение, возникающее при выбросе воды, можно наблюдать на следующем опыте. Нальем воду в стеклянную во­ронку, соединенную с резиновой трубкой, имеющей Г - образный наконечник (см. рисунок). Мы увидим, что, когда вода начнет выли­ваться из трубки, сама трубка придет в движение и отклонится в сторону, противоположную направлению вытекания воды. На принципе реактивного движе­ния основаны полеты ракет. Совре­менная космическая ракета пред­ставляет собой очень сложный лета­тельный аппарат, состоящий из сотен тысяч и миллионов деталей. Масса ракеты огромна. Она складывается из массы рабочего тела (т. е. раска­ленных газов, образующихся в ре­зультате сгорания топлива и выбра­сываемых в виде реактивной струи) и конечной или, как говорят, «су­хой» массы ракеты, остающейся после выброса из ракеты рабочего тела. «Сухая» масса ракеты, в свою очередь, состоит из массы конструк­ции (т. е. оболочки ракеты, ее дви­гателей и системы управления) и массы полезной нагрузки (т. е. науч­ной аппаратуры, корпуса выводимого на орбиту космического аппарата, экипажа и системы жизнеобеспечения корабля). По мере истечения рабочего тела осво­бодившиеся баки, лишние части оболочки и т. д. начинают обременять ракету ненуж­ным грузом, затрудняя ее разгон. Поэтому для достижения космических скоростей при­меняют составные (или многоступенчатые) ракеты (см. рисунок). Сначала в таких ракетах работают лишь блоки первой ступени 1. Когда запасы топлива в них кончаются, они отделяются и включается вторая ступень 2; после исчерпания в ней топлива она также отделяется и включается третья ступень 3. Находящийся в головной части ракеты спут­ник или какой-либо другой космический аппарат укрыт головным обтекателем 4, обтекаемая форма которого способствует уменьшению сопротивления воздуха при по­лете ракеты в атмосфере Земли. Когда реактивная газовая струя с боль­шой скоростью выбрасывается из ракеты, сама ракета устремляется в противополож­ную сторону. Почему это происходит? Согласно третьему закону Ньютона, си­ла F, с которой ракета действует на рабочее тело, равна по величине и противоположна по направлению силе F', с которой рабочее тело действует на корпус ракеты:F' = F. Сила F' (которую называют реактивной силой) и разгоняет ракету. Из этого равенства следует, что со­общаемый телу импульс равен произве­дению силы на время ее действия. Поэ­тому одинаковые силы, действующие в течение одного и того же времени, сооб­щают телам равные импульсы. В дан­ном случае импульс mрvр, приобретае­мый ракетой, должен быть равен импульсу ­выброшенных газов: Отсюда следует, что скорость ракеты Проанализируем полученное выражение. Мы видим, что скорость ракеты тем боль­ше, чем больше скорость выбрасываемых газов и чем больше отношение массы ра­бочего тела (т. е. массы топлива) к конеч­ной («сухой») массе ракеты. Эта формула является приближен­ной. В ней не учитывается, что по мере сгорания топлива масса летящей ракеты становится все меньше и меньше. Точная формула для скорости ракеты впервые была получена в 1897 г. К. Э. Циолковским и потому носит его имя. Формула Циолковского позволяет рас­считать запасы топлива, необходимые для сообщения ракете заданной скорости. В таблице приведены отношения началь­ной массы ракеты то к ее конечной массе т, соответствующие разным скоростям ракеты при скорости газовой струи (относи­тельно ракеты) V = 4 км/с. Vр, КМ/С M0/m vp, км/с m0/m Vр, КМ/С m0/m 4 2,7 16 55 28 1100 8 7,4 20 148 32 2980 12 20,1 24 403 36 8100 Например, для сообщения ракете скорости, превышающей ско­рость истечения газов в 4 раза (V р=16 км/с), необходимо, чтобы начальная масса ракеты (вместе с топливом) превосходила конеч­ную («сухую») массу ракеты в 55 раз (то/т = 55). Это означает, что львиную долю от всей массы ракеты на старте должна состав­лять именно масса топлива. Полезная же нагрузка по сравнению с ней должна иметь очень малую массу. Важный вклад в развитие теории реактивного движения внес современник К. Э. Циолковского русский ученый И. В. Мещер­ский (1859—1935). Его именем названо уравнение движения тела с переменной массой.Реактивный двигатель-это двигатель, преобразующий хими­че­с­кую энер­гию топлива в кинетическую энергию газовой струи, при этом дви­га­тель при­обретает скорость в обратном направлении. На каких же прин­ципах и физических законах основывается его действие? Каждый знает, что выстрел из ружья сопровождается отдачей. Если бы вес пули равнялся бы весу ружья, они бы разлетелись с одинаковой скоростью. Отдача происходит потому, что отбрасываемая масса газов соз­даёт реактивную силу, благодаря которой может быть обеспечено дви­жение как в воздухе, так и в безвоздушном пространстве. И чем больше масса и скорость истекающих газов, тем большую силу отдачи ощущает наше плечо, чем сильнее реакция ружья, тем больше реактивная сила. Это легко объяснить из закона сохранения импульса, который гласит, что геометрическая (т.е. векторная) сумма импульсов тел, составляющих зам­кнутую систему, остаётся постоянной при любых движениях и взаимодействиях тел системы, т.е.К. Э. Циолковский вывел формулу, позволяющую рассчитать максимальную скорость, которую может развить ракета. Вот эта формула: Здесь vmax – максимальная скорость ракеты, v0 – начальная скорость, vr – скорость истечения газов из сопла, m – начальная масса топлива, а M – масса пустой ракеты. Как видно из формулы, эта максимально достижимая скорость зависит в первую очередь от скорости истечения газов из сопла, которая в свою очередь зависит прежде всего от вида топлива и температуры газовой струи. Чем выше температура, тем больше скорость. Значит, для ракеты нужно подбирать самое калорийное топливо, дающее наибольшее количество теплоты. Из формулы следует также, что эта скорость зависит и от начальной и конечной массой ракеты, т.