Реферат по предмету "Психология"


Основы психогенетики

Контрольные вопросы психогенетика
Предмет и задачи психогенетики.
История развития психогенетики.
Вариативность. Определение понятия.
Основные понятия теории наследственности.
Наследование. Определение понятия.
Генотип и фенотип.
Генотип, ген, аллель.
Доминантность. Определение понятия.
Рецессивность. Определение понятия.
Хромосомы. Кариотип.
Хромосомные аберрации.
Роль Г.Менделя в развитии генетики.
Первый закон Менделя.
Второй закон Менделя.
Третий закон Менделя.
Неменделевская генетика.
ДНК как основа наследственности.
Структура ДНК.
Транскрипция. Определение понятия.
Трансляция. Определение понятия.
Типы и структура генов.
Мутации ДНК.
Естественный отбор.
Методы психогенетических исследований.
Генеологический метод.
Метод приемных детей.
Метод близнецов.
Разновидность метода близнецов.
Психогенетические исследования интеллекта.
Вербальный и невербальный интеллект.
Темперамент. Определение понятия.
Психогенетические исследования движения.
Двигательные тесты.
Генетическая психофизиология. Предмет дисциплины и задачи.
Уровни анализа генетики мозга.
Электроэнцефалография как метод исследования.
Типы электроэнцефалографии и их наследственная обусловленность.
Функциональная асимметрия. Определение понятия.
Роль наследственности и среды в формировании функциональной асимметрии.
Развитие функциональной асимметрии в онтогенезе.
Нормативное и индивидуальное в развитии психологических признаков.
Стабильность психологических признаков в онтогенезе.
Возрастные аспекты психогенетики.
Возрастные аспекты генетической психофизиологии.
Психический дизонтогенез.
Аутизм.
Особенности функциональных асимметрий у близнецов.
Генотип – средовые соотношения в индивидуальном развитии.
Понятия, методы и модели возрастной психогенетики.
Возрастная динамика генетических и средовых детерминант.
Психогенетика
Психогенетика — междисциплинарная область знаний, пограничная «между психологией (точнее, дифференциальной психологией) и генетикой; предметом ее исследований являются относительная роль и действие факторов наследственности и среды в формировании различий по психологическим и психофизиологическим признакам. В последние годы в сферу психогенетических исследований включается и индивидуальное развитие: и механизмы перехода с этапа на этап, и индивидуальные траектории развития.
В западной литературе для обозначения этой научной дисциплины обычно используется термин «генетика поведения». Однако в русской терминологии он представляется неадекватным (во всяком случае, применительно к человеку). И вот почему.
В отечественной психологии понимание термина «поведение» изменялось, и достаточно сильно. У Л.С. Выготского «развитие поведения» — фактически синоним «психического развития», и, следовательно, для него справедливы закономерности, установленные для конкретных психических функций. Однако в последующие годы «поведение» стало пониматься более узко, скорее как обозначение некоторых внешних форм, внешних проявлений человеческой активности, имеющих личностно-общественную мотивацию.
С.Л. Рубинштейн еще в 1946 г. писал, что именно тогда, когда Мотивация перемещается из сферы вещной, предметной, в сферу личностно-общественных отношений и получает в действиях человека ведущее значение, «деятельность человека приобретает новый специфический аспект. Она становится поведением в том особом смысле, который это слово имеет, когда по-русски говорят о поведении человека. Оно коренным образом отлично от «поведения» как термина бихевиористской психологии, сохраняющегося в этом значении в зоопсихологии. Поведение человека заключает в себе в качестве определяющего момента отношение к моральным нормам».
Б.Г.Ананьев вопрос о соотношении «поведения» и «деятельности» рассматривал в ином аспекте, а именно с точки зрения того, какое из этих двух понятий является более общим, родовым. Он полагал, что его решение может быть разным в зависимости от ракурса изучения человека.
Задача психогенетики — выяснение не только наследственных, но и средовых причин формирования различий между людьми по психологическим признакам. Результаты современных психогенетических исследований дают информацию о механизмах действия среды в такой же, если не в большей, степени, как и о механизмах действия Генотипа. В общей форме можно утверждать, что основная роль в формирований межиндивидуальной изменчивости по психологическим признакам принадлежит индивидуальной (уникальной) среде. Особенно высока ее роль для личностных и психопатологических признаков. Все больший акцент в психогенетических исследованиях ставится на связь социоэкономического уровня семьи или продолжительности школьного обучения с результатами тестирования интеллекта детей. Л даже такие формальные характеристики, как параметры семейной конфигурации (количество детей, порядковый номер рождения, интервал между рождениями), оказываются небезразличными для индивидуализации ребенка — и в когнитивной, и в личностной сфере.
Вследствие этого констатируемое в исследовании сходство членов нуклеарной семьи по психологическим признакам может иметь и генетическое, и средовое происхождение. То же можно сказать и о снижении сходства при снижении степени родства: как правило, в таком случае мы имеем дело с разными семьями, т.е. речь идет об уменьшении не только количества общих генов, но и о разной семейной среде. Это означает, что снижение сходства в парах людей, связанных более далеким родством, тоже не является доказательством генетической детерминации исследуемого признака: в таких парах ниже генетическая общность, но одновременно выше средовые различия.
Все это приводит к выводу о том, что семейное исследование само по себе, без объединения с другими методами, имеет очень низкую разрешающую способность и не позволяет надежно «развести» генетический и средовый компоненты дисперсии психологического признака. Хотя, будучи объединены с другими методами, например с близнецовым, семейные данные позволяют решать вопросы, которые без них решать невозможно (например, уточнять тип наследственной передачи — аддитивный или доминантный), или контролировать средовые переменные (к примеру, общесемейную и индивидуальную среду, эффект близнецовости).
Методы психогенетики
МЕТОДЫ ПСИХОГЕНЕТИКИ (от греч. psyche—душа, genos— происхождение) — методы, позволяющие определить влияние наследственных факторов и среды на формирование тех или иных психических особенностей человека.
Наиболее информативным является метод близнецов. Он основан на том, что монозиготные (однояйцевые) близнецы имеют идентичный генотип, дизиготные (двуяйцевые) — неидентичный; при этом члены близнецовых пар любого типа должны иметь сходную среду воспитания. Тогда большее внутрипарное сходство монозиготных близнецов по сравнению с дизиготными может свидетельствовать о наличии наследственных влияний на изменчивость изучаемого признака. Существенное ограничение этого метода состоит в том, что сходство собственно психологических признаков монозиготных близнецов может иметь и негенетическое происхождение.
Генеалогический метод — исследование сходства между родственниками в разных поколениях. Для этого необходимо точное знание ряда признаков прямых родственников по материнской и отцовской линиям и охват возможно более широкого круга кровных родственников; возможно также использование данных по достаточному числу разных семей, позволяющему выявить сходство родословных. Этот метод применим главным образом в медицинской генетике и антропологии. Однако сходство поколений по психологическим признакам может объясняться не только генетической их передачей, но и социальной преемственностью.
Популяционный метод позволяет изучать распространение отдельных генов или хромосомных аномалий в человеческих популяциях. Для анализа генетической структуры популяции необходимо обследовать большую группу лиц, которая должна быть репрезентативной, т. е. представительной, позволяющей судить о популяции в целом. Этот метод также более информативен при изучении различных форм наследственной патологии. Что же касается анализа наследуемости нормальных психологических признаков, то данный метод, взятый изолированно от других методов психогенетики, надежных сведений не дает, ибо различия между популяциями в распределении той или иной психологической особенности могут вызываться социальными причинами, обычаями и т. д.
Метод приемных детей — сопоставление сходства по какому-либо психологическому признаку между ребенком и его биологическими родителями, с одной стороны, ребенком и воспитавшими его усыновителями — с другой.
Методы предполагают обязательную статистическую обработку, специфическую для каждого метода. Наиболее информативные способы математического анализа требуют одновременного использования по крайней мере двух первых методов.
Понятия генотип и фенотип - очень важные в биологии. Совокупность всех генов организма составляет его генотип. Совокупность всех признаков организма (морфологических, анатомических, функциональных и др.) составляет фенотип. На протяжении жизни организма его фенотип может изменяться, однако генотип при этом остается неизменным. Это объясняется тем, что фенотип формируется под влиянием генотипа и условий среды.
Слово генотип имеет два смысла. В широком смысле — это совокупность всех генов данного организма. Но применительно к опытам того типа, которые ставил Мендель, словом генотип обозначают сочетание аллелей, которые контролируют данный признак (например, организмы могут иметь генотип AA, Aа или аа). --PAGE_BREAK--
Термин «генотип» был введен в науку Иоганнсоном в 1909 г.
(от греч. phaino — являю, обнаруживаю и typos — отпечаток, форма, образец) — результат взаимодействия всех генов организма друг с другом и различными факторами среды, совокупность признаков, присущих данному организму.
Термин «фенотип», как и генотип, используется в двух смыслах. В широком смысле — это совокупность всех признаков организма. Но применительно к моногибридному скрещиванию словом фенотип обычно обозначают тот признак, который в этом скрещивании изучается, например высокое растение имеет один фенотип, а карликовое — другой.
Генотип — это совокупность всех генов данного организма; фенотип — это совокупность всех признаков организма.
Известно, что при одном и том же фенотипе организмы могут иметь разный генотип. Например, в опытах Менделя растения, генотип которых содержал аллели AA, и растения, генотип которых содержал аллели Aа, по фенотипу не отличались друг от друга. Может ли быть обратная ситуация, когда генотипы у организмов одинаковые, а фенотипы разные? В частности, в какой мере фенотип определяется генотипом, а в какой — влияниями среды? Этот вопрос часто обсуждается на бытовом уровне применительно к характеру или поведению людей. При этом бытуют две точки зрения.
Согласно одной из них, особенности человека целиком определяются его генотипом. Поведение задано наследственностью, с которой ничего нельзя поделать. Согласно другой точке зрения, наследственность в поведении людей играет незначительную роль по сравнению с условиями жизни и, особенно, с воспитанием.
Рассмотрим влияние наследственности и среды на более простые признаки, чем поведение людей. Даже для таких признаков возможны разные варианты.
— Некоторые признаки полностью определяются генотипом и не зависят от условий среды. К ним относятся, например, группы крови и многие генетические заболевания.
— Другие признаки зависят и от генотипа и от среды. Например, рост человека зависит от его генотипа (вспомните работу Гальтона ). В то же время рост зависит и от условий среды, в частности от питания в период роста. Цвет кожи в значительной мере определяется генотипом. Но цвет кожи людей с одинаковым генотипом очень сильно зависит от времени их пребывания на солнце ( рис. 122 ).
Рассмотрим несколько характерных примеров влияния среды на проявления генов.
1. Еще на самом раннем периоде развития генетики было обнаружено, что признак может оказаться доминантным или рецессивным в зависимости от условий, в которых развивается организм. В 1915 г. Морган показал на дрозофиле, что при выращивании в сухом воздухе обычное для «дикого» типа распределение полос на брюшке дрозофилы доминирует над ненормальным и, напротив, при избыточной влажности доминирует ненормальное распределение полос. Наблюдения такого рода еще раз показали различия между генотипом и фенотипом: при одном и том же генотипе фенотип зависел от внешнцх условий.
2. Влияние внешней среды на фенотип можно продемонстрировать на примере общественных насекомых. У пчел и муравьев из неоплодотворенных яиц развиваются самцы, а из оплодотворенных — самки. Однако фенотип этих самок зависит от условий развития: при одних условиях развивается плодовитая самка, а при других — бесплодная рабочая пчела. У муравьев существуют разные «касты» бесплодных особей. Основную часть населения муравейника составляют рабочие муравьи, которые строят муравейник, добывают пищу, выкармливают личинок и выполняют всякую другую работу. У многих видов муравьев имеются «солдаты» — муравьи с крупной головой, защищенной толстым хитином, и с особо мощными челюстями. Рабочие муравьи и солдаты — это недоразвитые самки, они бесплодны. Почему же из одних яиц, отложенных самкой, выводятся рабочие особи, из других — солдаты, из третьих — крылатые половые особи: самцы и самки? Еще в 1910 г. исследователь муравьев Вассман убрал из гнезда самку. Оказалось, что после этого рабочие муравьи начинают откладывать яйца! Этим опытом было показано, что наличие самки тормозит откладку яиц рабочими особями. При дальнейшем изучении выяснилось, что кроме веществ, которые тормозят развитие новых самок, в муравейнике циркулируют вещества, которые наоборот стимулируют развитие яичников у рабочих особей и у личинок. Эти вещества вырабатываются специальными железами рабочих муравьев. В нормальных условиях рабочие муравьи кормят этими веществами матку и личинок, из которых развиваются самцы и самки. Если матки в муравейнике нет, эти вещества получают в основном личинки. Если же личинок мало, то рабочие муравьи кормят этими веществами друг друга и тогда начинают откладывать яйца. Таким образом, было выяснено, что развитие личинок зависит от того, какой корм они получат от рабочих муравьев и какие добавки окажутся в корме. Точно так же у пчел от характера пищи и добавок зависит, разовьется личинка в рабочую пчелу или же в матку.
3. У горностаевых кроликов мех белый, но отдельные части тела — лапы, уши, кончик морды и хвост — черные. Если на спине кролика, которая покрыта белой шерстью, выстричь какой-то участок и содержать кролика при пониженной температуре, на этом участке вырастает черная шерсть. Конечно, такие пятна черной окраски на необычном месте потомкам этого кролика по наследству не передаются.
Приведенные примеры показывают, что в действительности в очень многих случаях наследуется не признак как таковой, а способность к развитию данного признака при соответствующих условиях внешней среды, которая и передается от поколения к поколению.
Рассмотрим еще раз понятие чистая линия. Группы животных и растений, потомки которых в ряде поколений не изменяются по внешнему виду и не дают расщепления, названы чистыми линиями (иногда это понятие применяют только к потомству самоопылителей). Теперь можно дополнить определение: организмы, относящиеся к чистой линии, гомозиготны по аллелям, определяющим изучаемые признаки.
Датский генетик Иоганнсен поставил опыты для определения возможности отбора в чистых линиях. Он видел, что у данного растения — гороха, принадлежащего к чистой линии, имелись горошины разного размера: мелкие, средние и крупные. Иоганнсен сажал самые мелкие горошины и самые крупные и получал от них потомство. С растений, выросших из самых мелких горошин, брались опять самые мелкие, а с растений, выросших из крупных горошин, брались самые крупные. После такой процедуры, проводившейся для ряда поколений, оказалось, что соотношение горошин разного размера (мелких, средних и крупных) было одинаковым у отбираемых растений, выросших из самых мелких семян, и выросших из самых крупных семян; при этом оно не отличалось от соотношения, которое было у исходного родительского растения. Размеры горошин были обусловлены разными случайными причинами (одни формировались, когда было больше солнца, другие, когда было больше влаги и т.д.). Но генотип у всех растений был одинаков и отбор не мог изменить соотношение размера горошин. Это показало, что селекционерам нецелесообразно вести отбор среди потомков чистых линий. Разброс размеров горошин, возникавший под влиянием случайных причин, подчинялся определенной закономерности. Больше всего было горошин некоторого среднего размера. Меньше всего было особенно мелких и особенно крупных горошин. Распределение горошин по размеру является одним из примеров нормального распределения.
Вернемся теперь к поведению человека. Здесь возникают важные вопросы, которые давно вызывают споры. Например, бывает ли человек от рождения умным или глупым? Бывают ли врожденные преступники? Или ум — результат хорошего воспитания, а преступность — результат плохого. Однако ответы на эти вопросы очень трудны. Во-первых, трудно измерять уровень интеллекта человека и характеристики его поведения. Во-вторых, трудно выяснить, какие гены имеют отношение к поведению и как различаются люди по этим генам. В-третьих, трудно сравнить или уравнять условия воспитания разных людей.
Тем не менее, некоторые результаты исследований этой проблемы заслуживают внимания, например, полученные в работах по изучению наследования интеллекта. Для определения уровня интеллекта разработан ряд тестов. Применение этих тестов к близким родственникам, которые воспитывались вместе или отдельно, и к неродственным людям, которые воспитывались вместе или отдельно, показало следующее. Во-первых, чем ближе родство людей, тем ближе их уровни интеллекта, даже если они воспитываются раздельно. Особенно сходны между собой однояйцевые близнецы (Идея использования близнецов для генетических исследований была предложена Ф.Гальтоном ). Это значит, что генотип играет заметную роль в определении интеллекта. Во-вторых, не родственники, воспитанные вместе, имеют более сходные показатели интеллекта, чем такие же не родственники, воспитывающиеся раздельно. Это показывает, что и среда (воспитание) отчасти определяет уровень интеллекта. Для большинства людей влияние наследственности и среды сопоставимо.
Модификационная изменчивость — это эволюционно закрепленные реакции организма на изменения условий внешней среды при неизменном генотипе. Такой тип изменчивости имеет две главные особенности. Во- первых, изменения затрагивают большинство или все особи в популяции и у всех них проявляются одинаково. Во-вторых, эти изменения обычно имеют приспособительный характер. Как правило, модификационные изменения не передаются следующему поколению. Классический пример модификационной изменчивости дает растение стрелолист, у которого надводные листья приобретают стреловидную форму, а подводные — лентовидную.
Если у гималайского кролика на спине удалить белую шерсть и поместить его в холод, на этом месте вырастет черная шерсть. Если черную шерсть удалить и наложить теплую повязку, вырастет белая шерсть. При выращивании гималайского кролика при температуре 30*С вся шерсть у него будет белая. У потомства двух таких белых кроликов, выращенного в нормальных условиях, появится «гималайская», окраска. Такая изменчивость признаков, вызванная действием внешней среды и не передающаяся по наследству, называется модификационной. Примеры модификационной изменчивости приведены на рис. 12.
Обычно, говоря о модификационных изменениях, имеют в виду морфологические изменения (например, изменение формы листьев) или изменения окраски (некоторые примеры приведены в п. Влияние генотипа и среды на фенотип ). Однако нередко в эту группу включают и физиологические реакции. Регуляция работы генов лактозного оперона кишечной палочки представляет собой пример такой физиологической реакции. Напомним, в чем она состоит. При отсутствии в среде обитания бактерий глюкозы и при наличии лактозы бактерия начинает синтезировать ферменты для переработки этого сахара. Если же в среде появляется глюкоза, эти ферменты исчезают и бактерия возвращается к стандартному обмену веществ.
Другой пример физиологической реакции — увеличение числа эритроцитов в крови у человека, поднявшегося в горы. Когда человек спускается вниз, где содержание кислорода нормально, число эритроцитов возвращается к норме.
