Реферат по предмету "Разное"


«Концепция современного естествознания»

«Концепция современного естествознания»Содержание понятия «естествознание». Естествозна́ние — область науки, изучающая совокупность естественных наук, взятую как целое. Естествознание появилось более 3000 лет назад. Тогда не было разделения на физику, биологию, географию. Науками занимались философы. С развитием торговли и мореплавания началось развитие географии, а с развитием техники — развитие физики, химии. Естествознание - наука о явлениях и законах природы. Современное естествознание включает многие естественно-научные отрасли: физику, химию, биологию, а также многочисленные смежные отрасли, такие как физическая химия, биофизика, биохимия и многие другие. Естествознание затрагивает широкий спектр вопросов о многочисленных и многосторонних проявлениях свойств объектов природы, которую можно рассматривать как единое целое.^ Тенденции развития современного естествознания. В настоящее время фактически происходит всемирная гуманитарно-экологическая революция, которая заменила научно-техническую революцию (условно — I960—1990 гг.), что пришла в свое время на смену революции промышленной (условно 1820—1960 гг.). Жизнь показала, что несоблюдение экологических ограничений приводит к непомерным расходам на реанимацию и искусственное воссоздание изувеченной или потерянной природы. Но вполне возобновить природно-ресурсный потенциал человечество уже не может. Начинаются конкуренция, борьба наций, народов и религий за жизненное пространство, природные ресурсы, рынки сбыта. Продолжается борьба и за пути развития. В Европе победил западный христианский выбор свободного рынка и римского права. В Азии же обстановка относительно этого остается достаточно напряженной. Как замечает Г.Ф. Реймерс, для решения проблемы необходимы глубокая перестройка культуры и морали, а также изменение международного права, формирования глобальных социоэкологических взаимосвязей и правил, новых законов культурного управления развитием человечества. Эти законы должны создаваться на глубоких знаниях взаимодействий между обществом и природой, обществом и человеком, между разными социальными, религиозными и этническими группами людей, разными культурами. [1, с.254-255] В настоящее время в сфере науки преобладают тенденции, учитывающие экологическое состояние нашей планеты. Эти тенденции охватывают все сферы промышленности, энергетики, народного хозяйства. Вот основные из них: Поиск альтернативных источников энергии – это использование энергии ветра, морей и океанов, внутреннего тепла Земли, Солнца. В области промышленности – переход к безотходным новейшим технологиям, которые базируются на замкнутых циклах использования воды и воздуха. Успехи в этом направлении есть и в Украине. По данным НАН, в начале 90-х гг. действовало более 150 предприятий, цехов и производств, которые использовали оборотную систему водопользования (Стахановский завод ферросплавов, Верхнеднепровский горно-металлургический комбинат и др.) Большие перспективы, в том числе и для промышленного производства, обещает введение переработки вторичных ресурсов в намного больших объемах, чем это делается сегодня. Современные производства развиваются в направлении все большего учета влияния производства на окружающую среду. Это выражается в разработке передовых и суперсовременных методов очистки промышленных и бытовых отходов. Разработка новых видов утилизации отходов. Основная масса отходов создается на предприятиях горнодобывающего, химико-металлургического комплекса, машиностроительного, топливно-энергетического, строительного, целлюлозно-бумажного и агропромышленного комплексов. Самыми опасными являются соединения тяжелых металлов, нефтепродукты, непригодные для применения пестициды. Решение проблемы видится в создании отходоперерабатывающих комплексов с эффективными технологиями утилизации, переработки, приготовлением полезных веществ. Очень остро стоит проблема рекультивации свалок и использование освобожденных от мусора площадей. Разработка мероприятий по обезвреживанию и переработки радиоактивных и опасных отходов.^ Математика - универсальный язык точного естествознания. Вряд ли вызывает сомнение утверждение: математика нужна всем вне зависимости от рода занятий и профессии. Однако для разных людей необходима и различная математика: для продавца может быть достаточно знаний простейших арифметических операций, а для истинного естествоиспытателя обязательно требуются глубокие знания современной математики, поскольку только на их основе возможно открытие законов природы и познание ее гармонического развития. Иногда к познанию математики влекут и субъективные побуждения. Об одном из них Луций Анней Сенека (4 до н.