е. от того, какая часть её веса при­ходится на горючее, и какая - на бесполезные (с точки зрения скорости полёта) конструкции: корпус, механизмы, и т.д. Эта формула Циолковского является фундаментом, на котором зиждется весь расчёт современных ракет. Отношение массы топлива к массе ракеты в конце работы двигателя(т.е. по существу к весу пустой ракеты) называется числом Циолковского. Основной вывод из этой формулы состоит в том, что в безвоздушном пространстве ракета разовьёт тем большую скорость, чем больше ско­рость истечения газов и чем больше число Циолковского.^ Баллистическая ракета1. Как выглядит в общих чертах современная ракета сверхдальнего действия? Прежде всего, это многоступенчатая ракета. В головной части её размещается боевой заряд, позади него   приборы управления, баки и, на­конец, двигатель. В зависимости от топлива стартовый вес ракеты пре­вышает вес полезного груза в 100-200 раз! Поэтому весит она много де­сят­ков тонн, а в длину достигает высоты десятиэтажного дома.^ Рис.1 Схема внутреннего устройства ракеты. Конструкция ракеты должна отвечать ряду требований. Например, очень важно, чтобы сила тяги проходила через центр тяжести ракеты. Если не выполнить этого и ещё ряда других условий, то ракета может отклониться от заданного курса или даже начать вращательное движение. «Подправить» курс можно с помощью рулей. Пока ракета летит в плотном воздухе, могут работать аэродинамические рули, а в разреженном воздухе - предложенные ещё Циолковским газовые рули, отклоняющие направление газовой струи. Впрочем, сейчас конструкторы начинают отказываться от применения газовых рулей, заменяя их несколькими дополнительными соплами или поворачивая само главное сопло. Например, на американской ракете, построенной по проекту «Авангард», двигатель подвешен на шарнирах, и его можно отклонять на 5-7О. Действительно, в начале полёта, когда плотность воздуха ещё велика, мала скорость ракеты, поэ­то­му рули плохо управляют. А там, где ракета приобретает большую ско­рость, мала плотность воздуха. Газовые рули хрупки и ломки, потому что их приходиться делать из графита или керамики. Каждая ступень ракеты работает в совершенно различных условиях, которые и определяют её устройство. Мощность каждой следующей ступени и время её действия меньше, поэтому и конструкция может быть проще. В настоящее время двигатели баллистических ракет преи­му­щест­вен­но работают на жидком топливе. В качестве горючего обычно используют керосин, спирт, гидразин, анилин, а в качестве окислителей - азотную и хлорную кислоты, жидкий кислород и перекись водорода. Очень активными окислителями являются фтор и жидкий озон, но из-за крайней взрывоопасности они пока находят ограниченное применение. Наиболее ответственной частью ракеты является двигатель, а в нём - камера сгорания и сопло. Здесь должны использоваться особо жаропроч­ные материалы и сложные методы охлаждения, так как температура сгорания топлива доходит до 2500-3500ОС. Обычные материалы таких температур не выдерживают. Достаточно сложны и остальные агрегаты. Например, насосы, которые подавали горючее и окислитель к форсункам камеры сгорания, уже в ракете ФАУ-2 были способны перекачивать 125 кг топлива в секунду. В ряде случаев вместо баллонов применяют баллоны со сжатым воздухом или каким-нибудь другим газом, который вытесняет го­рючее из баков и гонит его в камеру сгорания. Запускается баллистическая ракета со специального стартового ус­т­рой­ства. Часто это ажурная металлическая мачта или даже башня, около которой ракету собирают по частям подъёмными кранами. Площадки на башне размещаются против смотровых люков, через которые проверяют и налаживают оборудование. Потом ракету заправляют топливом, и башня отъезжает. Стартуя вертикально, ракета затем наклоняется и описывает почти строго эллиптическую траекторию. Значительная часть траектории полёта таких ракет проходит на высоте больше 1000 км над Землёй, где сопро­тив­ле­ние воздуха практически отсутствует, однако с приближением к цели атмосфера начинает резко тормозить движение ракеты, при этом оболочка сильно нагревается, и, если не принять меры, ракета может разрушиться, а её заряд - преждевременно взорваться.Заключение. От себя добавлю, что данное мной описание работы меж­кон­тинен­таль­ной баллистической ракеты устарело и соответствует уровню развития науки и техники 60-х годов, но, ввиду ограниченности доступа к современным научным материалам, я не имею возможности дать точное описание работы современной межконтинентальной баллисти­чес­кой ракеты сверхдальнего радиуса действия. Однако мною были освещены общие свойства, присущие всем ракетам, поэтому я считаю свою задачу выполненной.Список использованной литературы: Дерябин В. М. Законы сохранения в физике. - М. : Просвещение, 1982. Гельфер Я. М. Законы сохранения. - М. : Наука, 1967. Кузов К. Мир без форм. – М. :Мир, 1976. Детская энциклопедия. – М. : Издательство АН СССР, 1959. С. В. Громов, Н. А. Родина. Физика – М. : Просвещение, 2001. 1 Соответствует уровню развития науки и техники 60-х годов (см. заключение).


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.