В обоих примерах модификационные изменения имеют ясно выраженный приспособительный характер, поэтому их часто называют физиологическими адаптациями.
Большинство модификаций не наследуется. Однако известны и длительные модификационные изменения, сохраняющиеся и в следующем поколении (иногда даже в нескольких поколениях). Каков может быть их механизм? Как могут сохраняться на протяжении нескольких поколений изменения, которые обусловлены воздействием внешней среды, и не связаны с изменениями генотипа?
Рассмотрим один из возможных вариантов механизма такой длительной модификации. Вспомним, что в оперонах бактерий, кроме структурных генов, есть особые участки — промотор и оператор. Оператор — участок ДНК, который находится между промотором и структурными генами. Оператор может быть связан с особым белком — репрессором, который не дает двигаться РНК-полимеразе по цепи ДНК и препятствует синтезу ферментов. Таким образом, гены могут включаться и выключаться в зависимости от наличия в клетке соответствующих белков-репрессоров. Представим себе два таких оперона, у которых один из структурных генов первого оперона кодирует белок-репрессор для второго оперона, а один из структурных генов второго оперона кодирует белок-репрессор для первого оперона ( рис. 123 ). Если включен первый оперон, то заблокирован второй, и наоборот. Такое устройство с двумя состояниями называется триггером. Представим себе, что какие-то воздействия внешней среды переключили триггер из первого состояния во второе. Тогда это состояние может наследоваться. В яйцеклетке будут находиться белки-репрессоры, которые не дают триггеру переключаться. Однако при изменении условий среды, проникновении в клетку каких-то веществ, которые уберут белок-репрессор, триггер переключится из второго состояния в первое.
Такой механизм длительной модификации не является придуманным, он существует, например, у некоторых фагов. Если фаги попадают в клетку, где для них мало питательных веществ, они находятся в одном состоянии — не размножаются, а только передаются при делении клетки в дочерние. Если же в клетке возникнут благоприятные условия, фаги начинают размножаться, разрушают клетку-хозяина и выходят из нее в окружающую среду. Переключение фагов из одного состояния в другое осуществляется с помощью молекулярного триггера.     продолжение
--PAGE_BREAK--
Модификационная изменчивость не затрагивает наследственной основы организма — генотип и поэтому не передается от родителей потомству.
Еще одна особенность модификационной изменчивости — ее групповой характер. Определенный фактор внешней среды вызывает сходное изменение признаков у всех особей данного вида, породы или сорта: под воздействием ультрафиолетовых лучей все люди загорают, все растения белокочанной капусты в жарких странах не образуют кочана. При этом, в отличие от мутаций, модификации направленны, имеют приспособительное значение, происходят закономерно, их можно предсказать. Если листья на деревьях уже распустились, а ночью были заморозки, то утром листья у деревьев примут красноватый оттенок. Если мышей, которые жили на равнинах вблизи гор, переселить в горы, то у них повысится содержание гемоглобина в крови.
Благодаря возникновению модификаций особи непосредственно (адекватно) реагируют на изменение условий среды и лучше приспосабливаются к ней, что дает возможность выжить и оставить потомство.
У прокариот
Модификация есть результат пластичности клеточного метаболизма, приводящего к фенотипическому проявлению «молчащих» генов в конкретных условиях. Таким образом, модификационные изменения имеют место в рамках неизменного клеточного генотипа.
Существует несколько типов модификационных изменений. Наиболее известны адаптивные модификации, т.е. ненаследственные изменения, полезные для организма и способствующие его выживанию в изменившихся условиях. Причины адаптивных модификаций кроются в механизмах регуляции действия генов. Адаптивной модификацией является адаптация клеток Е.coli к лактозе как новому субстрату. У ряда бактерий обнаружена универсальная адаптивная реакция в ответ на различные стрессовые воздействия (высокие и низкие температуры, резкий сдвиг рН и др.), проявляющаяся в интенсивном синтезе небольшой группы сходных белков. Такие белки получили название белков теплового шока, а само явление — синдром теплового шока. Стрессовое воздействие на бактериальную клетку вызывает ингибирование синтеза обычных белков, но индуцирует синтез небольшой группы белков, функция которых предположительно заключается в противодействии стрессовому воздействию путем защиты важнейших клеточных структур, в первую очередь нуклеоида и мембран. Еще не ясны те регуляторные механизмы, которые запускаются в клетке при воздействиях, вызывающих синдром теплового шока, но очевидно, что это универсальный механизм неспецифических адаптивных модификаций.
Не все модификации обязательно адаптивны. При интенсивном действии многих агентов наблюдаются ненаследуемые изменения, случайные по отношению к вызвавшему их воздействию. Они проявляются только в условиях, которые их вызывают. Причины появления таких фенотипически измененных клеток связаны с ошибками процесса трансляции, вызванными этими агентами.
Таким образом, модификационная изменчивость не затрагивает генетической конституции организма, т.е. не является наследственной. В то же время она вносит определенный вклад в процесс эволюции. Адаптивные модификации расширяют возможности организма к выживанию и размножению в более широком диапазоне условий внешней среды. Возникающие в этих условиях наследственные изменения подхватываются естественным отбором и таким путем происходит более активное освоение новых экологических ниш и достигается более эффективная приспособляемость к ним.
Полная информация о понятии Доминантность
Согласно общепринятому определению, Доминантность (см. Дом), доминирование, форма взаимоотношений парных (аллельных) наследственных задатков — генов, при которой один из них подавляет действие др. Первый называют доминантной аллелью и обозначают прописной буквой (например, А), второй — рецессивной аллелью и обозначают строчной (а). Понятие (см. Понятие) «Д.» в генетику ввёл Г. Мендель. Различают полную Д. и промежуточную (полудоминантность). При полной Д. проявляется эффект лишь доминантной аллели, при промежуточной — с разной степенью выраженности (экспрессивности) проявляется эффект и доминантной и рецессивной аллелей. Полная Д., как и полная рецессивность, явление редкое. Проявление любого признака в фенотипе зависит от генотипа, т. е. от действия многих генов. В зависимости от условий среды и от состава генов в популяции (и, следовательно, от генотипа особи) аллель может быть доминантной, рецессивной или проявляться в промежуточных формах. Д., согласно английскому учёному Р. Фишеру, эволюционирует как система, в которой происходит подбор генов-модификаторов к данной, первоначально полудоминантной аллели. Если первоначальный эффект аллели неблагоприятный, то в ходе отбора она переходит в скрытое (рецессивное) состояние, если же эффект её положительный, — в доминантное состояние. Действием (см. Дей) такой системы можно объяснить изменение Д. аллели при перенесении её в др. генотип или под влиянием внешних условий (когда может меняться действие генов-модификаторов). Английские биологи Дж. Б. С. Холдейн и С. Райт предполагают, что подхватываются отбором и закрепляются в виде доминантных те аллели, которые дают оптимальный физиологический эффект, например синтезируют определённое количество соответствующего фермента. Д. имеет важное значение в медицине и сельском хозяйстве. В случае полного доминирования особь может нести в рецессивном состоянии вредные аллели, которые проявятся лишь в гомозиготном состоянии. Анализ (см. Анализ) подобного рода явлений проводят при медико-генетических консультациях; в животноводстве применяют метод анализа производителей по потомству. См. также Менделя законы, Эпистаз (см. Эпистаз). Лит. при ст. Генетика (см. Генетика) (см. Ген).? Ю. С. Дёмин.
Полная информация о понятии Рецессивность
Согласно общепринятому определению, Рецессивность (от лат. recessus — отступление, удаление), одна из форм фенотипического проявления генов. При скрещивании особей, различающихся по определённому признаку, Г. Мендель обнаружил, что у гибридов первого поколения один из родительских признаков исчезает (рецессивный), а другой проявляется (доминантный) (см. Менделизм, Менделя законы). Доминантная (см. Дом) форма (аллель) гена (А) проявляет своё действие в гомо- и гетерозиготном состояниях (АА, Аа), рецессивная же аллель (а) может проявиться лишь в отсутствие доминантной (-а) (см. Гетерозиготность (см. Гетерозиготность), Гомозиготность (см. Гомозиготность)). Т. о., рецессивная аллель — подавляемый член аллельной пары генов. Доминантность (см. Доминантность) (см. Дом) или Р. аллели выявляется лишь при взаимодействии конкретной пары аллельных генов. Это можно проследить при анализе гена, который встречается в нескольких состояниях (так называемая серия множественных аллелей). У кролика, например, имеется серия из 4 генов, определяющих окраску шёрстного покрова (С — сплошная окраска, или агути; cch — шиншилла; ch — гималайская окраска; с — альбинос). Если кролик имеет генотип Ccch то в этом сочетании cch — рецессивная аллель, а в комбинациях cchch и cchc она доминирует, обусловливая окраску шиншилла. Характер проявления рецессивного признака может изменяться под влиянием внешних условий. Так, у дрозофилы имеется рецессивная мутация — «зачаточные крылья», которая в гомозиготе при оптимальной температуре (25? С) приводит к резкому уменьшению размеров крыльев. При повышении температуры до 30? С размер крыльев увеличивается и может достичь нормы, т. е. проявляться как доминантный признак. Рецессивное действие гена может быть обусловлено замедлением или изменением течения какой-либо биохимической функции. Значительная часть врождённых нарушений обмена веществ у человека наследуется по рецессивному типу, т. е. клиническая картина болезни наблюдается лишь у гомозигот. У гетерозигот заболевание не проявляется за счёт функционирования нормальной (доминантной) аллели (см.«Молекулярные (см. Мол) болезни», Наследственные заболевания (см. Наследственные заболевания)). Большинство рецессивных летальных мутаций связано с нарушением жизненно важных биохимических процессов, что приводит к гибели гомозиготных по этому гену особей. Поэтому в практике животноводства и растениеводства важно выявление особей — носителей рецессивных летальных и полулетальных мутаций, чтобы не вовлекать вредные гены в селекционный процесс. Эффект (см. Эффект) инбредной депрессии при близкородственном скрещивании (см. Инбридинг (см. Инбридинг)) связан с переходом вредных рецессивных генов в гомозиготное состояние и проявлением их действия. Вместе с тем в селекционной практике рецессивные мутации часто служат ценным исходным материалом. Так, их использование при разведении норок дало возможность получать зверей со шкурками платиновой, сапфировой и других окрасок, которые часто ценятся дороже тёмно-коричневых норок дикого типа. При проведении генетического анализа применяют скрещивание гибрида с родительской формой, гомозиготной по рецессивным аллелям. Так удаётся выяснить гетеро- или гомозиготность по анализируемым парам генов. Рецессивные мутации играют важную роль в эволюционном процессе. Советский генетик С. С. Четвериков показал (1926), что природные популяции содержат огромное количество разнообразных рецессивных мутаций в гетерозиготном состоянии. Ср. Доминантность (см. Доминантность) (см. Дом), Кодоминантность (см. Кодоминантность).? Лит.: Лобашев М. Е., Генетика (см. Генетика) (см. Ген), 2 изд., Л., 1967; Маккьюсик В., Генетика (см. Генетика) (см. Ген) человека, пер. с англ., М., 1967.? М. М. Асланян.
Каждый организм характеризуется определенным набором хромосом, который называется кариотипом. Кариотип человека состоит из 46 хромосом – 22 пары аутосом и две половые хромосомы. У женщины это две X хромосомы (кариотип: 46, ХХ), а у мужчин одна Х хромосома, а другая – Y (кариотип: 46, ХY). В каждой хромосоме находятся гены, ответственные за наследственность. Исследование кариотипа проводится с помощью цитогенетических и молекулярно-цитогенетических методов.
Кариотипирование – цитогенетический метод — позволяющий выявить отклонения в структуре и числе хромосом, которые могут стать причиной бесплодия, другой наследственной болезни и рождения больного ребенка.
В медицинской генетике имеют значение два основных типа кариотипирования:
изучение кариотипа пациентов
пренатальное кариотипирование — исследование хромосом плода.
Хромосомная аберрация — мутация, изменяющая структуру хромосом. При хромосомных аберрациях происходят внутри хромосомные перестройки:
— теряется участок хромосомы; или
— удваивается участок хромосомы (ДНК-дупликация); или
— переносится участок хромосомы с одного на другое место; или
— сливаются участки разных (негомологичных) хромосом или целые хромосомы.
лат.Аберрацио — отклоняться
Основы генетики
Центральным понятием генетики является «ген». Это элементарная единица наследственности, характеризующаяся рядом признаков. По своему уровню ген — внутриклеточная молекулярная структура. По химическому составу — это нуклеиновые кислоты, в составе которых основную роль играют азот и фосфор. Гены располагаются, как правило, в ядрах клеток. Они имеются в каждой клетке, и поэтому их общее количество в крупных организмах может достигать многих миллиардов. По своей роли в организме гены представляют собой своего рода «мозговой центр» клеток.
Генетика изучает два фундаментальных свойства живых систем наследственность и изменчивость, то есть способность живых организмов передавать свои признаки и свойства из по­коления в поколение, а также приобретать новые качества. Наследственность создаст непрерывную преемственность признаков, свойств и особенностей развития в ряду поколений. Изменчивость обеспечивает материал для естественного отбора, создавая как новые варианты признаков, так и бесчисленное множество комбинаций прежде существовавших и новых при­знаков живых организмов.
Признаки и свойства организма, передающиеся по наследству, фиксируются в генах участках молекулы ДНК (или хромосомы), определяющих возможность развития одного элементарного признака или синтез одной белковой молекулы. Совокупность всех признаков организма называется фенотипом. Совокупность всех генов одного организма называется генотипом. Фенотип представляет собой результат взаимодействия генотипа и окружающей среды. Эти открытия, термины и их определения связаны с именем одного из основоположников генетики В. Иогансена.
В основу генетики были положены закономерности наследственности, обнаруженные чешским ученым Грегором Менделем при проведении им серии опытов по скрещиванию различных сортов гороха. Скрещивание двух организмов называется гибридизацией, потомство от скрещивания двух особей с различной наследственностью называется гибридным, а отдельная особь гибридом. В ходе этих исследований Менделем были открыты количественные закономерности наследования признаков. Заслуга Менделя в области генетики заключается, прежде всего, в четком изложении и описании законов генетики, которые в честь своего первооткрывателя были названы законами Менделя.    продолжение
--PAGE_BREAK--
При скрещивании двух организмов, относящихся к разным чистым линиям, все первое поколение гибридов (F1) окажется единообразным и будет нести признак одного из родителей. Это первый закон Менделя. Проявление признака зависит от того, какой из генов является доминантным, а какой рецессивным. Важно также отметить, что мутация может возникнуть в разных участках одного и того же гена. Это приводит к появлению серии множественных аллелей. Аллели - это различные состояния одного итого же гена. При этом возникает несколько вариантов одного признака (например, у мухи дрозофилы известна серия аллелей по гену окраски глаз: красная, коралловая, вишневая, абрикосовая, вплоть до белой).
Второй закон Менделя гласит, что при скрещивании двух потомков первого поколения между собой двух гетерозиготных особей (Аа) во втором поколении наблюдается расщепление в определенном числовом отношении: по феногину 3:1, но генотипу 1:2:1 (AA+2Aa+aa).
При скрещивании двух гомозиготных особей, отличающихся друг от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях. Это третий закон Менделя, проявляющийся в том случае, когда исследуемые гены находятся в разных хромосомах.
Важным этаном в становлении генетики было создание хромосомной теории наследственности, связанной с именем Т. Моргана. Он выявил закономерности наследования признаков, гены которых находятся в одной хромосоме. Их наследование идет совместно. Это называется сцеплением генов (закон Моргана). Это открытие было связано с тем, что третий закон Менделя действовал не во всех случаях. Морган логично заключил, что у любого организма признаков много, а число хромосом невелико. Следовательно, в каждой хромосоме должно находиться много генов. Закономерность наследования таких генов он и открыл.
Генетика объяснила и происхождение половых различий. Так, у человека из 23 пар хромосом 22 пары одинаковы у мужского и женского организма, а одна пара — различна. Именно благодаря этой паре различаются два пола, эти хромосомы называют половыми. Половые хромосомы у женщин одинаковы, их называют Х-хромосомами. У мужчин, кроме Х-хромосомы имеется еще У-хромосома. Если яйцеклетка оплодотворяется сперматозоидом, несущим X-хромосому, развивается женский организм, если же в яйцеклетку проникает сперматозоид, содержащий У-хромосому, развивается мужской организм. У птиц все наоборот — у самцов две Х-хромосомы, а у самок Х- и У-хромосома.
Следующим важным этапом в развитии генетики стало открытие роли ДНК в передаче наследственной информации в 30-х годах XX века. Началось раскрытие генетических законо­мерностей на молекулярном уровне, зародилась новая дисциплина — молекулярная генетика. В ходе исследований было установлено, что основная функция генов — в кодировании синтеза белков. За эти исследования в 1952 году Дж. Бидл, Э. Тэй-тум и Дж. Ледерберг были удостоены Нобелевской премии.
Затем была установлена тонкая структура генов (1950 год, С. Бензер), молекулярный механизм функционирования генетического кода, был понят язык, на котором записана генети­ческая информация (азотистые основания: аденин (А), тимин (Т), цитозин (Ц), гуанин (Г), пятиатомный сахар и остаток фосфорной кислоты. При этом аденин всегда соединяется с тимином другой цепи ДНК, а гуанин — с цитозином). Был расшифрован механизм репликации (передачи наследственной информации) ДНК. Известно, что последовательность оснований в одной нити в точности предопределяет последовательность оснований в другой (принцип комплементарности). При размножении две спирали старой молекулы ДНК расходятся, и каждая становится матрицей для воспроизводства новых цепей ДНК. Каждая из двух дочерних молекул обязательно включает в себя одну старую полинуклеотидную цепь и одну новую. Удвоение молекул ДНК происходит с удивительной точностью — новая молекула абсолютно идентична старой. В этом заключается глубокий смысл, потому что нарушение структуры ДНК, приводящее к искажению генетического кода, сделало бы невозможным сохранение и передачу генетической инфор­мации, обеспечивающей развитие присущих организму признаков. Спусковым механизмом репликации является наличие особого фермента — ДНК-полимеразы.
Изменчивостью называют способность живых организмов приобретать новые признаки и свойства. Изменчивость, является основой для естественного отбора и эволюции организмов. Различают наследственную (генотипическую) и ненаследственную (модификационную) изменчивость.