э. - 65 н.э.), римский писатель и философ, писал: «Александр, царь Македонский, принялся изучать геометрию - несчастный! - только с тем, чтобы узнать, как мала земля, чью ничтожную часть он захватил. Несчастным я называю его потому, что он должен был понять ложность своего прозвища, ибо можно ли быть великим на ничтожном пространстве». Известно, что еще в древние времена математике придавалось большое значение. Девиз первой академии - платоновской академии - «Не знающие математики сюда не входят» - ярко свидетельствует о том, насколько высоко ценили математику на заре науки, хотя в те времена основным предметом науки была философия. Простейшие в современном понимании математические начала, включающие элементарный арифметический счет и простейшие геометрические измерения, служат отправной точкой естествознания. «Тот, кто хочет решить вопросы естественных наук без помощи математики, ставит неразрешимую задачу. Следует измерять то, что измеримо, и делать измеримым то, что таковым не является», - утверждал выдающийся итальянский физик и астроном, один из основоположников естествознания Галилео Галилей (1564-1642). Математика имеет для естествознания непреходящее значение, а потому прежде чем обратиться непосредственно к анализу ее роли, целесообразно рассмотреть вопрос о ее достоинствах. Самое лаконичное и притом довольно удачное определение математики дает Николай Бурбаки (коллективное имя группы французских математиков). Он определяет современную математику как науку о структурах, «единственными математическими объектами становятся, собственно говоря, математические структуры». В данном случае под структурой имеется в виду определенным образом упорядоченное многообразие математических элементов (чисел, функций и т.п.). В основаниях любой математической дисциплины непременно обнаруживаются некоторые математические элементы и постилируемые различия между ними. При этом для построения математической системы используются, как правило, два метода: аксиоматический и конструктивистский. Назначение математики состоит в том, она вырабатывает для остальной науки, прежде всего для естествознания, структуры мысли, формулы, на основе которых можно решать проблемы специальных наук. Это обусловлено особенностью математики описывать не свойства вещей, а свойства свойств, выделяя отношения, независимые от каких-либо конкретных свойств, то есть отношения отношений. Но поскольку и отношения, выводимые математикой, особые (будучи отношениями отношений), то ей удается проникать в самые глубокие характеристики мира и разговаривать на языке не просто отношений, а структур, определяемых как инварианты систем. Поэтому, кстати сказать, математики скорее говорят не о законах (раскрывающих общие, существенные, повторяющиеся и т.д. связи), а именно о структурах. Эти глубинные проникновения в природу и позволяют математике исполнять роль методологии, выступая носителем плодотворных идей.^ Составные части современного естествознания (физика, химия, биология, психология; Общеизвестно, что естествознание — это совокупность наук о природе. Задачей естествознания является познание объективных законов природы и содействие их практичес­кому использованию в интересах человека. Естествознание возникает в результате обобщения наблюдений, получаемых и накапливаемых в процессе практической деятельности людей, и само является теоретической основой этой прак­тической деятельности. В XIX веке было принято естественные науки (или опытное познание природы) разделять на 2 большие груп­пы. Первая группа по традиции охватывает науки о явлени­ях природы (физика, химия, физиология), а вторая — о предметах природы. Хотя деление это довольно условное, но очевидно, что предметы природы — это не только весь окружающий материальный мир с небесными телами и зем­лей, но и неорганические составные части земли, и нахо­дящиеся на ней органические существа, и, наконец, человек. Рассмотрение небесных тел составляет предмет астрономи­ческих наук, земля составляет предмет ряда наук, из кото­рых наиболее разработаны геология, география и физика земли. Познание предметов, входящих в состав земной коры и на ней находящихся, составляет предмет естественной истории с ее тремя главными отделами: минералогией, бо­таникой и зоологией. Человек же служит предметом