Пределы модификационной изменчивости называются нормой реакции, они обусловлены генотипом. Эта изменчивость зависит от конкретных условий среды, в которой находится отдельный организм и дает возможность приспособиться к этим условиям (в пределах нормы реакции). Такие изменения не наследуются.
Открытие способности генов к перестройке, изменению является крупнейшим открытием современной генетики. Эта способность к наследственной изменчивости получила к генетике название мутации (от лат. mutatio — изменение). Она возникает вследствие изменения структуры гена или хромосом и служит единственным источником генетического разнообразия внутри вида. Причиной мутаций служат всевозможные физические (космические лучи, радиоактивность и т. д.) и химические (разнообразные токсичные соединения) причины — мутагены. Благодаря постоянному мутационному процессу возникают различные варианты генов, составляющие резерв наследственной изменчивости. Большая часть мутаций по характеру рецессивна и не проявляется у гетерозигот. Это очень важно для существования вида. Ведь мутации оказываются, как правило, вредными, поскольку вносят нарушения в тонко сбалансированную систему биохимических превращении. Обладатели вредных доминантных мутаций, сразу же проявляющихся и гомо- и гетерозиготном организмах, часто оказываются нежизнеспособными и погибают на самых ранних этапах жизни.
Но при изменении условий внешней среды, в новой обстановке, некоторые ранее вредные рецессивные мутации, составляющие резерв наследственной изменчивости, могут оказаться полезными, и носители таких мутаций получают преимущество в процессе естественного отбора.
Изменчивость может быть обусловлена не только мутациями, но и сочетаниями отдельных генов и хромосом, например, при половом размножении — генетическая рекомбинация. Рекомбинация также может происходить за счет включения в геном клетки новых, привнесенных извне, генетических элементов — мигрирующих генетических элементов. В последнее время было установлено, что даже само их внедрение в клетку дает мощный толчок к множественным мутациям.
Одним из наиболее опасных видов мутагенов являются вирусы (от лат. virus — яд). Вирусы — это мельчайшие из живых существ. Они не имеют клеточного строения, не способны сами синтезировать белок, поэтому получают необходимые для жизнедеятельности вещества, проникая в живую клетку и используя чужие органические вещества и энергию. У человека вирусы вызывают множество заболеваний.
Хотя мутации — главные поставщики эволюционного материала, они относятся к изменениям случайным, подчиняющимся вероятностным, или статистическим, законам. Поэтому они не могут служить определяющим фактором эволюционного процесса. Правда, некоторые ученые рассматривают мутационный процесс в качестве такого фактора, забывая при этом, что в таком случае необходимо признать изначальную полезность и пригодность абсолютно всех возникающих случайных изменений, что противоречит наблюдениям в природе и экспериментам в селекции. В действительности, кроме отбора — естественного или искусственного не существует никакого другого средства регулирования наследственной изменчивости. Только случайные изменения, оказавшиеся полезными в определенных условиях окружающей среды, отбираются в природе или искусственно человеком для дальнейшей эволюции.
На основе этих исследований была создана теория нейтральных мутаций (М. Кимура, Т. Ота, 1970 — 1980-е годы). Согласно этой теории изменения в функциях белоксинтезирующего аппарата являются результатом случайных, нейтральных по своим эволюционным последствиям мутаций. Их истинная роль — провоцировать хорошо известный еще с 1940-х годов генетический дрейф — явление изменения частоты генов в популяциях под действием совершенно случайных факторов. На этой основе была провозглашена нейтралистская концепция недарвиновской эволюции, сущность которой состоит в том, что на молекулярно-генетическом уровне естественный отбор не работает. А это значит, что и изменчивость на этом уровне не является фактором эволюции. И, хотя эти представления не являются общепринятыми сегодня среди биологов, очевидно, что непосредственной ареной действия естественного отбора является фенотип, то есть живой организм, онтогенетический уровень организации живого.
Неменделевская генетика
Гениальность законов Менделя заключается в их простоте. Строгая и элегантная модель, построенная на основе этих законов, служила генетикам точкой отчета на протяжении многих лет. Однако в ходе Дальнейших исследований выяснилось, что законам Менделя подчиняются только относительно немногие генетически контролируемые Признаки. Оказалось, что у человека большинство и нормальных, и патологических признаков детерминируются иными генетическими механизмами, которые стали обозначать термином «неменделевская генетика». Таких механизмов существует множество, но в этой главе мы рассмотрим лишь некоторые из них, обратившись к соответствующим примерам, а именно: хромосомные аберрации (синдром Дауна); наследование, сцепленное с полом (цветовая слепота); импринтинг (синдромы Прадера—Вилли, Энгельмана); появление новых мутаций (развитие раковых заболеваний); экспансия (инсерция) повторяющихся нуклеотидных последовательностей (мышечная дистрофия Дюшенна); наследование количественных признаков (сложные поведенческие характеристики).
ДНК как основа наследственности
Для психогенетики, главным объектом исследования которой является природа индивидуальных различий, ознакомление со структурой и механизмами функционирования ДНК важно для понимания того, как гены влияют на человеческое поведение. Гены само поведение не кодируют. Они определяют последовательности аминокислот в белках, которые направляют и создают основу химических процессов клетки. Между геном и поведением лежат многочисленные биохимические события, открытие и понимание которых — интереснейшая задача, решаемая разными науками. Вариативность гена, тот факт что он существует во множественных формах (аллелях), создает основу для формирования индивидуальных различий — соматических, физиологических, психологических. Именно в этом смысле говорят, что ДНК и есть материальная основа наследственности: вариативность генетическая создает, в контексте средовой вариативности, вариативность фенотипическую. Нуклеиновые кислоты
Нуклеиновые кислоты являются непериодическими полимерами. Различают два вида нуклеиновых кислот: дезоксирибонуклеиновую (ДНК) и рибонуклеиновую (РНК). ДНК содержится главным образом в составе хромосом клеточного ядра; РНК находится и в ядре, и в цитоплазме.
ДНК
Во всех живых организмах (за исключением некоторых вирусов) наследственная информация передается из поколения в поколение с помощью молекул ДНК. Каждая клетка организма человека содержит примерно метра ДНК. Обычно ДНК состоит из двух комплементарных цепей, формирующих двойную правостороннюю спираль. Напомним, что каждая цепь представляет собой линейный полинуклеотид, состоящий из четырех азотистых оснований: аденина (А), гуанина (G), тимина (7) и цитозина. При формировании двойной спирали ДНК А одной цепи всегда спаривается с 7«другой, а G — с С. Эти основания называются комплементарными. Принцип селективности этой связи чрезвычайно прост и определяется принципом наличия свободного пространства. Дело в том, что спиральная лестница ДНК зажата с двух сторон в ограничивающие ее «перила», состоящие из сахара (дезоксирибозы) и фосфатных групп. Пары А— Т и G— С вписываются в «межперильное» пространство безукоризненно, а вот любые другие пары вписаться просто не могут — не помещаются. Так, по своим геометрическим размерам аденин и гуанин (длиной 12 ангстрем* каждый) значительно крупнее тимина и цитозина, длина каждого из которых составляет 8 ангстрем. Расстояние же между «перилами» всюду одинаково и равно 20 ангстремам. Так что пары А—Т и. G—C неслучайны: их структура определяется как размером (одно основание должно быть маленьким, а другое — большим), так и химическим строением азотистых оснований. Очевидно, что две цепи ДНК комплементарны друг другу.
Две цепи ДНК соединены друг с другом водородными связями, объединяющими пары нуклеотидов. А спаривается с Гдвойной водородной связью, a G с С — тройной. Водородные связи относительно непрочны; под воздействием определенных химических агентов они легко как разрушаются, так и восстанавливаются. Американский генетик Р. Левонтин, описывая природу связей в молекуле ДНК, предложил удачный образ застежки-молнии, которая многократно расстегивается и застегивается без каких-либо повреждений самой молекулы. Особенности макромолекулярной структуры ДНК были открыты американскими учеными Д. Уотсоном и Ф. Криком в 1953 г. Согласно разработанной ими трехмерной модели структуры ДНК, шаг спирали ДНК составляет примерно 34 ангстрема, а каждый ее виток содержит 10 нуклеотидов, расположенных на расстоянии 18 ангстремов друг от друга.
ДНК обладает свойством ковариантной редупликации, т.е. ее молекулы способны копировать сами себя с сохранением возникших в них изменений. Это удвоение происходит в ходе процессов, которые называются митозом и мейозом (см. гл. I). В процессе удвоения (репликации) ДНК, который осуществляется с участием ферментов, двойная спираль ДНК временно раскручивается, и происходит построение новой цепи ДНК (комплементарной старой).    продолжение
--PAGE_BREAK--
Структура ДНК динамична: двойная спираль находится в постоянном движении. Самые быстрые из известных нам процессов, разворачивающихся в ДНК, связаны с деформацией связей в каждой из ее цепей; эти процессы занимают пикосекунды (10-12 с). Разрушение и создание связей между комплементарными основаниями — процессы более медленные; они занимают от тысячной доли секунды до часа.
Одной из поразительных особенностей ядерной (хромосомной) ДНК является то, что она — не простой набор множества генов. В ДНК высших организмов много последовательностей, которые ничего не кодируют. В организме человека эти последовательности составляют примерно 80-90% всей ядерной ДНК, так что кодирующие последовательности — скорее исключение, чем правило. Некодирующие последовательности ДНК служат удобным источником так называемых полиморфных маркёров.
Малые ДНК. В клетках ядро является не единственным «местом» в организме, где можно найти ДНК. Митохондрии — органеллы, находящиеся не в ядре клетки, как хромосомы, а в цитоплазме, тоже имеют собственную ДНК, но в целом митохондриальной ДНК в клетке значительно меньше, чем ядерной.
В разных организмах количество митохондриальной ДНК не одинаково, оно изменяется от организма к организму. Например, митохондриальная ДНК человека содержит 16 569 пар нуклеотидов. Несмотря на то что в каждой клетке имеется несколько тысяч митохондрий, а организм высших животных построен из миллиардов клеток, митохондриальный геном каждой конкретной особи, по-видимому, одинаков во всех ее митохондриях. Это позволяет использовать митохондриальную ДНК в популяционных и эволюционных генетических исследованиях. РНК
Рибонуклеиновая кислота (РНК) содержится как в одно-, так и в двуцепочечных молекулах. РНК отличается от ДНК тем, что она содержит рибозу вместо дезоксирибозы и урацил (U) вместо тимина.
В соответствии с функцией и структурными особенностями различают несколько видов молекул РНК, два из которых — матричная, или информационная, РНК (мРНК, или иРНК) и транспортная РНК (тРНК). Матричная РНК принимает участие в транскрипции гена, транспортная — в его трансляции. Правильная «сборка» последовательности аминокислот в белковую цепь происходит с помощью рибосом — специальных частиц в цитоплазме клеток; они содержат трелью форму РНК — рибосомную РНК.
Транскрипция
При самокопировании ДНК каждая из ее цепочек играет роль образца для создания дополнительной к ней цепочки. Подобным же образом при образовании молекулы матричной РНК одна из цепочек служит образцом для построения дополнительной к ней цепочки.
Синтез молекулы РНК по матрице ДНК называется процессом транскрипции.
Молекула РНК имеет одноцепочечную структуру. Механизм ее образования подобен тому, который используется при репликации (самокопировании) ДНК (рис. 4.3). После окончания транскрипции мРНК покидает ядро и выходит в цитоплазму клетки, перемещаясь к рибосомам — «фабрикам» по производству белков. На рибосомах и осуществляется синтез белков.
Трансляция
Молекула белка представляет собой цепочку аминокислот. Аминокислотами называются органические (карбоновые) кислоты, содержащие, как правило, одну или две аминогруппы (~NH2) и кислотную группу СООН (отсюда и название — аминокислоты). Друг от друга аминокислоты отличаются химической группой, называемой радикалом (R).
В табл. 4.1 перечислены двадцать аминокислот, являющихся основным «строительным материалом» при создании белков. (Главные аминокислоты распадаются на три класса в зависимости от природы группы R: нейтральные (полярные и неполярные), т.е. не несушие заряда в растворе; основные, положительно заряженные в растворе; и кислотные, отрицательно заряженные в растворе.)
Белки синтезируются с помощью ферментов путем соединения аминокислот так называемой пептидной связью: С0(Ж-группа одной молекулы аминокислоты присоединяется к ЛТ-группе другой (при этом выделяется молекула воды). Данный процесс чрезвычайно сложен, но его скорость удивительна — аминокислоты строятся в цепочки полипептидов (белков) со скоростью примерно 100 аминокислот в секунду. В среднем белки содержат 100-1000 аминокислот, и от того, какова последовательность аминокислот в этих длинных цепях, зависят структура и функция данного белка. Любая аминокислота одинаково хорошо соединяется с любой другой (в том числе и с такой же); при этом взаимодействуют между собой одинаковые у всех аминокислот группы атомов NH2 и СООН. Благодаря этой способности аминокислот могут образовываться длиннейшие цепи.
Как же осуществляется синтез белков? Оказывается, что для описания строения конкретного белка достаточно указать последовательность аминокислот: какая из них занимает первое место, какая — второе, третье и т.д. Например, строение белка инсулина таково:
аланин — лизин — пролин — лейцин — аланин ...
Последовательность нуклеотидов в ДНК, а затем и в мРНК определяет, какой должна быть последовательность аминокислот, т.е. каким будет строение данного белка. Одна цепь ДНК содержит информацию о химическом строении значительного числа различных белков. Таким образом, последовательность оснований мРНК кодирует последовательность аминокислот. Сведения о строении белков — это «зерно» информации, передаваемой потомкам из поколения в поколение; кодирование аминокислот нуклеотидами и называется кодированием наследственной информации.
Всего существует 64 возможных тройки нуклеотидов (43= 64), кодирующих 20 аминокислот. Некоторые из нуклеотидных комбинаций играют роль «дорожных знаков», регулирующих синтез белка (например, кодируя стоп-сигнал — сигнал окончания транскрибированной последовательности). При этом излишние комбинации нуклеотидов могут либо вообще не использоваться при кодировании наследственной информации, либо служить дополнительными (синонимическими) способами записи тех же самых аминокислот.
«Сборка» молекулы белка из аминокислот обеспечивается весьма сложным механизмом, главным образом в рибосомах — особых органеллах клетки, находящихся в цитоплазме. Рибосомы примерно наполовину состоят из рибонуклеиновой кислоты (отсюда и их название).
Напомним, что в процессе транскрипции формируется мРНК, которая комплементарна определенному участку ДНК. В ходе трансляции нуклеотидная последовательность мРНК выступает как основа, матрица для синтеза белка. «Считывание» последовательности мРНК происходит группами по 3 нуклеотида. Каждая аминокислота соответствует определенному сочетанию трех оснований — так называемому триплету (отсюда — триплетный код), или кодону.
«Сырье» (аминокислоты), необходимое для синтеза белка, находится в цитоплазме. Доставка аминокислот к рибосомам (рис. 4.4) производится с помощью сравнительно небольших специальных молекул транспортной РНК (тРНК). Небольшими эти молекулы, состоящие примерно из сотни нуклеотидов, можно считать только по сравнению с матричной РНК, состоящей из тысяч нуклеотидов. -
Для каждой из двадцати аминокислот имеется свой тип молекулы тРНК, которая обеспечивает доставку данной аминокислоты в рибосомуСинтез белка происходит при движении рибосомы вдоль цепочки мРНК. При этом молекулы тРНК, несущие аминокислоты, выстраиваются, согласно коду молекул мРНК, в цепочку, параллельную матричной РНК. На рис. 4.4 показано, что молекула мРНК начала синтез белка, включающего, в частности, последовательность аминокислот ...«метионин—лейцин—валин—тирозин»… Валин был только что добавлен к белковой цепочке, к которой перед этим были присоединены метионин и лейцин. Кодон мРНК, представляющий собой триплет GUA, соединяется с молекулой тРНК, несущей аминокислоту валин. Молекула тРНК доставляет эту аминокислоту к концу растущей белковой цепочки и присоединяет валин к лейцину. Следующий кодон мРНК, UAC, привлекает молекулу тРНК, несущую аминокислоту тирозин. Процессы транскрипции и трансляции можно описать, использовав метафору французского ученого проф. К. Элена. На «фабрике» (в клетке) чертежи хранятся в «библиотеке» (в ядре), а для «выпуска продукции» (белков) используются не сами «чертежи» (ДНК), а их «фотокопии» (мРНК). «Копировальная машина» (РНК — полимераза) выпускает или по одной «страничке фотокопии» (ген), или сразу целую «главу» (набор генов с близкими функциями). Изготовленные «копии» выдаются через специальные «окошки» (поры ядерной мембраны). Затем их используют на «монтажных линиях» (рибосомы) с «дешифратором» (генетический код) для получения из «заготовок» (аминокислот) окончательной «продукции» (белка).
Биохимический код наследственности. Разнообразие белков
Белки выполняют в организме самые различные функции. В качестве ферментов они служат катализаторами химических реакций; в роли гормонов они, наряду с нервной системой, управляют работой различных органов, передавая химические сигналы. Белки используются в организме и как строительный материал (например, в мышечной ткани), и как транспортные средства (гемоглобин крови переносит кислород).
Размах синтеза белка, происходящего в клетке, огромен. Геном человека (набор последовательностей ДНК, определяющих генетическую индивидуальность человека) содержит порядка 6 биллионов нуклеотидов, из которых сформировано примерно 100 000 генов, чьи Размеры варьируют в пределах от 1000 до 2 миллионов нуклеотидных нар. Если бы мы захотели описать эти 6 биллионов азотистых оснований и предположили, что на одной странице можно уместить около 3000 нуклеотидов, то нам понадобилось бы примерно 2 000 000 страниц — «многотомное собрание» нуклеотидов (и это для генома только одного человека)!
Описание всех генов человека и расшифровка соответствующих последовательностей ДНК — основная задача международного исследовательского проекта «Геном Человека», который является самым крупным генетическим проектом в мире. Благодаря усилиям многих генетических лабораторий мира ученые будут иметь в своем распоряжении полное описание генома человека.
Типы и структура генов
До конца 80-х — начала 90-х годов геном называли сегмент ДНК, кодирующий полипептидную цепочку или определяющий функциональную молекулу РНК. Однако современные молекулярные исследования коренным образом изменили наше представление о структуре гена. Сегодня понятием «ген» обозначается сегмент геномной ДНК или РНК, выполняющий определенную функцию (причем выполнение этой функции вовсе не означает, что ген должен быть транскрибирован и транслирован).