антро­пологии, наиболее важными составными частями которой являются анатомия и физиология. В свою очередь, на ана­томии и физиологии базируются медицина и эксперимен­тальная психология. В наше время такой общепризнанной классификации естественных наук уже не существует. По объектам иссле­дования самым широким делением является деление на науки о живой и так называемой неживой природе. Важ­нейшие большие области естествознания (физика, химия, биология) можно отличать по формам движения материи, которые они изучают. Однако этот принцип, с одной сто­роны, не позволяет охватить все естественные науки (на­пример математику и многие смежные науки), с другой сто­роны, он неприменим к обоснованию дальнейших класси­фикационных делений, той сложной дифференциации и взаимосвязи наук, которые столь характерны для современ­ного естествознания. В современном естествознании органически перепле­таются два противоположных процесса: непрерывной диф­ференциации естествознания и все более узкие области на­уки и интеграции этих обособленных наук.^ Естественнонаучная революция Аристотеля. Первой естественно научной революцией, преобразовавшей астрономию, космологию и физику, было создание последовательного учения о геоцентрической системе мира, начатое еще в VI века до н.э., Анаксимандром и Аристотелем, эту научную революцию естественно назвать Аристотелевой. Геоцентрическая система мира (от др.-греч. Γῆ, Γαῖα — Земля) — представление об устройстве мироздания, согласно которому центральное положение во Вселенной занимает неподвижная Земля, вокруг которой вращаются Солнце, Луна, планеты и звёзды. С древнейших времён Земля считалась центром мироздания. При этом предполагалось наличие центральной оси Вселенной и асимметрия «верх-низ». Землю от падения удерживала какая-то опора, в качестве которой в ранних цивилизациях мыслилось какое-то гигантское мифическое животное или животные (черепахи, слоны, киты). «Отец философии» Фалес Милетский в качестве этой опоры видел естественный объект — мировой океан. Анаксимандр Милетский предположил, что Вселенная является центрально-симметричной и в ней отсутствует какое-либо выделенное направление. Поэтому у находящейся в центре Космоса Земли отсутствует основание двигаться в каком-либо направлении, то есть она свободно покоится в центре Вселенной без опоры. Ученик Анаксимандра Анаксимен не последовал за учителем, полагая, что Земля удерживается от падения сжатым воздухом. Такого же мнения придерживался и Анаксагор. Точку зрения Анаксимандра разделяли пифагорейцы, Парменид и Птолемей. Не ясна позиция Демокрита: согласно разным свидетельствам, он последовал Анаксимандру или Анаксимену. Анаксимандр считал Землю имеющей форму низкого цилиндра с высотой в три раза меньше диаметра основания. Анаксимен, Анаксагор, Левкипп считали Землю плоской, наподобие крышки стола. Принципиально новый шаг сделал Пифагор, который предположил, что Земля имеет форму шара. В этом ему последовали не только пифагорейцы, но также Парменид, Платон, Аристотель. Так возникла каноническая форма геоцентрической системы, впоследствии активно разрабатываемая древнегреческими астрономами: шарообразная Земля находится в центре сферической Вселенной; видимое суточное движение небесных светил является отражением вращения Космоса вокруг мировой оси. Что касается порядка следования светил, то Анаксимандр считал звёзды расположенными ближе всего к Земле, далее следовали Луна и Солнце. Анаксимен впервые предположил, что звёзды являются самыми далёкими от Земли объектами, закреплёнными на внешней оболочке Космоса. В этом ему следовали все последующие учёные (за исключением Эмпедокла, поддержавшего Анаксимандра). Возникло мнение (впервые, вероятно, у Анаксимена или пифагорейцев), что чем больше период обращения светила по небесной сфере, тем оно выше. Таким образом, порядок расположения светил оказывался таким: Луна, Солнце, Марс, Юпитер, Сатурн, звёзды. Сюда не включены Меркурий и Венера, потому что у греков были разногласия на их счёт: Аристотель и Платон помещали их сразу за Солнцем, Птолемей — между Луной и Солнцем. Аристотель считал, что выше сферы неподвижных звёзд нет ничего, даже пространства, в то время как стоики считали, что наш мир погружен в бесконечное пустое пространство; атомисты вслед за Демокритом полагали, что за нашим миром (ограниченным сферой неподвижных звёзд) находятся другие миры. Это мнение поддерживали эпикурейцы, его ярко изложил Лукреций в поэме «О природе вещей».^ Архимед и геометрия Евклида. Несомненно, Архимед (около 287--212 до н.э.) -- самый гениальный учёный Древней Греции. Он стоит в одном ряду с Ньютоном, Гауссом, Эйлером, Лобачевским и другими величайшими математиками всех времён. Его труды посвящены не только математике. Он сделал замечательные открытия в механике, хорошо знал астрономию, оптику, гидравлику и был поистине легендарной личностью. Сын астронома Фидия, написавшего сочинение о диаметрах Солнца и Луны, Архимед родился и жил в греческом городе Сиракузы на Сицилии. Он был приближён ко двору царя Гиерона II и его сына-наследника. Хорошо известен рассказ о жертвенном венце Гиерона. Архимеду поручили проверить честность ювелира и определить, сделан венец из чистого золота или с примесями других металлов и нет ли внутри него пустот. Однажды, размышляя об этом, Архимед погрузился в ванну, и заметил, что вытесненная его телом вода пролилась через край. Гениального учёного тут же осенила яркая идея, и с криком “Эврика, эврика!” он, как был нагой, бросился проводить эксперимент. Идея Архимеда очень проста. Тело, погружённое в воду, вытесняет столько жидкости, каков объём самого тела. Поместив венец в цилиндрический сосуд с водой, можно определить, какое количество жидкости он вытеснит, т.е. узнать его объём. А, зная объём и взвесив венец, легко вычислить удельную массу. Это и даст возможность установить истину: ведь золото -- очень тяжёлый металл, а более лёгкие примеси, и тем более пустоты, уменьшают удельную массу изделия. Но Архимед на этом не остановился. В труде “О плавающих телах” он сформулировал закон, который гласит: “Тело, погружённое в жидкость, теряет в своём весе столько, каков вес вытесненной жидкости”. Закон Архимеда является (наряду с другими, позже открытыми фактами) основой гидравлики -- науки, изучающей законы движения и равновесия жидкостей. Именно этот закон объясняет, почему стальной шар (без пустот) тонет в воде, тогда как деревянное тело всплывает. В первом случае вес вытесненной воды меньше веса самого шара, т.е. архимедова “выталкивающая” сила недостаточна для того, чтобы удержать его на поверхности. А тяжело гружёный корабль, корпус которого сделан из металла, не тонет, погружаясь только до так называемой ватерлинии. Поскольку внутри корпуса корабля много пространства, заполненного воздухом, средняя удельная масса судна меньше плотности воды и выталкивающая сила удерживает его на плаву. Закон Архимеда объясняет также, почему воздушный шар, заполненный тёплым воздухом или газом, который легче воздуха (водородом, гелием), улетает ввысь. Знание гидравлики позволило Архимеду изобрести винтовой насос для выкачивания воды. Такой насос (кохля) до недавнего времени применялся на испанских и мексиканских серебряных рудниках. Из курса физики всем знакомо Архимедово правило рычага. Согласно преданию, учёный произнёс крылатую фразу: “Дайте мне точку опоры, и я подниму Землю!”. Конечно, Архимед имел в виду применение рычага, но, он был несколько самоуверен: кроме точки опоры ему понадобился бы и совершенно фантастический рычаг -- невероятно длинный и при этом несгибаемый стержень. Достоверные факты и многочисленные легенды говорят о том, что Архимед изобрёл немало интересных машин и приспособлений. Евкли́дова геоме́трия (или элементарная геометрия) — геометрическая теория, основанная на системе аксиом, впервые изложенной в «Началах» Евклида (III век до н. э.). Элементарная геометрия — геометрия, определяемая в основном группой перемещений (изометрий) и группой подобия. Однако содержание элементарной геометрии не исчерпывается указанными преобразованиями. Так, к элементарной геометрии также относят преобразование инверсии, вопросы сферической геометрии, элементы геометрических построений, теорию измерения геометрических величин и другие вопросы. Элементарную геометрию часто называют евклидовой геометрией, так как первоначальное и систематическое её изложение, хотя и недостаточно строгое, было в «Началах» Евклида. Первая строгая аксиоматика элементарной геометрии была дана Гильбертом.^ Гелиоцентрическая система мира Н.