В настоящее время разделяют три типа генов: гены, кодирующие белки, которые транскрибируются в РНК и затем транслируются в белки; гены, кодирующие РНК; и регуляторные гены, которые содержат нетранскрибируемые последовательности. Гены, кодирующие белки и РНК, называются структурными генами; их активность, «включение» и «выключение» определяются генами-регуляторами.
По мере проникновения в молекулярную структуру генетического материала все труднее становится находить в молекулах ДНК границы того, что обозначается понятием «ген». Это связано с тем, что процессы транскрипции (на ДНК) и трансляции (на мРНК) прямо не совпадают ни по локализации, ни по составу нуклеотидов. Наконец, постоянно увеличивается число открываемых генетических единиц. Так, наряду со структурными и регуляторными генами обнаружены, например, участки повторяющихся нуклеотидных последовательностей, функции которых мы только начинаем понимать, и мигрирующие нуклеотидные последовательности (мобильные гены).
Структура гена сложна, и в данном учебнике она подробно рассматриваться не будет. Отметим только наиболее важные моменты. В основном гены высших организмов имеют прерывистую структуру. Обычно они состоят из блоков (экзонов) — транслируемых участков, которые копируются в мРНК, переносимую в цитоплазму, и других блоков (интронов) — нетранслируемых участков, которых в мРНК нет. На начальном этапе транскрипции ген копируется полностью в пре-мРНК вместе с нитронами, которые затем «вырезаются», образуя зрелую мРНК. Так, некодирующая ДНК присутствует даже внутри самих генов
Мутации ДНК
В главах I и III были даны определение мутаций и их классификации. Здесь мы рассмотрим только один из видов мутаций — так называемые точковые мутации, т.е. мутации, вовлекающие отдельно взятые нуклеотиды. Точковые мутации представляют собой вставки или выпадения, а также изменения (разные типы замен одного азотистого основания на другое) пары нуклеотидов ДНК (или нуклеотида РНК). В результате мутирования возникают альтернативные формы генов (аллели) —ген становится полиморфным. Одни из этих мутаций являются вредоносными, т.е. вызывающими развитие наследуемых заболеваний (главы II, III), а другие — нейтральными, не вызывающими никаких существенных изменений в синтезируемых белках.    продолжение
--PAGE_BREAK--
Точковые мутации можно разделить на два больших класса. К первому классу относятся те, которые связаны с заменой основания. Мутации второго класса обусловлены так называемым сдвигом рамки считывания.
Тип мутационного события: замена основания
Замена одного основания в цепи ДНК может привести к тому что в синтезируемый белок будет встроена «неправильная» аминокислота (пример такой трансформации: Мама мыла раму => Мама рыла раму). В результате функция белка может быть нарушена. Например, если первый кодон мРНК (рис. 4.4) скопирован неправильно и вместо A UG в последовательности мРНК записана последовательность A GG, то вместо метионина будет синтезирован аргинин. Подобная замена единственной аминокислоты в цепочке сотен аминокислот, составляющих белок, может проявиться по-разному. Спектр этих проявлений — от нулевых до летальных — зависит от структуры и функции синтезируемого белка.
Тип мутационного события: сдвиг рамки считывания
Мутации, которые приводят к выпадению или вставке одного и более нуклеотидов, вызывают так называемый сдвиг рамки считывания. В среднем они более вредоносны, чем мутации замены нуклеотида. Примеры подобных трансформаций: Мама мыла раму => Ммам ылар аму — выпадение нуклеотида; Мама мыла раму => Мама мыла драму — вставка основания. Сдвигом рамки этот тип мутаций называется потому, что в результате выпадения (или случайного добавления) одного нуклеотида изменяется считывание (трансляция) кодонов в молекуле мРНК и, начиная с точки, соответствующей положению мутации, синтезируется искаженная последовательность аминокислот. Например, если в результате мутации теряется второй нуклеотид в последовательности ТАС-ААС-САТ, то эта цепочка считывается как ТСА-АСС-АТ. В результате произведенный белок будет содержать не метионин (ТАС) и лейцин (AAQ, а серии (ТСА) и триптофан (ACQ, что приведет к нарушениям последующих биохимических процессов.
Часто мутации оказываются гораздо сложнее описанных выше. Один и тот же ген может мутировать в нескольких местах. Например, известно более 60 разных мутаций одного гена ФКУ, каждая из которых приводит к развитию фенилкетонурии (гл. II), причем некоторые из этих мутаций соответствуют разным степеням тяжести заболевания. Мутации, происходящие в экзонах (кодирующих участках гена), как правило, вредоносны. К счастью, большинство мутаций в организме происходит в нитронах (некодирующих участках гена). Эти мутации не транскрибируются мРНК и, следовательно, фенотипически не проявляются.
Замечательная особенность мутаций состоит в том, что их действие может быть различным в разных организмах и фенотипические проявления одной и той же мутации у разных особей могут быть очень разнообразными. Так, обладание мутантным аллелем у одной особи ожет фенотипически проявиться в форме тяжелого заболевания, а у ПУГОЙ — в форме легкой симптоматики или даже полного ее отсуттвия. Два ключевых понятия, описывающих изменчивость проявления одной и той же мутации в популяции как совокупности организмов (подробнее о генетике популяций в гл. V), — упоминавшиеся (гл И) понятия пенетрантности и экспрессивности.
Пенетрантностъю называется частота проявления аллеля определенного гена у особей данной популяции. Различают пенетрантность полную (аллель проявляется у всех особей) и неполную (аллель не проявляется у части особей). Количественно ее выражают в процентах особей, у которых данный аллель фенотипически проявляется (100% — полная пенетрантность).
Приведем пример. Известно, что не все носители мутации гена ФКУ страдают фенилкетонурией. Пенетрантность мутантного аллеля ФКУ высока и составляет примерно 99%. Это означает, что среди каждых 100 носителей аллеля-мутанта в среднем будет один носитель, не имеющий фенотипических признаков заболевания — среди 100 мутировавших генов один ген-мутант не проявится, т.е. не вызовет развитие заболевания.
Экспрессивностью называется степень фенотипической выраженности одного и того же аллеля определенного гена у разных особей. Если фенотипический признак, контролируемый данным аллелем, в популяции не варьирует, то говорят о постоянной экспрессивности, в противоположном случае — об изменчивой (вариабельной) экспрессивности.
Различия экспрессивности означают, во-первых, разную степень пораженное носителей мутации (например, больные ФКУ — носители одной и той же мутации — могут страдать умственной отсталостью разной степени), а во-вторых, разные формы фенотипического проявления одной и той же мутации (например, предполагается, что один и тот же ген-мутант вызывает один тип психического расстройства — синдром Туретта — у мужчин и другой тип — синдром навязчивых идей — у женщин).
Новые мутации — важнейший источник генетической изменчивости, являющейся основой биологической эволюции. Частота мутирования отдельного гена чрезвычайно мала, но генов в организме много, а каждый биологический вид представлен множеством особей. Так что, когда организм или биологический вид рассматривается как Целое, мутация выглядит не как редкое, а как вполне регулярное событие. Предположим, что геном человека насчитывает 100 000 пар генов, а средняя частота мутации на один ген составляет 10~5. Тогда среднее число мутаций в одном поколении составит (2-Ю5 генов) х х (Ю~5 мутаций на ген) = 2 мутации на зиготу человека. На Земле живет около 4-Ю9 людей. Если у каждого человека возникает по 2 мутации, то общее число новых мутаций у ныне живущего населения земного шара составляет 8-109.
Генетический полиморфизм
Мутации — основной источник генетического полиморфизма, т.е. наличия в популяции нескольких аллелей одного локуса. Полиморфная природа ДНК позволила разработать системы методов генетического и психогенетического анализа, которые позволяют определить и картировать целый ряд генов, вовлеченных в формирование индивидуальных различий по исследуемым поведенческим признакам. Так например, использование полиморфных маркёров ДНК позволило картировать ген на коротком плече хромосомы 4, ответственный за развитие хореи Гентингтона.
В качестве примера рассмотрим два типа ДНК маркёров: полиморфизм длины рестрикционных фрагментов (Л/Х/'-полиморфизм) и полиморфизм повторяющихся комбинаций нуклеотидов (STR-no-лиморфизм). Для изучения полиморфности (этот процесс также называется тайпингом ДНК) ДНК выделяется из клеток крови или любых других клеток организма, содержащих ДНК (например, берется соскоб с внутренней стороны щеки). При использовании технологии RFLP, ДНК, под воздействием ферментов, распознающих специфические последовательности нуклеотидов в ДНК и избирательно разрушающих ее цепь в определенных местах, разрезается на куски-фрагменты. Такие ферменты впервые были найдены в бактериях, которые производят их с целью защиты от вирусной инфекции.
Существуют сотни таких «рестрицирующих» ферментов, каждый из которых разрезает ДНК в определенном месте, распознавая определенную последовательность оснований; этот процесс называется рестрикцией. Например, один из часто используемых ферментов, EcoRI, распознает последовательность GAA ТТС и разрезает молекулу ДНК между основаниями Си А. Последовательность GAATTC может быть представлена в геноме несколько тысяч раз. Если в определенном локусе эта последовательность различна у разных людей, то у тех из них, которые являются носителями измененной последовательности, фермент в данном локусе ее не разрежет. В результате ДНК геномов, несущих нестандартные последовательности, разрезана в данном локусе не будет и, следовательно, образует более длинный фрагмент. Таким способом распознается разница в структуре ДНК. В результате разреза «рестрицирующими» ферментами могут получиться два типа фрагментов, соответствующих данному локусу, — длинный и короткий. Их также называют аллелями. По аналогии с «обычными» генами полиморфизмы могут быть гомозиготными по короткому фрагменту, гомозиготными по длинному фрагменту или гетерозиготными по длинному и короткому фрагментам.
Несмотря на то что существуют сотни «рестрицирующих» ферентов, распознающих различные последовательности ДНК, они, как выяснилось, способны отыскать только примерно 20% полиморфны участков ДНК. Были разработаны несколько других типов ДНК-маркёров, распознающих полиморфизмы других типов. Широко используется, например, полиморфизм повторяющихся комбинаций нуклеотидов (/5ТД-полиморфизм). Как уже упоминалось, по неизвестной пока причине в ДНК присутствуют повторяющиеся последовательности, состоящие из 2, 3 или более нуклеотидов. Количество таких повторов варьирует от генотипа к генотипу, и в этом смысле они также обнаруживают полиморфизм. Например, один генотип может быть носителем двух аллелей, содержащих по 5 повторов, другой — носителем двух аллелей, содержащих по 7 повторов. Предполагается, что геном человека содержит примерно 50 000 локусов, включающих подобные повторяющиеся последовательности. Хромосомные координаты многих локусов, обнаруживающих ^ГЛ-полиморфизм, установлены и теперь используются для картирования структурных генов, служа координатами на хромосомных картах.
Таким образом, генетический полиморфизм, связанный с присутствием так называемых нейтральных (не изменяющих синтезируемый белок) мутаций, плодотворно используется в молекулярно-генетических, в том числе психогенетических, исследованиях, поскольку генетическую изменчивость, выявленную молекулярными методами, можно сопоставлять с изменчивостью фенотипов. Пока этот перспективный путь используется в подавляющем большинстве случаев для исследования разных форм патологии, дающих четко очерченные фенотипы. Однако есть все основания надеяться, что он будет включен и в изучение изменчивости нормальных психических функций. ...
Одним из наиболее замечательных биологических открытий XX столетия стало определение структуры ДНК. Расшифровка генетического кода, открытие механизмов транскрипции, трансляции и некоторых Других процессов на уровне ДНК являются фундаментом в строящемся здании психогенетики — науки, одна из задач которой состоит в раскрытии секретов соотношения генов и психики. Современные представления о структуре и функциях ДНК коренным образом изменили наши представления о структуре и функционировании генов. Сегодня гены определяются не как абстрактные «факторы наследственности», а как функциональные отрезки ДНК, контролирующие синтез белка и Регулирующие активность других генов. Одним из основных источников изменчивости являются генные мутации. Своими успехами современная молекулярная генетика обязана открытию и использованию закономерностей мутирования ДНК Целью обнаружения и картирования генетических маркёров. Именно они позволят психогенетике перейти от популяционных характеристик к индивидуальным.
Психогенетические исследования интеллекта
Подавляющее большинство исследований в психогенетике посвящено межиндивидуальной вариативности интеллекта, измеряемого, в зависимости от возраста испытуемых, различными тестами. Думается, не будет большим преувеличением сказать, что эти работы мают около 80% всего массива психогенетических публикаций принято считать, что преобладание данной проблематики объясняется стремлением понять происхождение социально наиболее значимой психологической переменной: именно с оценками интеллекта коррелирует школьная и профессиональная успешность, социальная мобильность и другие проявления социального благополучия или неблагополучия. Как справедливо пишет М.А. Холодная, «в современных условиях интеллектуальный потенциал населения — наряду с демографическим, территориальным, сырьевым, технологическим параметрами того или иного общества — является важнейшим основанием его прогрессивного развития» [166].
Кроме того, существует точка зрения, согласно которой введение наследуемости как вторичного критерия (т.е. после оценки валидности и надежности) в создание тестовых батарей повышает вероятность того, что измеряемая переменная относится к «исходному», «природному», «первичному» психологическому качеству, и тем самым повышается прогностическая валидность теста.
Однако как объект генетического исследования интеллект чрезвычайно «неудобен», прежде всего из-за отсутствия четкого, принятого если не всеми, то хотя бы большинством исследователей определения этого понятия. Один из ведущих психологов США, Р. Стернберг, по материалам двух симпозиумов, прошедших в 1921 и 1986 гг., сопоставил признаки, которые в эти годы считались существенными атрибутами интеллекта. Их — 21, среди которых 8 отсутствовали в 1921 г., но появились в 1986 г. и два, наоборот, ко времени второго симпозиума «исчезли». В наибольшем числе работ — по 50% всех исследований в обоих случаях — в качестве основной характеристики интеллекта рассматривались «компоненты высшего уровня» — понятийное мышление, решение проблем, принятие решения, но одновременно к ним относили и «элементарные процессы» — перцепцию, внимание, а также скорость обработки информации, способность к обучению, внешние поведенческие проявления — эффективность, успешность реакции, адаптацию к среде. В целом корреляция частот атрибутов интеллекта, использованных с 65-летним интервалом, равнялась 0,50, т.е. довольно большое количество их было в поле зрения исследователей и в 20-х, и в 80-х годах. Повторялись и некоторые темы дискуссий, например, сколько существует интеллектов — один или Множество? — и ни в том, ни в другом случае согласие достигнуто не было. В связи с этим обсуждался и объем понятия, и сама дефиниция. В 80-х годах предметом изучения стало взаимодействие между знанием и мыслительными процессами и т.д. Общую тенденцию Стернберг описывает как переход от психометрических вопросов в 1921 г. к изучению информационных процессов, культурного контекста и их взаимодействия — в 1986 г. [415]. Известно, что два основных подхода к оценке структуры интеллекта, а через нее и к содержанию самого понятия интеллект связаны с именами К. Спирмена и Л. Терстона. Согласно первому подход существует некоторый общий фактор, определяющий успешное решение отдельных тестовых задач — фактор общего интеллекта, обозначаемый буквой «g» (от «general factor»). Аргументом «за» его существование служит обычно констатируемая корреляция между оценками, получаемыми по разным тестовым задачам; предполагается, что успешность решения отдельных субтестов может совпадать только в том случае, если за ними стоит одна и та же латентная переменная в данном случае — общий интеллект. Однако наряду с общим фактором «g» в каждом когнитивном тесте присутствует специфичный только для него частный фактор «s». Поэтому теория Спирмена и названа двухфакторной теорией интеллекта.    продолжение
--PAGE_BREAK--
Автор второго подхода Л. Терстон утверждал обратное: интеллект есть сумма нескольких независимых способностей. Основанием такого утверждения служило выделение нескольких групповых факторов, которые и были обозначены как «первичные умственные способности». Их — 7: пространственная способность, перцептивная, вербальная, вычислительная, мнемическая, беглость речи и логическое рассуждение. Согласно этой концепции, описание индивидуального интеллекта — профиль, а не единственная оценка в столько-то баллов IQ. Дополнительными аргументами «за» эту точку зрения являются факты чрезвычайного развития какой-либо одной способности (например, описаны случаи необычных мнемических и вычислительных способностей), а также, наоборот, резкого снижения одной конкретной способности при некоторых хромосомных аномалиях. Подробно эти подходы анализируются в упоминавшейся книге М.А. Холодной [166]. Она отмечает (и вполне справедливо), что реально и в результатах Спирмена кроме общего присутствуют частные факторы, т.е. отдельные способности, а выделенные Терстоном факторы коррелируют между собой, т.е. имеют некоторую общую основу. Поэтому речь идет скорее об одной теории, в рамках которой подчеркивается либо общий (Спирмен), либо частные (Терстон) факторы.
Эта дилемма, возникшая еще в 20—30-х годах, существует поныне, хотя и в иных формах. До сих пор одни исследователи отрицают существование общего фактора «g», считая его химерой, другие полагают, что работы последних лет также подтверждают его существование, хотя никто из них не утверждает, что «проблема интеллекта» решена [182, 206]. Как будет показано дальше, эта ситуация нашла отражение и в психогенетических исследованиях. В более поздние годы возникли новые проблемы, например интерпретация интеллектуальных тестов как оценки обучаемости, скорости обработки информации [251] и т.д.
М.А. Холодная предлагает принципиально новое определение интеллекта: «интеллект — это форма организации индивидуального ментального (умственного) опыта», а индивидуальные оценки его искать в особенностях индивидуального умозрения (в том, как человек воспринимает, понимает и объясняет происходящее)» [166; I 352—353]. Она полагает, что такое понимание интеллекта больше, I ем тестовые задачи, «соответствует естественной стихии человеческого познания» и более органично встраивается в проблему индивидуальности, поскольку индивидуализированные субъективные средства овладения действительностью «выступают в качестве одного из важнейших условий индивидуализации… жизнедеятельности» человека [там же; с 354]. Таким образом, здесь речь идет не о психометрики, а скорее об оценке проявлений интеллекта в реальном поведении в реальной среде. Посмотрим, наконец, определение интеллекта в отечественных [психологических словарях последних лет — они, как всякий справочник, должны давать наиболее устоявшиеся сведения. В словаре 1983 г.: I интеллект в широком смысле есть совокупность всех познавательных (функций человека (ощущения, восприятия и др.); в узком — мышление. Отмечаются три понимания функции интеллекта: как способности к обучению, как оперирование символами, как способность к активному овладению закономерностями окружающей действительности. В словаре 1985 г.: интеллект — «относительно устойчивая структура умственных способностей индивида» [85; с. 119]. И наконец, в словаре 1996 г.: интеллект — «1) общая способность к познанию и решению проблем, определяющая успешность любой деятельности и лежащая I в основе других способностей; 2) система всех познавательных способностей индивида: ощущения, восприятия, памяти, представления, мышления, воображения; 3) способность к решению проблем без проб и ошибок, «в уме». Понятие И. как общей умственной способности применяется в качестве обобщения поведенческих характеристик, связанных с успешной адаптацией к новым жизненным задачей» [129; с. 138]. Общее в этих определениях одно: понимание интеллекта как совокупности всех когнитивных способностей, близкое к схеме Спирмена. Другие аспекты различаются, что и отражает сложность той реальности, которая скрывается за понятием «интеллект». Нельзя не согласиться с А. Дженсеном, когда он говорит, что неопределенный термин — не лучший фенотип для психогенетического анализа [296]. Все это важно иметь в виду, когда идет речь о происхождении индивидуальных различий по интеллекту. Учитывая, что в психогенетике используются психометрические процедуры, поскольку именно они позволяют получить континуум индивидуальных оценок (тесты Векслера, Стенфорд-Бине, Бейли и т.д. — в зависимости от возраста), Все выводы касаются только того «интеллекта», который диагностируется этим инструментарием. Отсутствие какой-либо теории интеллекта, стоящей за ним, Отмечалось многократно. Не случайно иногда исследователи специально оговаривают, что именно будет пониматься под термином «интеллект» в конкретной работе. Например, видная американская исследовательница С. Скарр в одной из своих последних работ пишет: «Для целей данной главы интеллект определяется как оценки (scores) когнитивных тестов, включая стандартные тесты интеллекта и факторы извлекаемые из тестов специфических когнитивных способностей; чаще всего интеллект будет означать общий интеллект, или «g». Принимается, что интеллект развивается через овладение культурно значимыми знаниями и навыками в человеческой «социальной среде»» [398; с. 4]
По мнению Дженсена, необходимо, очевидно, вообще «различать фенотип, подлежащий изучению, и некоторый частный индекс этого фенотипа. Интеллект как психологический конструкт и IQ как стандартизованная оценка данного ментального теста — примеры фенотипа и его индекса. Не обязательно существует идеальная корреляция между реальным фенотипом (если он поддается измерению) и некоторым его индексом» [296; с. 55]. Поэтому и причины формирования изменчивости того и другого, как считает Дженсен, могут не совпадать.
Иными словами, — повторим еще раз, поскольку это принципиально важно, — интерпретация данных, получаемых при изучении изменчивости оценок интеллекта прямо зависит от интерпретации той латентной переменной, на диагностику которой направлена используемая методика. С пониманием этой стороны дела перейдем к изложению эмпирических данных в психогенетике интеллекта.
Учитывая, что любой метод психогенетики, как и вообще любой исследовательский метод, имеет свои ограничения, наиболее убедительные сведения мы можем добыть, объединяя и сопоставляя результаты, полученные разными методами.
Одно из первых таких обобщений появилось в 1963 г. [248; см. также 130]. В нем были обобщены результаты 52 работ, включавших 30 000 пар — 99 групп людей разных степеней родства. В обобщение были включены только те исследования, которые имели достаточно большие выборки, не вызывавшие сомнений психодиагностические методики, в близнецовой части — надежную диагностику зиготности. Более двух третей всех корреляций относится к баллам IQ, остальные — к специальным тестам. Даже врозь воспитанные МЗ близнецы имеют более высокое в среднем сходство, чем ДЗ и сиблинги, выросшие вместе. Это позволило авторам сделать вывод о генетической обусловленности вариативности оценок интеллекта: средние значения корреляций близки к тем, которые могут быть получены теоретически, с учетом только меры генетической общности. Следующее обобщение содержится в работе Р. Пломина и Ф. де Фриза [360; см. также 132]. Она интересна и тем, что в ней сопоставляются результаты, усредненные дважды — по работам, произведенным до 1963 г. и с 1976 по 1980 г. Это позволяет оценить воспроизводимость результатов — очень важный показатель их надежности.
Обе колонки корреляций, независимо от колебаний величины коэффициентов, обнаруживают одну и ту же закономерность: одинаковые гены дают высокое сходство по интеллекту даже в том случае, если среда была разной; одна и та же среда, при отсутствии общих генов, дает несопоставимо меньшее сходство по баллам IQ. В самом деле: сходство вместе выросших МЗ близнецов равно надежности теста, т.е. результатам повторного тестирования одних и тех же людей v= 0,86 и г = 0,87 соответственно); у разлученных МЗ близнецов сходство несколько ниже, однако оно все же выше, чем у родственников, живущих вместе, но имеющих только 50% общих генов (у пер-1Х оно равно 0,75, у вторых корреляции колеблются от 0,34 до 0,62); конец, у последней группы людей, воспитанных в одной семье, но являющихся родственниками, т.е. не имеющих общих генов, сходство по интеллекту самое низкое (0,15—0,25). Исключение составляет сходство супругов между собой, но это — особый феномен ассорт3' тивности, т.е. избирательного подбора супружеских пар (гл. V, VIII)' не результат совместной среды.
Генетико-математический анализ этого материала, осуществленный методом подбора моделей, показал, что генетические влияния определяют 45% вариативности по интеллекту, а влияния общей среды имеют разный вес в разных группах: больше всего ее вклад — в выборке близнецов (37%), затем — сиблингов (24%), родителей и детей (20%), двоюродных родственников (11%) [363].
Популяционная вариативность признака формируется во взаимодействии генотипов и сред (см. основную формулу генетики количественных признаков, гл. VIII), поэтому можно предположить, что существенные социальные, экономические и другие изменения в жизни общества могут повлечь за собой и изменения в соотношении генетических и средовых детерминант в изменчивости интеллекта. С этой точки зрения очень интересно недавнее норвежское исследование близнецов-мужчин, служащих в норвежской армии [420; цит. по: 363]. У 757 пар МЗ и 1093 пар ДЗ близнецов, которые были разделены на когорты по годам рождения с 1930 по 1960, оценивался широкий спектр интеллектуальных способностей. За это время, особенно после Второй мировой войны, в Норвегии произошли большие перемены в социальной и общеобразовательной политике в сторону расширения гражданских прав и возможностей для учебы. Результаты генетического анализа таковы: в целом по выборке внутрипарные корреляции МЗ и ДЗ близнецов — соответственно 0,83 и 0,51; среди родившихся в 1931—1935 гг., перед войной, эти величины равны 0,84 и 0,51; для родившихся после войны и, следовательно, росших в существенно иных условиях корреляции практически такие же: 0,83 и 0,51. В результате оценки наследуемости оказались несколько выше тех, которые получают обычно: h2 = 2 (гмз — гдз) = 0,64 (как правило, они колеблются вокруг 0,50). Возможно, это отражает действие каких-то факторов, специфичных для Норвегии, но нам сейчас важно обратить внимание на то, что изменения (даже существенные) социальной среды воспитания, находящиеся в пределах экологической адекватности для человека, не меняют зависимость вариативности интеллекта от вариативности генотипов в данной популяции. Как уже отмечалось, одним из наиболее надежных экспериментальных (точнее, квазиэкспериментальных) приемов психогенетики является исследование разлученных МЗ близнецов, поскольку в этом исследователь имеет близкую к критическому эксперименту ситуацию: два человека с идентичной наследственностью воспитаны разных условиях, и, следовательно, обнаруживаемое между ними сходство не может быть объяснено общей средой.
Однако в данных исследованиях неизбежно возникают два взаимосвязанных вопроса: во-первых, что реально означает «разлучение» близнецов вообще и, во-вторых, насколько различными были средовые условия, релевантные исследуемой психологической черте.
Еще в 1958 г. А. Анастази [181] детально проанализировала первую работу по разлученным МЗ близнецам, имевшую довольно большую выборку — 19 пар [344]. Оказалось, что внутрипарная разность баллов IQ тем больше, чем больше разница в полученном близнецами образовании: в парах с большой разницей (от 4 до 14 лет) в образовании средняя разность IQ составила 16 пунктов (в пользу лучшего образованного близнеца); в подгруппе с одинаковой продолжительностью образования эта разность существенно ниже — 4,5 пункта. Если разница в социальных условиях, оцененных экспериментаторами по 50-балльной шкале, больше 25 баллов, то средние различия по IQ равны 12,5 пункта; при небольшой разнице условий (в 7-15 баллов) интеллект различается меньше — на 6,2 пункта. В целом по группе различия в баллах IQ коррелируют: с различиями в образовании г =0,79 (р
В целом А. Анастази заключает, что различий по IQ, порожденных случайными факторами, в этой группе разлученных МЗ нет, но отчетливо прослеживается положительное влияние образования. Иными словами, разлучение само по себе не приводит к возникновению различий; «психологически разлучение — не география» [181; с. 298].
Позже, в 1974 г., вышла нашумевшая и обсуждаемая до сих пор работа Л. Кэмина «Наука и политика IQ» [303]. Она может служить хорошим примером анализа первого из указанных выше вопросов.
Л. Кэмин заново обработал данные, полученные Дж. Шилдсом на 40 парах английских разлученных близнецов 8-59 лет. Оказалось, что 27 из них воспитывались в родственных семьях, причем чаще всего один близнец оставался у матери, а второй воспитывался либо у бабушки по матери, либо у тети. Только 13 пар попали в семьи, не связанные родством. Внутрипарные корреляции по IQ: 0,83 в первом случае и 0,54— во втором, причем оказалось, что во второй из этих подгрупп один близнец часто оставался у матери, а второй был отдан в семью близких друзей. У 7 пар были особо сходные условия; здесь корреляция неправдоподобно высока: г = 0,99, что значительно выше надежности теста; у остальных 33 пар г = 0,66. Более того, оказалось, что определенную роль играет и то, у чьих родственников воспитывался близнец — матери или отца; в первом случае г = 0,94, во втором г = 0,56.
Только 10 пар были разлучены так, что не воспитывались в родственных семьях и не посещали одну школу, хотя 8 пар из них достаточно часто встречались. Для этих 10 пар г =0,47.
Конечно, 0,47 — корреляция для данных условий достаточно высокая, она существенно выше, чем сходство приемных сиблингов, т.е. Детей, воспитывающихся в одной семье и, следовательно, разделяющих одну общесемейную среду, но не являющихся генетическими родственниками. Кроме того, благодаря отсутствию одних и тех же общесемейных влияний, она может служить прямой оценкой наследуемости и в таком случае примерно совпадает с коэффициентом наследуемости интеллекта, получаемым на основе метаанализа и равным примерно 0,50.    продолжение
--PAGE_BREAK--
Эта работа Л. Кэмина (она касалась и других исследований разлученных МЗ близнецов) вызвала интенсивную и длительную дискуссию [254, 206 и др.]; обсуждаются и детали статистических процедур, Реальный уровень разлученности, возрастные и половые различия выборок и т.д. При этом некоторые различия в оценках внутрипарного сходства разлученных МЗ близнецов, конечно, констатируются, но 0 'сходство) никогда не снижается до уровня корреляций, полученных например, в парах, объединенных общей средой, но не имеющих общих генов (приемные сиблинги, усыновитель и приемный родитель. В группе МЗ близнецов, оценивающих степень своей разлученности как высокую, Т. Бушар получил средние оценки IQ, соответствующие общей близнецовой популяции; стандартные отклонения — на уровне нормативной популяции; а внутриклассовую корреляцию, говорящую о сходстве интеллекта у близнецов каждой пару равную 0,76 [206]. Обратим особое внимание на то, что это — практически то же сходство, которое констатируется во всех исследованиях разлученных МЗ близнецов и совпадает с усредненным по этим работам коэффициентом корреляции (табл. 9.2). Поэтому такого рода анализ не опровергает утверждений о наличии генетического компонента в изменчивости оценок интеллекта, но он очень информативен так как показывает, насколько важно знать, что реально означает «разлучение» близнецов. С этим связан и второй вопрос — о релевантности оцениваемых параметров сред, в которых живут разлученные близнецы, той психологической черте, которая подлежит изучению. Т. Бушар [206] отмечает, что в экстремально разные условия МЗ близнецы попадают редко и оценка их среды чаще идет в континууме одного измерения (например, хорошая — плохая). Кроме того, регистрировались такие явные индикаторы среды, как образование родителей, социоэкономический статус, размер семьи, физические характеристики среды, а также подверженный ошибкам самоотчет родителей о стиле воспитательской практики. Все это необходимо, но может оказаться не столь важным для исследуемой психологической черты. Значительно важнее знать различия по релевантным этой черте параметрам среды. Например, близнецы могут попасть в среды, похожие по уровню образования, количеству книг и т.д., но один может быть окружен любовью, а другой — обделен ею, подвергаться насмешкам и т.д.
К сожалению, как отмечает Т.Бушар, несмотря на годы совместных усилий психологов, мы сегодня мало знаем о среде, релевантной интеллектуальному развитию и формированию личностных черт. Что же касается давно известных связей социально-экономической ситуации в семье и интеллекта детей, то в них есть существенный генетический компонент, равный, по результатам метаанализа, 0,33 [2061 Вместе с тем часто констатируется даже большее сходство разлученных близнецов, чем выросших вместе, во всяком случае, по личностным чертам; объяснение этому обычно находят в особенностях взаимодействия в близнецовой диаде; например, упоминавшиеся в главе VB ролевые отношения могут снижать сходство по эмоциональности По-видимому, здесь и проявляются некоторые релевантные признаку-объекту исследования психологические факторы. Права А. Анастази: разлучение — не география.
Дополнительно к изложенному скажем о некоторых деталях.
На первый взгляд, сходство разлученных близнецов должно зависеть от возраста разлучения: чем дольше они жили вместе, тем выше должно быть сходство. В работе Шилдса средняя внутрипарная разность баллов 10 у 19 разлученных до 9 месяцев жизни, равна 8,81; у 12 пар, разлученных после? года — 9,76. То же установлено в упоминавшемся исследовании Ньюмена соавторами: в 4 парах, разлученных в возрасте 1 месяца жизни, средняя нутрипарная разность IQ равна 2,7 балла, у разлученных после 1,5 лет fg пар) ~ Ю>5 балла. Возможно, играет роль и возраст тестирования: в этой аботе у 5 пар в возрасте до 15 лет средняя разность составляла 2,6 балла, а У 5 пар старше 30 лет — 9,2 балла (в обеих подгруппах возраст разлучения был очень разным: в первой — от 1 месяца до 2 лет, во второй — от 6 месяцев до 6 лет). Некоторую критику вызывает в целом хорошо спланированное Миннесотское исследование 48 пар разлученных МЗ близнецов [208]. Она вызвана следующим обстоятельством: близнецы были разлучены в среднем в возрасте 5 месяцев жизни, вновь объединились в среднем в 30 лет, но тестирование производилось более 10 лет спустя. Авторы считают, что это не вносит искажающих влияний, так как значимые для формирования интеллекта годы к этому времени уже прошли, а опыт взрослого возраста на оценки интеллекта не влияет. Однако с этой точкой зрения не согласны некоторые исследователи, считающие (исходя в основном из результатов, полученных в работе с животными), что изменения в мозговых структурах и, следовательно, в интеллектуальных функциях происходят и во взрослом возрасте [см., напр., 443].
Принимая для собственного обсуждения эти соображения, обратим, тем не менее, внимание на то, что все имеющиеся исследования разлученных МЗ близнецов, каждое из которых, естественно, имеет те или иные источники искажений (поскольку это эксперимент, который не планируется, его ставит сама жизнь), дает удивительно однотипные результаты: сходство разлученных МЗ близнецов по интеллекту всегда достаточно высоко.
Второй «критический эксперимент», как уже отмечалось, может быть реализован методом приемных детей (гл. VII). Рассмотрим более детально, какие результаты в исследовании генетики интеллекта получены с его помощью.
Первая работа, проведенная по полной схеме метода, принадлежит М. Скодак и Г. Скилзу [405]. Они прослеживали развитие 100 детей, усыновленных в возрасте до 6 месяцев жизни; интеллект диагностировался в 2; 4; 7 и 13 лет. Результаты наблюдений отражены в табл. 9.3. Более поздняя и полная сводка содержится в уже упоминавшейся работе Т. Бушара и М. Макги [207; см. также 132]. Ее данные приведены в табл. 9.4, объединившей все исследования приемных детей до 1980 г.
Генетические родственники (родные родители и их отданные в Другие семьи дети, а также разлученные сиблинги) даже при отсутствии общей среды имеют корреляции по баллам IQ, равные 0,22 и >24 соответственно. Они несколько ниже, чем в работе М. Скодак и Скилза, но все же говорят о некотором сходстве. Однако наиболее надежные результаты получены в двух хорошо планированных проектах исследования приемных детей — Техасском Колорадском. Техасский проект начался в 60-х годах с обследования 300 семей, усыновивших одного или более ребенка вскоре после его рдения. Большинство семей-усыновительниц и семей, к которым принадлежали биологические матери, были представителями среднего класса, белой расы.
Интеллект диагностировали у биологических матерей и приемных родителей, у родных и приемных детей в семьях-усыновительницах. Приемные тестировались: тестами Стенфорд-Бине — в 3 или 4 года, ty/jSC — с 5 до 15 лет, WAIS — с 16 лет и старше. Средний возраст приемных детей в начале работы — 8 лет.
Через 10 лет после первичного тестирования оно было повторено, в нем участвовала 181 семья, тестированию подвергались только дети. Использовались тесты Векслера и тест Бета; были оценены и некоторые личностные характеристики.
В данном исследовании сопоставлялось и сходство IQ сиблингов — биологических и приемных. Оказалось, что в первом тестировании когда дети были маленькими, корреляция в парах приемных сиблингов равна 0,11; приемные сиблинги с родными детьми своих усыновителей имели корреляцию 0,20; а родные между собой г = 0,27' во втором тестировании соответствующие корреляции были равны г— —0,09; 0,05; 0,24. Иными словами, сходство по интеллекту приемных детей и между собой, и с родными детьми своих усыновителей падает до нуля, в то время как корреляции родных сиблингов остаются примерно теми же.