Коперника. Вторая естественнонаучная революция. Гелиоцентрическая система мира — представление о том, что Солнце является центральным небесным телом, вокруг которого обращается Земля и другие планеты. Противоположность геоцентрической системе мира. Возникло в античности, но получило широкое распространение с конца эпохи Возрождения. В этой системе Земля предполагается обращающейся вокруг Солнца за один звёздный год и вокруг своей оси за одни звёздные сутки. Следствием второго движения является видимое вращение небесной сферы, первого — перемещение Солнца среди звёзд по эклиптике. Солнце считается неподвижным относительно звёзд. Никола́й Копе́рник (польск. Mikołaj Kopernik, нем. Nikolas Koppernigk, лат. Nicolaus Copernicus; 19 февраля 1473, Торунь — 24 мая 1543, Фромборк) — польский и прусский астроном, математик, экономист, каноник. Наиболее известен как автор гелиоцентрической системы мира, положившей начало первой научной революции. Гелиоцентрическая система в варианте Коперника может быть сформулирована в семи утверждениях: орбиты и небесные сферы не имеют общего центра; центр Земли — не центр вселенной, но только центр масс и орбиты Луны; все планеты движутся по орбитам, центром которых является Солнце, и поэтому Солнце является центром мира; расстояние между Землёй и Солнцем очень мало по сравнению с расстоянием между Землёй и неподвижными звёздами; суточное движение Солнца — воображаемо, и вызвано эффектом вращения Земли, которая поворачивается один раз за 24 часа вокруг своей оси, которая всегда остаётся параллельной самой себе; Земля (вместе с Луной, как и другие планеты), обращается вокруг Солнца, и поэтому те перемещения, которые, как кажется, делает Солнце (суточное движение, а также годичное движение, когда Солнце перемещается по Зодиаку) — не более чем эффект движения Земли; это движение Земли и других планет объясняет их расположение и конкретные характеристики движения планет.^ Кеплер и его законы движения планет. Ио́ганн Ке́плер (нем. Johannes Kepler; 27 декабря 1571 года, Вайль-дер-Штадт — 15 ноября 1630 года, Регенсбург) — немецкий математик, астроном, оптик и астролог. Открыл законы движения планет. В конце XVI века в астрономии ещё происходила борьба между геоцентрической системой Птолемея и гелиоцентрической системой Коперника. Противники системы Коперника ссылались на то, что в отношении погрешности расчётов она ничем не лучше птолемеевской. Напомним, что в модели Коперника планеты равномерно движутся по круговым орбитам: чтобы согласовать это предположение с видимой неравномерностью движения планет, Копернику пришлось ввести дополнительные движения по эпициклам. Хотя эпициклов у Коперника было меньше, чем у Птолемея, его астрономические таблицы, первоначально более точные, чем птолемеевы, вскоре существенно разошлись с наблюдениями, что немало озадачило и охладило восторженных коперниканцев. Открытые Кеплером три закона движения планет полностью и с превосходной точностью объяснили видимую неравномерность этих движений. Вместо многочисленных надуманных эпициклов модель Кеплера включает только одну кривую — эллипс. Второй закон установил, как меняется скорость планеты при удалении или приближении к Солнцу, а третий позволяет рассчитать эту скорость и период обращения вокруг Солнца. Хотя исторически кеплеровская система мира основана на модели Коперника, фактически у них очень мало общего (только суточное вращение Земли). Исчезли круговые движения сфер, несущих на себе планеты, появилось понятие планетной орбиты. В системе Коперника Земля всё ещё занимала несколько особое положение, поскольку только у неё не было эпициклов. У Кеплера Земля — рядовая планета, движение которой подчинено общим трём законам. Все орбиты небесных тел — эллипсы (движение по гиперболической траектории открыл позднее Ньютон), общим фокусом орбит является Солнце. Кеплер вывел также «уравнение Кеплера», используемое в астрономии для определения положения небесных тел. Законы планетной кинематики, открытые Кеплером, послужили позже Ньютону основой для создания теории тяготения. Ньютон математически доказал, что все законы Кеплера являются следствиями закона тяготения. Взгляды Кеплера на устройство Вселенной за пределами Солнечной системы вытекали из его мистической философии. Солнце он полагал неподвижным, а сферу звёзд считал границей мира. В бесконечность Вселенной Кеплер не верил и в качестве аргумента предложил (1610) то, что позже получило название фотометрический парадокс: если число звёзд бесконечно, то в любом направлении взгляд наткнулся бы на звезду, и на небе не существовало бы тёмных участков. Строго говоря, система мира Кеплера претендовала не только на выявление законов движения планет, но и на гораздо большее. Аналогично пифагорейцам, Кеплер считал мир реализацией некоторой числовой гармонии, одновременно геометрической и музыкальной; раскрытие структуры этой гармонии дало бы ответы на самые глубокие вопросы: Я выяснил, что все небесные движения, как в их целом, так и во