Генетико-математическая обработка полученных результатов дала оценку наследуемости, равную 0,78. Это — наследуемость в узком смысле, ее аддитивная часть (см. гл. I и IV), в отличие, например, от оценок, получаемых методом разлученных МЗ близнецов, где аддитивный и доминантный компоненты объединены и дают меру наследуемости в широком смысле, говорящую о причинах популяционной изменчивости. Дж. Лоэлин, И. Хорн и Л. Виллерман отмечают также, что генетические влияния на вариативность IQ с возрастом увеличиваются, и считают возрастную динамику генотип-средовых соотношений одной из главных задач психогенетических исследований. В качестве второй задачи, решению которой могут помочь исследования приемных детей, они называют выяснение дифференцированных влияний семейной среды на интеллектуальное развитие членов семьи [321]. Второе крупное исследование приемных детей — Колорадский проект. Он тоже реализуется по полной схеме метода, включающей диагностику детей, их приемных и биологических родителей. Начался он в 1974 г. как большое лонгитюдное, мультивариативное исследование, с минимизацией селективного размещения детей по семьям-усыновительницам и параллельной оценкой тех же параметров в контрольной группе обычных семей, подобранных в соответствии с экспериментальной группой. В программу была включена детальная оценка семейной среды.
В начале исследования участвовали 245 семей-усыновительнин и 245 биологических семей, детей тестировали в возрасте 1 года, 2, 3 4 лет (к возрасту 4 года осталось 183 и 166 семей соответственно). Планировалось исследовать этих детей по крайней мере до 16 лет> когда они смогут работать с теми же тестами, с которыми работали родители за 15 лет до того (кроме биологических матерей тестировались 20% биологических отцов отданных детей). У детей и родители оценивался широкий спектр когнитивных и личностных черт расы и специальные способности, поведенческие проблемы, употебление алкоголя и других средств и т.д.; были получены и разнообразные дополнительные сведения: рукость, предпочтения в еде, история семьи и т.д. При помощи видеосъемки регистрировали общение детей с родителями и между собой.
Генетико-математический анализ полученных результатов дал следующие оценки компонентов дисперсии IQ: доля наследственных факторов повышается с 0,08 в 1 год до 0,22 в 4 года, но доминирует средовая составляющая: 0,90 в 1 год и 0,74 — в 4 года.
Эти результаты могут быть дополнены сопоставлением сходства в парах приемных сиблингов и в парах родных. В целом внутрипарное сходство у первых существенно ниже, чем у вторых (14 корреляций из 21). Например, сходство по интеллектуальному развитию в 1 и 2 года между родными сиблингами оценивается корреляцией, равной 0,37 и 0,42, между приемными — 0,03 и 0,12; по обобщенным вербальным характеристикам в 3 года 0,11 и -0,05, в 4 года 0,42 и 0,17 и т.д. В целом, несмотря на некоторые исключения, генетически связанные дети — родные братья и сестры — более похожи друг на друга, чем приемные сиблинги, имеющие только общую среду. Более того, по данным Колорадского проекта, и межвозрастные корреляции по интеллекту (общему, вербальному и пространственному) выше в группе биологических сиблингов, чем приемных [362]. Это говорит о том, что и переход от одного возрастного этапа к другому контролируется скорее генетическими, чем средовыми факторами.
Метод приемных детей открывает еще одну уникальную возможность: он дает материал для суждений о взаимодействии генотипа и среды (гл. VI, VII) в вариативности психологических признаков у человека. Как отмечалось, это взаимодействие можно изучать, только помещая животных с идентичными генотипами в разные среды или, наоборот, воздействуя одной и той же средой на известные своими различиями генотипы. Понятно, что в работе с человеком оба пути исключены. Но если дети, имеющие биологических матерей с полярными психологическими чертами, наследственными по своему происхождению (или сами являющиеся носителями таковых), попадают в сходные условия в семьях-усыновительницах, это может рассматриваться как экспериментальная модель, говорящая о генотип-средовой взаимодействии.
Таким образом, фенотипическое значение признака — в данном случае баллы IQ — За_ висит от взаимодействия данных генотипов с данной средой Модель метода приемных детей позволяет понять самые разные варианты такого взаимодействия: особенностей самого ребенка со средой; индивидуальности его биологических родителей с той же средой-возрастную динамику этих взаимодействий и т.д.
Коротко разберем информативные примеры, приведенные на рис. 9.2-9.4. Напомним, методика ДОМ (гл. VI) включает четыре основные шкалы, полученные в результате факторизации, и одну обобщенную оценку. Шкалы: Игрушки, Материнская включенность, Поощрение успехов (Encouraging Developmental Advance), Ограничение-Наказание. Из рис. 9.2 следует, что в зависимости от общей оценки домашней среды дети с разной эмоциональностью обнаруживают разный уровень интеллектуального развития, причем в 3 и 4 года эта зависимость имеет разную форму, особенно у детей с низкой эмоциональностью. А по данным оказывается, что оценки интеллекта ребенка более стабильны в том случае, если их матери обладают более высоким нейротицизмом; говорит о том, что сходство IQ Родителей и детей существенно зависит от активности как черты ребенка: оно тем выше, чем выше активность; но это справедливо только для тех детей, чьи родители имеют высокий интеллект. Таким образом, выясняются многие конкретные факторы, опосредующие и формирование индивидуального интеллекта, и его стабильность, и сходство по IQ родителей и детей.
В Колорадском проекте реализована еще одна потенциальная возможность метода: экспериментально показана пассивная генотип-средовая корреляция, ранее лишь постулированная. Она оценивалась как отношение разности вариативностей признака у детей в биологических и приемных семьях к его вариативности в биологических семьях. Такой показатель возможен, поскольку селективного размещения детей по семьям-усыновительницам нет и вариативность когнитивных черт во всех трех группах родителей практически одинакова [362].
Как и предполагалось в теории [396], роль пассивной ГС-корреляции с возрастом уменьшается; в 4 года она ответственна менее чем за 2% вариативности оценок против 11% в 1 год.    продолжение
--PAGE_BREAK--
Таким образом, межиндивидуальная вариативность оценок общего интеллекта в значительной мере определяется генетической вариативностью. Иными словами, различия между людьми по баллам IQ есть результат не только обучения и воспитания, но и различий в их наследственности. Это не означает, что среда не играет существеннейшей роли: реализация индивидуальной нормы реакции будет разной в разной среде; причем, по-видимому, в изменчивости интеллекта большую роль играет индивидуальная, а не общесемейная среда.
К факторам индивидуальной среды, значимым для индивидуального Развития, относятся и такие формальные, легко регистрируемые и стабильные показатели, как порядковый номер рождения ребенка, интервалы между рождениями пробанда и ближайших к нему сиблингов, пол ребенка и т.п. В ряде работ показано, например, что в многодетной семье имеется тенденция к снижению интеллекта с повышением номера рождения Ребенка, причем она больше при малых промежутках рождением детей; поскольку все сиблинги имеют в среднем 50% общих генов, эта тенденция не может быть следствием генетических причин. Среди многих гипотез, выдвигавшихся для ее объяснения, наиболее вероятными являются, очевидно, психологические, предполагающие снижение количества и качества общения ребенка со взрослыми и — особенно при малых интервалах между рождениями — ухудшение речевой среды ребенка [53]. Последнее недавно получило свое экспериментальное подтверждение [150]; обедненная речевая среда становится причиной отставания в речевом и, как следствие, интеллектуальном развитии ребенка. Не будем забывать при этом, что термин «интеллект» здесь употребляется только в том значении, которое закреплено за тестами интеллекта и, главным образом, за его суммарной оценкой.
Исследование вербального и невербального интеллекта
Следующим шагом в анализе интеллектуальных способностей стала попытка выяснить, нет ли закономерной динамики генотип-средовых соотношений в изменчивости оценок, получаемых по отдельным субтестам. Естественной гипотезой было предположение о том, что невербальные, т.е. «свободные от влияния культуры», характеристики окажутся под большим влиянием факторов генотипа, чем вербальные.
Обобщения некоторых работ [322] показали, что устойчивых закономерностей здесь нет. В четырех работах одна и та же когнитивная способность (вербальная, пространственная и др.) могла занимать совсем разные ранговые места по выраженности генотипических влияний — от первого до четвертого места.
Те же результаты были получены при сопоставлении 10 исследований, включавших измерения первичных способностей по Терстон глобальных, пространственных, числовых. Однако авторы отмечают,
В относительно большие различия во внутрипарном сходстве МЗ и ПЗ близнецов (и следовательно, больший коэффициент наследуемости) обнаруживают группа пространственных тестов, словарный запас и рассуждение.
Большая генетическая обусловленность вербальных тестов — факт неожиданный, но повторяющийся в разных работах. В работе Р. Пломина [355] суммированы некоторые данные [см. также 132]. В Норвежском исследовании взрослых близнецов (по 40 пар МЗ и ДЗ близнецов, тест Векслера) по вербальному IQ корреляция МЗ гмз = 0,88, г = 0,42, откуда h2 = 2(0,88 — 0,42) = 0,92; по невербальному: гдз = о,79, г =0,51, следовательно, К- = 0,56. В шведском лонгитюдном исследовании близнецов 12 и 18 лет вербальные тесты обнаружили большую генетическую обусловленность, чем невербальные в 18 лет (/,2 = о,70 и h2 = 0,50 соответственно), причем с возрастом наследуемость повышается особенно отчетливо именно для вербальных способностей (с 0,20 в 12 лет до 0,70 в 18 лет).
В более раннем шведском исследовании [294], охватившем большие группы МЗ (269 пар) и ДЗ близнецов (532 пары), результаты оказались теми же: наследуемость вербального интеллекта 0,34; невербального — 0,22. Хотя здесь в целом оценки наследуемости ниже обычно получаемых, все же вариативность вербальных способностей обнаруживает большую зависимость от факторов генотипа. Выяснилось также, что, вопреки ожиданиям, невербальные способности более чувствительны к влияниям среды. Оригинальную экспериментальную модель для проверки этого предположения использовала Е. Уилсон [цит. по: 132]. В тех семьях, в которых были и дети-близнецы, и их одиночнорожденные сиблинги, она образовала пары, состоящие только из сиблингов, и пары, состоящие из одного близнеца и сиблинга.
Оказалось, что в парах сиблинг х сиблинг и МЗ близнец х сиблинг сходство по общему и вербальному интеллекту примерно одинаковое, а по невербальному — во втором типе пар ниже, чем в первом. Можно предположить, что причина этого кроется в специфической среде МЗ близнецов, поскольку количество общих генов у членов всех пар в среднем одинаково — 50%. Иными словами, невербальный интеллект более чувствителен к каким-то особенностям близнецовой среды.
Чем можно объяснить парадоксальный факт большей генетической обусловленности вербального интеллекта, пока неясно. Возможно, прав Дженсен, полагая, что вес генетического компонента в вариативной любого теста отражает удельный вес в этом тесте фактора «g», т.е. фактора общего интеллекта [296]. Эти исследования еще впереди.
Систематических исследований отдельных когнитивных функций — внимания, памяти и т.д. — практически нет, хотя они поддаются гораздо более четкому, чем интеллект, определению и, соответстве но, более адекватной диагностике. Это должно было бы сделать и более удобным объектом психогенетического изучения. Тем не менее некоторые обобщения есть. Одно из них — в табл. 8
Таблица 8
Средние внутрипарные корреляции, полученные в близнецовых исследованиях специальных способностей [по: 132]
Специальные способности
гмз
гю
мз
дз
Количество исследований
Вербальная понятливость
0,78
0,59
0,19
0,38
27
Математические
0,78
0,59
0,19
0,38
27
Пространственные представления
0,65
0,41
0,23
0,46
31
Память
0,52
0,36
0,16
0,32
16
Логическое рассуждение
0,74
0,50
0,24
0,48
16
Беглость речи
0,67
0,52
0,15
0,30
12
Дивергентное мышление
0,61
0,50
0,11
0,22
10
Точность
0,70
0,47
0,23
0,46
15
Успешность в усвоении языка
0,81
0,58
0,23
0,46
28
Успешность в изучении социальных дисциплин
0,85
0,61
0,24
0,48
7
Успешность в изучении естественных дисциплин     продолжение
--PAGE_BREAK--
0,79
0,64
0,15
0,30
14
Все способности
0,74
0,54
0,21
0,42
21
Наименьший коэффицент наследуемости — в изменчивости оценок дивергентного мышления — способности человека генерировать новые идеи, альтернативные решения проблем и т. д., т.е. способности, близкой к понятию творческости, креативности. Максимальное влияние генотипа — опять-таки в вербальном субтесте — способности к логическому рассуждению, в перцептивной скорости и пространственных способностях. Однако и в этих оценках роль среды достаточно велика (средовую изменчивость читатель может оценить в первом приближении сам, воспользовавшись формулами, изложенными в гл. VI. В работе Л. Кардона и Д. Фулкера [228] были объединены данные* полученные при лонгитюдном прослеживании приемных и биологических сиблингов (по 100 человек) и при использовании метода близнецов (по 50 пар МЗ и ДЗ). Авторы исходили из иерархической дели интеллекта, предполагающей наличие нескольких уровней специфических, но коррелирующих между собой способностей, формирующих, в конечном счете, общий интеллект — фактор «g». Соответственно такому пониманию для выделения компонентов фенотипической дисперсии они использовали и иерархическую генетико-математическую модель.
В данных отчетливо прослеживаются некоторые тенденции. Во-первых, структура дисперсии всех способностей подвержена возрастным изменениям, — разным для разных признаков. Например, различия по памяти в 3, 4 и 7 лет почти полностью определяются наследственностью, в 9 лет — индивидуальной средой. Во-вторых, наиболее стабильно обнаруживается генетическая обусловленность опять-таки вербальных способностей: h2 изменяется от 0,46 до 0,74, в то время как в дисперсии других признаков он иногда опускается до нуля или незначительной величины. Наконец, в-третьих, в большинстве случаев средовые воздействия относятся к индивидуальной среде (е2); большее влияние общей среды констатируется только трижды. Это — особенно ценный момент, так как примененный авторами вариант генетико-математического анализа позволил освободить этот коэффициент от обычно включенной в него ошибки измерения (см. гл. VIII).
Возрастная динамика генотип-средовых отношений в изменчивости отдельных когнитивных характеристик в диапазоне 6—14 лет была показана Н.М. Зыряновой [35а]: оказалось, что невербальный интеллект в большей мере определяется наследственностью, чем вербальный, и самое большое значение г2 = 0,84 констатируется в 7 лет. Оценки наследуемости вербального и общего интеллекта значительно ниже: 0,03-0,26 для первого и 0,26—0,52 — для второго (с максимумом в 10 лет).
В.Ф. Михеев [97] и И.С. Аверина [2] показали большую наследственную обусловленность невербальной памяти по сравнению со словесно-логической. В первой из этих работ, проведенной на близнецах Ю-20 лет (39 пар МЗ и 59 ДЗ), коэффиценты Холзингера для невербальных стимулов трех модальностей (зрительные, тактильные, слуховые) были равны соответственно — 0,93, 0,69 и 0,86, для вербальных зрительных и слуховых — 0,38 и 0,37. В работе И.С. Авериной, правда, на небольших близнецовых группах, обнаружен больший вклад генотипа в узнавании, чем в воспроизведении. Интересно и показанное в ее работе снижение с возрастом генетического контроля в интегральной оценке мнемической функции: он констатирован только у младших школьников; в среднем и старшем школьном возрасте изменчивость этого показателя формируется в основном под влиянием среды.
В.Д. Мозговой [97] исследовал устойчивость, переключение распределение внимания у близнецов 10—11, 14-15 и 20—50 лет. Оказалось, что в младшей возрастной группе гентическая обусловленность обнаруживается во всех характеристиках внимания, в двух старших — только в его устойчивости.
В целом в этой области пока можно лишь констатировать разную природу изменчивости и отдельных способностей, и даже их разных характеристик — во-первых, и возрастную динамику генотип-средовых соотношений — во-вторых; по-видимому, детальные исследования конкретных психологических функций еще впереди.
Наконец, рассмотрим исследование когнитивных стилей — индивидуальных особенностей переработки информации, которые, по-видимому, служат своеобразным связующим звеном между личностными и когнитивными характеристиками в общей структуре индивидуальности [165 и др.]. Наиболее изучена в психогенетике зависимость-независимость от поля, т.е. когнитивный стиль, свидетельствующий о способности человека «преодолевать контекст» и, очевидно, являющийся одним из показателей психологической дифференцированности [см. 132]. Как показали многие исследования, он связан с самыми разными личностными особенностями: автономностью, критичностью, социальной независимостью и т.д. [165].
Суммарные данные по исследованиям этого стиля в психогенетике привели в своей работе Е.А. Григоренко и М. ЛаБуда [44] (табл. 9).
Таблица 9
Психогенетические исследования зависимости-независимости от поля объединить данные, полученные разными психогенетическими методами оценку наследуемости в 50% ± 1,3%.
Пары родственников
Корреляция (взвешен.)
Количество пар
МЗ близнецы
0,663
356
ДЗ близнецы
0355
240
Сиблинги
0,268
944
Родители х дети
0,282
702
Разлученные родители х дети
0,065
287
Приемные родители х дети
0,020
287
Co-близнецы х их дети
0,015
100
Супруги со-близнецов х их дети
0,170
100
Ассортативность
0,177
841
Всего обследовано таким образом более 9000 пар родственников. Этот материал, будучи подвергнут современному генетико-математическому анализу — структурному моделированию, которое позволяет, коэффициент наследуемости, вычисленный только по близнецовым данным /г2 = 2(0,663 — 0,355) = 0,61, и точнее, так как меньше ошибка. Но в обоих случаях в средовом компоненте доминирует индивидуальная среда. Возможно, не учтенные в исследованиях особенности именно этой среды послужили причиной практически нулевой корреляции между биологическими родителями и их отданными в чужие семьи детьми (см. табл. 9). Обратим внимание: если бы использовался только метод приемных детей (как говорилось в гл. VII, имеющий высокую разрешающую способность), то нужно было бы признать средовую природу этого стиля.
Объединение данных, полученных на группах родственников разных степеней родства, и использование адекватных такой экспериментальной схеме методов генетико-математического анализа дает возможность получить более надежные и дифференцированные оценки генетического и средового компонентов в изменчивости оценок интеллекта. В целом результаты такого анализа говорят о том, что в общих когнитивных способностях генетические влияния обнаруживаются вполне отчетливо, отвечая в среднем примерно за 50% их вариативности, хотя оценки наследуемости колеблются в широких пределах — 0,4-0,8. Это означает: от 40 до 80% различий между людьми по этому признаку объясняется различиями между ними по их наследственности.
Отдельные когнитивные способности исследованы несравненно менее систематично, поэтому и выводы менее надежны. Среди субтестов IQ надежно выделить более и менее зависящие от факторов генотипа пока не удалось, хотя намечается парадоксальная тенденция к большей наследуемости вербального интеллекта по сравнению с невербальным и, по-видимому, наиболее отчетливо генетические влияния обнаруживаются в пространственных способностях.
Психогенетические исследования не ограничиваются выделением генетического компонента в вариативности психологического признака. Не меньше внимания современная психогенетика уделяет и средовой составляющей. Показано, что общесемейная среда, т.е. те параметры среды, которые варьируют от семьи к семье, но одинаковы Для членов каждой семьи и потому повышают их сходство между собой, объясняет 10—40% межиндивидуальной вариативности по общему интеллекту. Индивидуальная среда, по разным работам, ответ-Венна за немного меньшую часть дисперсии баллов IQ (10—30%), надо помнить, что в эту оценку входит и ошибка измерения.
Помимо общесемейной и индивидуальной среды выделяется среда, специфичная для разных вариантов внутрисемейных диад, при чем ее влияние на когнитивные способности различно в разных диадах. Общая тенденция такова: близнецовая среда > сиблинговая > родительско-детская > двоюродных родственников; эти типы сред объясняют, соответственно, 35, 22, 20, 11% дисперсии [444]. При этом влияние общесемейной среды падает к подростковому возрасту и практически исчезает у взрослых. Важно иметь в виду, что, как уже говорилось, речь идет о математическом выражении той доли межиндивидуальной вариативности, за которую ответствен данный тип средовых воздействий. Конкретное же психологическое содержание каждого средового компонента — дело специальных, скорее же собственно психологических исследований. Однако значимость сравнительных оценок средовых компонентов (которые можно получить только в психогенетическом исследовании) трудно переоценить: именно они должны указать психологу, где надо искать релевантные исследуемой черте средовые переменные (например, в особенностях общей или индивидуальной среды). В этом — один из продуктивных аспектов взаимодействия двух наук.
Психогенетические исследования темперамента
1. Что такое темперамент?    продолжение
--PAGE_BREAK--
К темпераменту традиционно относят формально-динамические характеристики поведения человека, «характеристики индивида со стороны динамических особенностей его психической деятельности, т.е. темпа, быстроты, ритма, интенсивности составляющих эту деятельность психических процессов и состояний» [118]. Черты темперамента определяют не столько то, что человек делает, сколько как он это делает, иначе говоря, они не характеризуют содержательную сторону психики (хотя, конечно, опосредованно влияют на нее).
Концепции темперамента весьма разнообразны. Начало его изучения обычно приписывают двум врачам — древнегреческому Гиппократу (V—IV вв. до н.э.) и древнеримскому Галену (II в. до н.э.) — Описанные ими четыре основных темперамента (холерики, сангвиники, флегматики и меланхолики) существуют и в современных классификациях. По-видимому, древним ученым удалось выделить и описать очень существенные, удержавшиеся в течение веков типы человеческого поведения. Однако они пытались не только описать внешние особенности поведения, но и найти их причину. В соответствии о взглядами того времени эти темпераменты связывались с разными сочетаниями основных «жидкостей» человеческого тела. Позднее неоднократно предпринимались попытки связать темперамент человека с его анатомией или физиологией, в том числе с индивидуальными особенностями функционирования центральной нервной системы. Обзор современных концепций темперамента, представлений о его структуре и экспериментальных подходов к его изучению дан в книге М.С. Егоровой [58 Для психогенетического исследования существенны несколько моментов. Во-первых, в разных возрастах компонентный состав темперамента оказывается разным, поскольку некоторые особенности поведения, характерные для маленьких детей (например, регулярность отправления физиологических функций, длительность сна и т.п.), либо отсутствуют, либо имеют совсем иной смысл в более старших возрастах; во-вторых, методы диагностики динамических характеристик — вопросники, основанные на самооценке, экспертные оценки, проективные методики, наблюдение, как правило, имеют значительно меньшую, чем, например, тесты IQ, статистическую надежность и часто дают разные результаты; в-третьих, существует традиционная для психологии проблема соотношения темперамента и характера; хотя последний, в отличие от темперамента, часто связывается с содержательной стороной личности, это не позволяет надежно развести проявления одного и другого: динамические характеристики деятельности могут в конкретных случаях определяться не только чертами темперамента, но и, например, высокой мотивированностью к данной деятельности, т.е. собственно личностной чертой.
Вспомним, например, исследование ткачих-многостаночниц [74], в котором было показано, что высокая мотивация к труду, предъявляющему повышенные требования к темпу деятельности, способности быстро переключаться с одной операции на другую и т.д., компенсировала «природные» особенности, которые должны были осложнить продуктивную работу. Речь шла о подвижности нервных процессов (т.е. предположительно — об одном из факторов, определяющих темперамент); оказалось, что требуемый производством темп выполнения профессиональной деятельности выдерживали и «подвижные», и «инертные», но достигалось это за счет разного стиля выполнения производственного процесса. Он-то и компенсировал «природную» дефицитность темповых характеристик.
Соотношение темперамента и характера, в конечном счете, сводятся к проблеме «индивид и личность». Если фенотипические признаки, характеризующие динамическую сторону поведения, могут быть продуктом и темперамента, и личностных установок, то как различный? По-видимому, и здесь решающим может выступить «генетический аргумент»: понимая личность как системное образование, отражающее социокультурный контекст, общественные отношения которые включен человек, мы, очевидно, не можем относить к этому уровню в структуре индивидуальности наследственно заданные свойства. Они принадлежат индивидному уровню, объединяющему сложившиеся в эволюции и в индивидуальном развитии биологические, _ в частности, кодированные в геноме, — характеристики индивидуальности. Поэтому правы А. Басе и Р. Пломин [222; см. также 132 гл. VIII; 58], включающие наследуемость в число критериев, обязательных для отнесения той или иной психологической черты к темпераменту. Однако надо иметь в виду, что в зарубежной психологии практически нет традиции, разделяющей в структуре индивидуальности эти два уровня — индивид и личность. Поэтому в содержании вопросников, в других диагностических процедурах и в получаемых затем факторах и схемах описания индивидуальности в целом часто объединяются черты и свойства, которые отечественный психолог отнес бы к разным подструктурам индивидуальности.
Даже в тех случаях, когда эти два термина — темперамент (temperament) и личность (personality) разводятся, речь идет скорее об объемах понятий, чем о разных подструктурах или уровнях интегральной индивидуальности. Дж. Лоэин, например, ставя вопрос о соотношениях этих двух терминов, пишет: «В основном мы будем использовать личность как более широкий термин, в то время как темперамент ограничивается такими аспектами личности, которые проще, раньше проявляются в онтогенезе, часто ассоциируются с эмоциональной экспрессией» [318; с. 4]. В качестве иллюстрации он использует следующее рассуждение: пугливость может быть характеристикой темперамента ребенка в возрасте 1 года; она же может быть характеристикой поведения человека 21 года; в тех пределах, в которых мы считаем, что эти две характеристики есть одно и то же, с более или менее прямой передачей в ряду лет, она может рассматриваться как черта темперамента и у 21-летнего человека. Однако у него пугливость, вероятно, впитала в себя дополнительные черты, отражающие предыдущий социальный опыт, удаляющий ее от первоисточника, от корней, что и заставляет обозначить ее более широким термином «личностная черта».
Подобная постановка вопроса правомерна, но, может быть, выделение генотипической составляющей в этом сплаве — личностной черте — и позволит отделить свойство темперамента от приобретенного опыта?
Трудности, связанные с проблемой «темперамент—характер», заставляют некоторых исследователей считать, что черты темперамен в чистом виде могут быть диагностированы только у младенцев, когда социальный опыт минимален. Наиболее полно возрастной аспект психогенетических исследований темперамента обобщен в упомянут книге Дж. Лоэлина [318]. Дальнейшее изложение в основном учения из этой книги.
Психогенетические исследования движений
1. Движение как объект психогеметического исследования
В работах, анализирующих результаты психогенетических исследований когнитивных функций и личностных характеристик, иногда отмечается целесообразность изучения более «простых» признаков, к которым чаще всего относят сенсорные пороги и скорость двигательных реакций. Бесспорно, простые признаки — более удобный и перспективный объект генетического исследования. Когда же речь идет о двигательных (которые теперь часто называют «моторными» — от англ, «motor») функциях, то их перспективность повышается еще и благодаря тому, что они позволяют достаточно точно задавать, менять, контролировать условия их реализации. Контур их регуляции (и саморегуляции) достаточно хорошо изучен [14, 19, 168, 75 и др.], поэтому экспериментатор может избирательно влиять на те или иные звенья функциональной системы, выясняя роль каждого из них в реализации движения. Такой возможности не предоставляет, пожалуй, никакая другая психологическая функция.
Вместе с тем скорость двигательной реакции имеет высокую ре-тестовую надежность: корреляции времени реакций (ВР) в повторных экспериментах, в том числе при проведении их разными экспериментаторами (коэффициент константности), или двух частей ряда измерений, полученных в одном опыте (коэффициент однородности), колеблются, за редким исключением, вокруг величин 0,8—0,7 [123]. Все это, вместе с относительной простотой регистрации реакции, сделало движение, двигательную реакцию одним из наиболее широко используемых объектов экспериментальных исследований в психологии.
Помимо самой двигательной сферы (включающей и такие специфически человеческие формы, как речевые движения и письмо), с помощью двигательных реакций тестируются и изучаются особенности темперамента, сенсорные функции, психофизиологические и интеллектуальные характеристики и т.д. Только благодаря движению человек получает некоторые виды сенсорной информации (например, зрительная перцепция существует благодаря движениям глаз, гаптицеская — благодаря движениям кисти и пальцев). Именно изучение движений как средства активного взаимодействия со средой привело Бернштейна еще в 40-х годах к созданию физиологии активности — новой и очень продуктивной области, тесно смыкающейся с психологией [14]. Некоторые авторы даже включают движение как обязательный компонент в определение термина «поведение».
Индивидуальные характеристики двигательных реакций коррелируют с психометрическими оценками интеллекта. Судя по некоторым данным, эта связь выше, если измеряется время реакции выбора, а не простой двигательной, и с увеличением числа альтернатив корреляция увеличивается (наиболее отчетливо — улиц с низким IQ). Кроме того, с IQ выше коррелирует интраиндивидуальная вариативность ВР, а не средняя его величина для данного индивида: чем выше IQ, тем ниже вариативность ВР. Наконец, есть сведения о том, что латентный период двигательной реакции и скорость самого движения по-разному коррелируют с IQ (вторая выше, чем первый), но вместе они дают корреляцию с IQ примерно такую же, как, например, тест Равена с тестом Векслера [250, 251].
Вместе с тем «простоту» двигательных актов не надо преувеличивать. Даже простейший из них предполагает постановку цели движения («модели потребного будущего» — по Н.А. Бернштейну, «акцептора результатов действия» — по П.К.Анохину), формирование и реализацию адекватной задаче моторной программы («подвижного функционального органа» — по А.А. Ухтомскому), обратную связь — оценку и коррекцию результата движения. В лабораторном эксперименте к этому добавляются восприятие и запоминание инструкции, принятие решения об осуществлении или, наоборот, торможении реакции и т.д. Наконец, необходимо различать движение-реакцию и движение-акцию, «живое движение», т.е. не ответ на внешнее раздражение, а решение некоторой задачи. Функциональная структура двигательного действия в этих случаях может сильно различаться [41].
Иначе говоря, движение — это тоже признак-«событие», хотя и легче верифицируемый, чем, например, интеллект.
Однако двигательные реакции имеют несколько особенностей, психогенетического исследования. К ним относится прежде всего их отчетливо фиксируемая тренируемость и, как следствие этовозможность реализации одного и того же движения на разных УРОВНЯХ регуляции: осознанной (произвольной) и автоматизированной. Согласно концепции Н.А. Бернштейна, нейрофизиологическое лечение движения в этих случаях оказывается разным; поэтому исследователь получает уникальную возможность оценить генотип-средовые соотношения в изменчивости признака (движения), остающегося фенотипически одним и тем же, но меняющего свои ние — психологические и физиологические — механизмы. По гипотезе А.Р. Лурия, базировавшейся на концепции психического раз-вития Л.С. Выготского, подобный феномен должен существовать и в онтогенезе: с переходом от элементарных, «натуральных» форм функций к высшим социально опосредствованным, роль генотипа должна снижаться. Некоторые' правда, очень немногие, подтверждения тому есть; однако структурная и функциональная сложность высших психических функций чрезвычайно затрудняет разработку этой гипотезы. Возможность исследовать ее в ситуации лабораторного эксперимента с использованием двигательных реакций, позволяющих более строго контролировать необходимые переменные, представляется более перспективной.
Помимо сказанного, движение как объект психогенетического исследования имеет, очевидно, еще одно преимущество. Как уже отмечалось, одно из основных ограничений метода близнецов заключается в возможности неодинаковых средовых воздействий в парах МЗ и ДЗ близнецов: среда, актуальная для формирования когнитивных и личностных особенностей, у первых может быть более сходной, и тогда получаемые оценки наследуемости окажутся завышенными (см. гл. VII). Когда же речь идет о моторике, нет серьезных оснований полагать, что члены пар МЗ и ДЗ близнецов имеют разные средовые возможности для ее развития [337]; иначе говоря, справедливость постулата о равенстве сред в этом случае более очевидна и, следовательно, получаемые оценки наследуемости более надежны.
Таким образом, движения человека — важный для познания индивидуальности и продуктивный для психогенетического исследования признак.
Однако, хотя еще Ф. Гальтон в работе «Наследственность таланта» [35] отметил передачу в семьях успехов в гребном спорте и борьбе, т.е. наследуемость двигательных качеств человека обсуждалась в хронологически первом же психогенетическом исследовании, движения не стали в психогенетике объектом систематического изучения. Посвященных им работ немного, они разрозненны и не образуют логичной цепи решаемых проблем, поэтому метаанализ, весьма информативный, как мы видели, для исследований интеллекта, здесь невозможен. Для того чтобы хоть как-то упорядочить имеющийся в данной области материал, воспользуемся классификацией этих исследовании, предложенной С.Б. Малыхом [132; гл. VI]. Он выделил четыре группы работ, различающихся изучаемыми фенотипами: а) сложные поведенческие навыки; б) стандартизованные двигательные пробы; в) физиологические системы обеспечения мышечной деятельности; г) нейрофизиологический уровень обеспечения движений. Конечно, Гранин между этими группами условны; например, анатомия мышц сушественно определяет параметры движений, относящихся к первым трем группам; процессы саморегуляции особенно важны для характеристик движений второй и четвертой групп и т.д. Вот почему излагаемый далее материал может быть сгруппирован и иначе, но эта схема хотя бы в первом приближении систематизирует разрозненные данные, имеющиеся в психогенетических исследованиях моторики.    продолжение
--PAGE_BREAK--
Двигательные тесты
Вторая группа исследований объединяет признаки, получаемые в стандартизованных двигательных пробах. Их, в свою очередь, можно разделить на две подгруппы: в одну входят показатели, которые обычно получают в стандартных измерениях характеристик, существенных для спорта и физвоспитания; во вторую — используемые в психодиагностике и в психологических исследованиях двигательные тесты, время двигательных реакций и т.д. К первой подгруппе относятся обычные пробы мускульной силы, гибкости, ловкости, беговые и прыжковые тесты и т.д. Некоторое обобщение этих данных содержится в работах Р. Коваржа [по: 169] и С.Б. Малыха [132, гл. VI]. К сожалению, исследования проведены с близнецами разных возрастов — от 5 до 25 лет и чаще всего на выборках небольшого размера, что приводит к большим различиям коэффициентов наследуемости и затрудняет анализ результатов.
Например, наследуемость мышечной силы сгибателя кисти колеблется от 0,24 до 0,71, предплечья — от 0,42 до 0,80; абсолютной мышечной силы — от 0,37 до 0,87 и т.д. То же в результатах скоростно-силовых тестов. Однако в работе Ф. Вайса [447], который обследовал 180 пар МЗ и 300 пар ДЗ близнецов 10-летнего возраста, получены следующие оценки наследуемости: для бега на 60 м h2 = 0,85; прыжков в длину h2 = 0,86, толкания ядра h2 = 0,71. Показатели гибкости у подростков 12—17 лет обнаружили максимальную наследуемость в движениях плечевых суставов (h2 = 0,91) и позвоночника (h2 = 0,84).
Как свидетельствуют суммарные данные по нескольким исследованиям [169], наибольшее влияние наследственности испытывает скорость реакции, наименьшее — координация рук (рис. 11).
Вторая подгруппа двигательных проб («моторных тестов») используется для решения психологических и психофизиологических задач: диагностики динамических характеристик поведения (например, темперамента), свойств нервной системы, действия переключения, утомления и т.д. Особое направление мысли связано с гипотезой о наличии некоторого общего фактора скорости — индивидуального темпа, характеризующего и двигательные реакции, и перцептивные, мыслительные процессы, опознание, принятие решения и т.д.: если этот общий фактор существует, то должен существовать индивидуальный оптимальный («удобный», «предпочитаемый», «личный») темп, причем его оценки, полученные при решении различных психологических задач, должны коррелировать между собой [см.: 437]. Кроме того, У каждого человека существует также максимально возможный темп, ПРИ котором он еще в состоянии безошибочно выполнять ту или иную Деятельность. Поэтому двигательные тесты включают и пробы на СКОРОСТЬ реакций в разных условиях их реализации, и оценки темповых, Ритмических характеристик. Правда, А. Анастази подчеркивает, наоборот, высокую специфичность моторных тестов; она приводит результаты факторно-аналитических работ Э. Флейшмана и его сотрудников, выявивших 11 основных факторов, описывающих двигательные функции, среди них — скоростные факторы; регуляторные; связанные с точностью движений и т.д. Интересно, что одноименные характеристики (например, скорость), но относящиеся к разным органам движений (например, руке и пальцам), входят в разные факторы, т.е. оказываются не зависящими друг от друга. Поэтому вопрос о том, существует ли общий фактор скорости (как, например, фактор общего интеллекта), остается открытым. А для психогенетических исследований двигательные характеристики, как правило, выбираются не столько с целью изучения природы самих двигательных функций, сколько по логике тех задач, в которые данный моторный тест включен: спортивного отбора, этиологии свойств нервной системы и т.д.
Наследуемость самого времени двигательной реакции была предметом изучения в немногих работах; результаты оказались неоднозначными.
Приведенные в таблице работы выполнены очень разными методами: различны и экспериментальные модели, и стимулы, и сам движения, и статистическая обработка, поэтому сравнивать их труДно. Однако обратим внимание на то, что нулевые значения коэффициен наследуемости встречаются только в реакциях на звуковой стимул.