всех отдельных случаях, проникнуты общей гармонией — правда, не той, которую я предполагал, но ещё более совершенной. Например, Кеплер объясняет, почему планет именно шесть (к тому времени были известны только шесть планет Солнечной системы) и они размещены в пространстве так, а не как-либо иначе: оказывается, орбиты планет вписаны в правильные многогранники. Интересно, что исходя из этих ненаучных соображений, Кеплер предсказал существование двух спутников Марса и промежуточной планеты между Марсом и Юпитером. Законы Кеплера соединяли в себе ясность, простоту и вычислительную мощь, хотя мистическая форма его системы мира основательно засоряла реальную суть великих открытий Кеплера. Тем не менее уже современники Кеплера убедились в точности новых законов, хотя их глубинный смысл до Ньютона оставался непонятным. Никаких попыток реанимировать модель Птолемея или предложить иную систему движения, кроме гелиоцентрической, больше не предпринималось. Через год после смерти Кеплера Гассенди наблюдал предсказанное им прохождение Меркурия по диску Солнца [13]. В 1665 году итальянский физик и астроном Джованни Альфонсо Борелли опубликовал книгу, где законы Кеплера применяются к открытым Галилеем спутникам Юпитера.^ Закон всемирного тяготения И.Ньютона. В рамках классической механики гравитационное взаимодействие описывается законом всемирного тяготения. Этот закон был открыт Ньютоном в 1666 г.. Он гласит, что сила гравитационного притяжения между двумя материальными точками массы m1 и m2, разделёнными расстоянием R, пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними — то есть: Здесь G — гравитационная постоянная, равная м³/(кг с²). Сама идея всеобщей силы тяготения неоднократно высказывалась и до Ньютона. Ранее о ней размышляли Эпикур, Гассенди, Кеплер, Борелли, Декарт, Роберваль, Гюйгенс и другие.[1] Кеплер полагал, что тяготение обратно пропорционально расстоянию до Солнца и распространяется только в плоскости эклиптики; Декарт считал его результатом вихрей в эфире.[2] Были, впрочем, догадки с правильной зависимостью от расстояния; Ньютон в письме к Галлею упоминает как своих предшественников Буллиальда, Рена и Гука[3]. Но до Ньютона никто не сумел ясно и математически доказательно связать закон тяготения (силу, обратно пропорциональную квадрату расстояния) и законы движения планет (законы Кеплера). В своём основном труде «Математические начала натуральной философии» (1687) Исаак Ньютон вывел закон тяготения, основываясь на эмпирических законах Кеплера, известных к тому времени. Он показал, что: наблюдаемые движения планет свидетельствуют о наличии центральной силы; обратно, центральная сила притяжения приводит к эллиптическим (или гиперболическим) орбитам. Теория Ньютона, в отличие от гипотез предшественников, имела ряд существенных отличий. Ньютон опубликовал не просто предполагаемую формулу закона всемирного тяготения, но фактически предложил целостную математическую модель: закон тяготения; закон движения (второй закон Ньютона); система методов для математического исследования (математический анализ). В совокупности эта триада достаточна для полного исследования самых сложных движений небесных тел, тем самым создавая основы небесной механики. До Эйнштейна никаких принципиальных поправок к указанной модели не понадобилось, хотя математический аппарат оказалось необходимым значительно развить.^ Универсальный закон сохранения М.Ломоносова. Выдающимся научным достижением Ломоносова является открытый им закон сохранения материи и движения. Первая формулировка этого всеобщего закона природы содержалась в письме Ломоносова к Л. Эйлеру, датированном 5 июля 1748 г. «Все встречающиеся в природе изменения происходят так,— писал ученый,—что если к чему-либо нечто прибавилось, то это отнимается у чего-то другого. Так, сколько материи прибавляется какому-либо телу, столько же теряется у другого, сколько часов я затрачиваю на сон, столько же отнимаю от бодрствования, и т. д. Так как это всеобщий закон природы, то он распространяется и на правила движения: тело, которое своим толчком возбуждает другое к движению, столько же теряет от своего движения, сколько сообщает другому, им двинутому». В дальнейших своих исследованиях Ломоносов неоднократно ссылался на закон сохранения, экспериментально подтверждал его истинность. В многочисленных исследованиях и высказываниях, характеризующих существо процессов движения в их взаимосвязи с материей, Ломоносов значительно опережал выводы современного ему естествознания. В его работах были сделаны первые шаги в раскрытии диалектики природы, которую он пытался рассматривать не как застывшую, окостенелую систему, а в процессе непрерывного развития. «Тела,— писал он,— не могут ни действовать, ни противодействовать взаимно без движения... Природа тел состоит в действии и противодействии... а так как они не могут происходить без движения... то природа тел состоит в движении, и, следовательно, тела определяются движением»24. Однако Ломоносов, как уже говорилось, жил в век механистического материализма. Он понимал движение как простое механическое перемещение тел. В этих условиях не представлялось возможным полностью раскрыть подлинную физическую картину диалектического единства, глубокой неразрывной связи материи и движения. Ломоносову принадлежит не только формулировка всеобщего закона природы, но и осуществление экспериментального подтверждения этого универсального закона. Опытную проверку принципа сохранения вещества наиболее убедительно можно было произвести путем исследования химических процессов. Именно при химических превращениях вещество одного тела частично или полностью переходит в другое тело.^ Рождение науки об электричестве. Создание теории электромагнитного поля Максвеллом.Рождение науки об электричестве Девятнадцатое столетие ознаменовалось огромными успехами в исследовании природы электричества и магнетизма. Первоначально электрические явления - искры, молнии, свойства лейденских банок накапливать заряд - считались совершенно не связанными с явлениями магнетизма, наблюдаемыми в минералах некоторых видов, в поведении стрелки компаса и т.д. Однако датский физик Эрстед (1777-1851) и французский физик Ампер (1775-1836) продемонстрировали на опыте, что проводник с электрическим током порождает эффект отклонения магнитной стрелки. Эрстед высказал мысль, что вокруг проводника с током существует магнитное поле, которое является вихревым. Ампер по существу стал творцом новой науки - электродинамики. Ампер заметил, что магнитные явления происходят тогда, когда по электрической цепи течет ток, причем величина магнитного действия зависит от интенсивности движения электричества, Для измерения этой интенсивности Ампер впервые вводит понятие силы тока, поэтому неслучайно единица силы тока носит его имя - ампер. С помощью своего учения о круговых токах, он сводит магнетизм к электричеству! Это действительно великое открытие. Ампер формулирует до сих пор не известный закон о взаимодействии токов. Более того, он высказывает следующую мысль: “Все явления, которые представляют взаимодействие тока и магнита, открытые Эрстедом, входят как частный случай в законы притяжения электрических токов”. Работа Ампера над созданием электродинамики продолжалась вплоть до 1826 г., когда вышел в свет его обобщающий труд “Теория электродинамических явлений, выведенная из опытов”. В этой работе Ампером была разработана не только качественная теория, но и количественный закон для силы взаимодействия токов. Это один из основополагающих законов электродинамики. Эстафета, принятая Ампером от Эрстеда, была передана в руки великого английского естествоиспытателя Майкла Фарадея (1791-1867). Он открыл явление электромагнитной индукции - возникновение тока в проводнике вблизи движущего магнита. Исследуя диэлектрики, Фарадей приходит к мысли о существенной роли среды в электрических взаимодействиях. Изучая характер магнитных явлений, Фарадей склоняется к мысли, что передача силы представляет собой явление, протекающее вне магнита. Он считает неверным, что эти явления представляют собой простое отталкивание и притяжение на расстоянии, полагая, что пространство, окружающее магнит, играет столь же существенную роль как и сам магнит.^ Создание теории электромагнитного поля Максвеллом Открытия, сделанные Фарадеем в области электромагнетизма, были развиты выдающимся английским математиком и физиком Максвеллом (1831-1879). В его теории электромагнетизма была установлена органическая связь электричества и магнетизма. Основываясь на идеях, высказанных ранее Фарадеем, Максвелл вводит понятие электромагнитного поля. Согласно теории Максвелла, каждая заряженная частица окружена полем - невидимым ореолом, оказывающим воздействие на другие заряженные частицы, находящиеся поблизости, т.е. поле одной заряженной частицы действует на другие заряженные частицы с некоторой силой. Такие взгляды на природу взаимодействия резко отличались от ньютоновской концепции тяготения, где притяжение считалось силой прямого взаимодействия между разделенными пространством массами. В теории Максвелла движение частицы, помещенной в данную точку пространства, определялось силовой характеристикой - напряженностью поля в этой точке. Теория электромагнитного поля Максвелла ознаменовала собой начало нового этапа в физике и естествознании. Именно на этом этапе развития физики электромагнитное поле стало реальностью, материальным носителем взаимодействия. Мир постепенно стал представляться электродинамической системой, построенной из электрически заряженных частиц, взаимодействующих посредством электромагнитного поля. Анализируя свои уравнения, Максвелл пришел к выводу о том, что должны существовать так называемые электромагнитные волны, причем скорость их распространения должна быть равна скорости света. Отсюда был сделан совершенно новый вывод: свет есть разновидность электромагнитных волн. Предсказанные теорией Максвелла электромагнитные волны действительно были открыты в 1888г. Генрихом Герцем (1857-1894). Он сумел осуществить передачу и прием электромагнитных волн очень большой длины - радиоволн. Сегодня мы имеем дело с целым набором электромагнитных волн, длина которых варьирует от значений очень маленьких, меньше, чем 1/1 000 000 000 000 м до многих километров. Все вместе они составляют электромагнитный спектр. Это и гамма-, и рентгеновские лучи, ультрафиолетовые излучения, видимый свет, инфракрасное, микроволновое и радиоизлучение. Излучения всех этих видов распространяются в вакууме со скоростью света и имеет одну и ту же природу. Трудно представить какую-либо волну без среды, в которой она могла бы распространяться. Звуковые волны распространяются в различных материальных средах: воздухе, воде, твердом теле. Поверхностные волны движутся по поверхности воды. В какой же среде распространяются электромагнитные волны? Максвелл возродил старую идею о существовании эфира, заполняющего пространство, который и должен был служить носителем электромагнитных волн. Система отсчета, связанная с неподвижным эфиром, рассматривалась как абсолютный критерий состояния покоя и отождествлялась с абсолютным пространством. Вскоре были предприняты попытки экспериментального определения скорости Земли относительно эфира, но все они приводили к отрицательному результату. Эфир обнаружить не удавалось. Наиболее известны эксперименты американского физика Майкельсона (1852-1931). Постепенно становилось ясно, что никакой эксперимент не в состоянии выявить факт движения Земли относительно эфира.^ Специальная теория относительности А.Эйнштейна. Наибольшую известность Эйнштейну принесла теория относительности, изложенная им впервые в 1905 г. в статье «К электро-динамике движущихся тел». Уже в юности Эйнштейн пытался понять, что увидел бы наблюдатель, если бы бросился со скоростью света вдогонку за световой волной. Будучи студентом, Эйнштейн изучал труды Максвелла, был убежден в существовании всепроникающего эфира и размышлял о том, как на него действуют различные поля (в частности, магнитное) и как можно экспериментально обнаружить движение относительно эфира. Теперь Эйнштейн решительно отверг концепцию эфира, что позволило рассматривать принцип равноправия всех инерциальных систем отсчета как универсальный, а не только ограниченный рамками механики. Исходя из невозможности обнаружить абсолютное движение, Эйнштейн сделал вывод о равноправии всех инерциальных систем отсчета. Он сформулировал два важнейших постулата, делавших излишней гипотезу о существовании эфира, которые составили основу обобщенного принципа относительности: 1) все законы физики одинаково применимы в


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Автоматизация процесса обработки информации складского учета
Реферат Геноцид голодом на Вінниччині (Поділлі) у 1932-1933 рр.: передумови, причини та наслідки
Реферат Зрение земноводных
Реферат Уголовно-правовые средства обеспечивающие осуществление оперативно-розыскной деятельности
Реферат Влияние кризиса 2008 года на экономическое развитие России
Реферат Портрет императора Николая II работы В.А.Серова
Реферат Экспериментальная психология (тест с ответами)
Реферат «Информационное обеспечение культурного туризма»
Реферат Политико-правовые взгляды Фомы Аквинского
Реферат Квантовые числа
Реферат Языковые стилистические особенности жанра "Заметка"
Реферат Математические модели ГТД
Реферат Thomaas Edison Essay Research Paper Dear DadI
Реферат Родной город Донецк
Реферат Интеграция обмена углеводов, белков и жиров в организме. Транспортные системы в организме человека