Особенно отличаются от остальных исследований работы Т.В. Василец и Т.Д. Пантелеевой. В первой из них интенсивность стимулов задавалась в единицах индивидуального слухового порога. В свое время этот прием предложил В.Д. Небылицын [118]. Он позволяет уравнивать физиологическую эффективность стимула для разных испытуемых (хотя в физических единицах стимулы у них будут различны).
Во второй работе было использовано необычное движение: перенос руки 0 клавиши, находившейся на колене сидящего испытуемого, на клавишу, расположенную на уровне плеча. Такое движение позволяло зарегистрировать активность m.biceps и, благодаря этому, разложить суммарное время реакции a РЯД составляющих, образующих премоторное и моторное время. У испытуемых вырабатывали автоматизированный двигательный навык реакции а 'бора из двух альтернатив и оценивали генотип-средовые соотношения в Риативности каждого компонента движения. Выяснилось, что в начале работы на этапе врабатывания, влияния генотипа обнаруживаются только в двух показателей, когда же навык автоматизировался, генетически детерованными оказались все пять. Психологические и нейрофизиологические механизмы движения на этих этапах различны: в периоде врабатывания движение осуществляется по механизмам осознанной произвольной саморегуляции, на этапе же автоматизации навыка произвольность, осознанность движения сведена к минимуму. Очевидно, есть основания полагать, что «вмешательство» сознательного контроля снижает удельный вес генотипической составляющей в дисперсии параметров двигательной реакции.
Попытка более детально изучить динамику генотип-средовых соотношений при изменении отдельных звеньев контура саморегуляции (задачи, мотивации и др.) была предпринята С.Н. Иванченко и С.Б. Малыхом [35а]. Во всех шести сериях экспериментов, различавшихся условиями деятельности испытуемого, независимо от изменения их схем, наибольший вес имеет в целом индивидуальная среда. При этом обнаружились половые различия: у девочек большую роль играет общесемейная среда, у мальчиков — индивидуальная. Это — интересная попытка понять, за счет каких компонентов функциональной системы меняется структура фенотипической дисперсии ВР; неопределенность же результатов, возможно, является следствием смешения факторов, задаваемых экспериментатором (изменение мотивации и т.д.), с естественно наступающей, по мере работы, тренировкой двигательной реакции и, следовательно, изменением ВР.
Двигательные реакции интенсивно использовались при изучении свойств нервной системы. Их «переделка», т.е. изменение знака предварительно выработанной реакции на противоположный (положительного на тормозный и наоборот), — один из стандартных способов диагностики подвижности нервных процессов.
В упомянутых работах Т.А. Пантелеевой и Т.В. Василец были получены данные о влиянии генотипа на индивидуальные особенности двигательной переделки в разных методических вариантах.
В изложенной выше экспериментальной схеме Т.А. Пантелеевой переделка производилась после автоматизации предыдущей реакции выбора (и, кроме того, в данном случае интенсивность звуковых стимулов так же, как в работе Т.В. Василец, задавалась в единицах индивидуального порога). Результаты показали, что генетический компонент обнаруживается в самой первой реакции после получения инструкции реагировать иначе, чем до нее, и затем — после автоматизации нового навыка. Можно предположить, что физиологические особенности человека, обозначаемые термином «подвижность нервных процессов», детерминируют в данном случае именно первую реакцию после получения инструкции к изменению навыка; затем включается осознанная произвольная саморегуляция — активная ориентировочная деятельность, и повторяется картина выработки навыка, имевшая место до переделки. В экспериментах Т.В. Василец ВР измерялась более традиционным способом — нажатием на кнопку в ответ на звуковой сигнал. Специфика этой работы заключалась, во-первых, в том, что, как уже говорилось, интенсивность звука задавалась в децибелах к индивидуаль ному порогу и, во-вторых, темп подачи стимулов тоже индивидуалиировался, поскольку отсчитывался от так называемого критическо интервала — предельного для данного испытуемого темпа, при котором он еше выполняет данную деятельность без ошибок. Кроме того, переделка производилась после предварительной тренировки. Все это должно было максимально уравнять действие различных побочных факторов, поскольку элиминировалось влияние интенсивности стимула и индивидуального темпа, и обнаружить эффект самой переделки т.е. психологических процессов, обеспечивающих изменение реакции в соответствии с новой инструкцией.
Эксперименты проведены с близнецами двух возрастных групп: 7— Ц лет и 33-55 лет, по 20 пар МЗ и ДЗ в каждой. Результаты таковы: а) само изменение латентных периодов реакции в ходе переделки по сравнению с их величинами до ее начала не обнаруживает генотипических влияний ни у старших, ни у младших; б) если о трудности переделки судили не по латентным периодам, а по количеству допущенных ошибок, то генетический компонент констатировался в старшей группе; в) при оценке индивидуальных особенностей переделки по обобщенному показателю, включающему и скорость, и точность реакций, генетическая обусловленность обнаруживается только у детей 7— 11 лет.
Генотипическая обусловленность двигательной переделки (действия переключения) была получена и в работе Н.Ф. Талызиной с соавторами [144] на небольшой выборке близнецов: гмз = 0,74; г = 0,31, откуда h2 = 0,86. Это — одна из немногих в психогенетике работ, реализованных в русле определенной психологической концепции, в данном случае — теории планомерного формирования умственных действий П.Я. Гальперина, позволяющей определенным образом анализировать динамику действия в процессе его становления, функционирования и изменения. Использовав метод контрольного близнеца, авторы показали, что действие переключения и переделка сигнального значения стимулов — не одно и то же и что при разных способах формирования действия переключения его скорость может зависеть и не зависеть от подвижности нервных процессов. Иначе говоря, выявлены «те преобразования деятельности, которые ведут к перестройке ансамблей психофизиологических функций», т.е. мы опять сталкиваемся с ситуацией, когда фенотипически идентичные действия могут иметь совсем разные внутренние механизмы и, соответственно, разные причины межиндивидуальной вариативности. По-видимому, эти работы подтверждают сказанное выше: считающийся «простым» и потому удобным для психогенетического исследования признак, а именно двигательная реакция, есть тоже признак «событие»: в зависимости от уровня саморегуляции (произвольной или автоматизированной), от обобщенности операций и т.д. его Изменчивость может определяться разными факторами.
Как уже говорилось, двигательные реакции удобны для психогенетического изучения и тем, что позволяют достаточно четко изменять условия их реализации и тем самым выяснять влияние различных
Факторов на генотип-средовые соотношения. К таким факторам относится, например, тренировка движений: изменит ли она внутрипарное сходство МЗ и ДЗ близнецов и, соответственно, коэффициент наследуемости?
Ответ на этот вопрос находим в давней, но до сих пор часто цитируемой работе К. Макнемара [337], который провел исследование на близнецах старшего школьного возраста (17 пар МЗ и 48 пар Дз). Выполнялись 5 двигательных тестов, диагностирующих главным образом тонкие двигательные координации и имеющих достаточно высокую ретестовую надежность (0,79—0,94).
Тренировка для всех испытуемых была стандартной и проходила блоками: по 10 упражнений в первом тесте (всего он выполнялся 70 раз) и по 4 упражнения — в четвертом и пятом тестах (всего в каждом по 28 выполнений). Абсолютные оценки успешности выполнения теста повысились, естественно, у всех близнецов (хотя результаты ДЗ выше, чем МЗ), но внутрипарное сходство существенно изменилось только у ДЗ, причем в одном тесте (четвертом) повышение внутрипарного сходства ДЗ привело к снижению коэффициента наследуемости практически до нуля. Однако обратим внимание на то, что и в фоновьгх измерениях наследуемость оценок, получаемых в этом тесте, была самой низкой (А2 = 0,26). Интересно, что повышение внутрипарного сходства ДЗ происходит главным образом к концу тренировки: в первом и четвертом тестах в первом блоке внутрипарные корреляции ДЗ авны 0,445 и 0,375 соответственно, а в седьмом тесте — 0,601 и 0,549. В пятом тесте сходство снижается в парах и МЗ, и ДЗ. Таким образом, тренировка, меняя абсолютные оценки успешности, в двух случаях из трех не ликвидирует генетический компонент фенотипической изменчивости этих признаков, т.е. обучение, тренировка не превращают признак из «наследственно обусловленного» в «средовой». К стандартизованным двигательным тестам относится и диагностика индивидуальной выраженности так называемого «закона силы» — сокращения ВР при усилении стимула.
Чем больше разница между ВР на минимальный и максимальный стимулы, тем круче падение кривой, графически изображающей эту закономерность, и тем больше коэффициент «Ь» в уравнении регресии у = a + fox, описывающей эту закономерность математически. В дифференциальной психофизиологии благодаря работам В.Д. Небылицына [109, 110] этот показатель используется для оценки чувствительности: чем выше последняя, тем выше физиологическая эффективность стимула (особенно слабого) и тем короче ВР на него.
Исследования «закона силы» у близнецов трех возрастных групп (8—11, 13—16 и 33—56 лет) показали наличие выраженного генетического контроля и одновременно его снижение у подростков по сравнению с двумя другими группами: коэффициент наследуемости (по Холзингеру) равен 0,89; 0,45; 0,93 в трех группах соответственно. Невысокая наследуемость вариативности «6» у подростков была ранее показана Н.Ф. Шляхтой: гмз = 0,466, гдз = 0,301, h2 = 0,33; в исследовании же другой группы взрослых близнецов (правда, на небольшой выборке) коэффициент Холзингера оказался равным 0,93 [97].    продолжение
--PAGE_BREAK--
Снижение генетических влияний в подростковом возрасте авторы связывают с гормональной перестройкой. Изменяется не только коэффициент наследуемости, но и абсолютные значения коэффициента «Ь»: в этой группе близнецов они оказываются ниже, чем в двух Других группах — и младшей, и старшей (это означает меньшую выраженность «закона силы», т.е. ускорение реакции при усилении стимула у подростков меньше). Уменьшение роли генетических факторов в пубертатном возрасте показано и для некоторых нейрофизиологических признаков [89, 162].
Таким образом, наследственность существенно определяет различия между людьми не только по признакам, являющимся разовыми, «Дискретными» измерениями конкретной психологической функции Например ВР, баллы IQ), но и по их индивидуальной динамике, Формирующейся при изменении условий деятельности, т.е. по вариативности в проявлениях некоторых закономерностей.
Наконец, последняя характеристика, относящаяся к этой группе показателей, — индивидуальный темп (иногда его обозначают как «персональный» или «личный» темп). Его оценки получаются в самых разных методических вариантах: как темп постукивания (теппинг-тест) предпочитаемый на слух темп (например, задаваемый метрономом)' темп выполнения любых ритмичных действий — обычных в повседневной жизни (ходьба, письмо) или в специальной экспериментальной задаче (например, в реакции выбора из нескольких альтернатив или времени опознания). В зависимости от задачи работы оценивается удобный («оптимальный») или максимальный темп. Одна из первых фундаментальных работ в данной области принадлежит немецкой исследовательнице И. Фришайзен-Кёлер [263], которая на большой выборке, включавшей и близнецов (правда, с очень широким возрастным разбросом — от 6 до 59 лет), и родительско-детские пары, показала наследственную обусловленность и временную стабильность самых разных темповых характеристик: теппинга, ходьбы, устного счета и др. Оказалось, что теппинг, предпочитаемый на слух ритм, и темп некоторых повседневных двигательных действий (ходьба, счет и т.д.) значительно определяются наследственностью.
Оценки, получаемые в теппинг-тесте, как правило, внутрипарно более сходны у МЗ близнецов, чем у ДЗ; правда, коэффициенты наследуемости широко варьируют: от 0,32 до 0,87 [см.: 132; гл. VI]. В работе И. Фришайзен-Кёлер [263] было получено отчетливое сходство по этим оценкам родителей и детей: у двух «быстрых» родителей 56% детей — тоже «быстрые», 4% — «медленные», остальные — «средние», если же оба родителя «медленные», то ни один ребенок не обнаруживает высокого темпа, 71% — «медленные» и 29% — «средние».
В работе Т.А. Пантелеевой и Н.Ф. Шляхты у близнецов 13—16 лет также были получены доказательства наследуемости теппинга: корреляции в парах МЗ в обоих случаях существенно выше, чем у ДЗ: 0,779 и 0,151 для «удобного» темпа, 0,687 и 0,246 — для максимально возможного [97].
По предельному темпу выполнения некоторых экспериментальных заданий МЗ также имеют более высокие корреляции, чем ДЗ. В работе Т.Г. Хамагановой и соавторов [162] у близнецов пяти возрастных групп (7-9, 11-12, 13-15, 16-18 лет и 19-21 год) оценивался индивидуальный темп работы с корректурной таблицей; коэффициенты наследуемости соответственно равны 0,79; 0,82; 0,42; 0,84; 0,7" (обратим внимание на то, что и здесь старший подростковый возраст имеет минимальный коэффициент — феномен, уже отмечавшийся выше).
Другая форма эксперимента, когда испытуемому задается все ускоряющийся темп решения некоторой несложной задачи и оценивается тот минимальный интервал между предъявлениями стимулов, при котором человек еще успевает правильно реагировать на них позволила Т.В. Василец обнаружить отчетливое влияние наследственности и на эту характеристику. В ситуации реакции выбора из трепьтернатив в двух возрастных группах близнецов — 7—11 лет и 33— '5 лет (по 20 пар МЗ и ДЗ близнецов в каждой) внутрипарное сходтво предельного темпа было существенно выше у МЗ: гш = 0,677 и = 0,028 у младших; 0,896 и -0,164 соответственно у старших, т.е. у людей, не менее 10 лет живущих врозь и имеющих достаточно разный жизненный опыт [97]. Наследуемость именно максимального темпа выполнения некоторых несложных двигательных задач у детей 7-8 лет (35 пар МЗ, 29 пар ДЗ близнецов) получена и Т.А. Мешковой [113]; разложение фенотипической дисперсии выделило 37—78% генетической вариативности, в то время как в дисперсиях тех же оценок, но полученных в условиях «удобного» темпа, за исключением одной задачи (из пяти), генетического компонента не обнаружено. Вариативность обобщенных темповых оценок для двух групп двигательных задач, из которых одна включала простые двигательные автоматизмы типа теппинг-теста, а вторая — более сложные движения, также оказалась больше зависящей от наследственности в ситуации максимального темпа (особенно в первой из этих групп) и только от среды (общесемейной и индивидуальной) — при «удобном» темпе деятельности. Самые выраженные влияния наследственности — в вариативности обобщенных оценок максимального темпа выполнения простых двигательных автоматизмов (80,5% дисперсии). Аналогичные оценки более сложных движений определяются в примерно равной степени (30-35%) наследственностью, общей и индивидуальной средой.
Таким образом, в этой группе признаков, характеризующих темп двигательных реакций человека, соотношение генетических и средовых детерминант зависит, очевидно, и от типа движения (простое или сложное), и от предельных скоростных возможностей человека. Генетическая психофизиология
Генетическая психофизиология — новая область исследований, сложившаяся на стыке психогенетики и дифференциальной психофизиологии.
Принято считать, что генотипические особенности могут влиять на поведение человека и на его психику лишь постольку, поскольку они влияют на морфо-функциональные характеристики, являющиеся материальным субстратом психического. Вот почему одна из главных задач генетической психофизиологии — изучение взаимодействия наследственной программы развития и факторов окружающей среды в формировании структурно-функциональных комплексов центральной нервной системы (ЦНС) человека и других физиологических систем организма, которые участвуют в обеспечении психической деятельности.
Теоретическим основанием для постановки исследований такого рода служит представление об индивидуальности человека как целостной многоуровневой биосоциальной системе, в которой действует принцип антиципации (т.е. предвосхищения) развития. Исходя из этого принципа можно полагать, что первичный в структуре индивидуальности генетический уровень инициирует развитие сопряженных с ним морфологического и физиологического уровней, а те в свою очередь во взаимодействии со средой создают условия для возникновения психических новообразований. Таким образом, исследование генотипических и средовых детерминант психофизиологических характеристик становится звеном, связующим индивидуальный геном и индивидуальные особенности психики человека. Отсюда вытекает и стратегия исследований, а именно: подход к изучению детерминации индивидуальных особенностей психики путем оценки роли генотипа в межиндивидуальной изменчивости существенных в этом плане психофизиологических признаков. При такой постановке вопроса закономерным и необходимым становится исследование роли факторов генотипа в формировании физиологических систем организма, и в первую очередь ЦНС.
Морфофункцпональный уровень
Мозг современного человека высоко дифференцирован. Он состоит из множества относительно мелких и крупных структурных образований, объединенных в ряд морфофункциональных блоков. В соответствии с данными многих экспериментальных и клинических исследований каждому из блоков приписываются разные функции.
Так, в стволе и подкорковых структурах мозга локализованы центры, регулирующие витальные функции организма. Кроме того, к и функциям относятся: обеспечение тонизирующих и модулирующий влияний на разные уровни ЦНС, формирование биологических потребностей и мотиваций, побуждающих организм к действию (голод жажда и др.), а также эмоций, сигнализирующих об успехе или удаче в удовлетворении этих потребностей. Кора больших полушарий играет определяющую роль в обеспечении высших психических функций человека. В самом общем виде она (1) осуществляет прием и окончательную переработку информации, а также (2) организует на этой основе сложные формы поведения, причем первая функция связана преимущественно с деятельностью «задних» отделов коры, а вторая — с деятельностью «передних». Разные функции выполняют левое и правое полушария. Например, у «правшей» центры, управляющие ведущей правой рукой и речью, локализованы в левом полушарии.
Обобщенной морфологической характеристикой мозга служит его вес. Индивидуальные различия абсолютного веса мозга взрослых людей очень велики. При средних значениях 1400—1500 г диапазон крайних индивидуальных значений (из изученных) колеблется в пределах: от 2012 г (у И.С. Тургенева) до 1017 г. (у А. Франса). Коэффициент вариативности, по обобщенным данным, составляет приблизительно 8%. У мужчин вес мозга в среднем на 200 г больше, чем у женщин. Вес мозга почти не зависит от размеров тела, но положительно коррелирует с размерами черепа. Различия по весу мозга, по-видимому, в определенной степени обусловлены генетическими факторами. Об этом свидетельствуют специально выведенные линии мышей — с «высоким» и «низким» весом мозга. У первых масса мозга приблизительно в 1,5 больше, чем у вторых. Попытки установить связь между весом мозга и успешностью обучения мышей однозначных результатов не дали.
Вариабельность борозд и извилин на поверхности мозга чрезвычайно велика. Как подчеркивают морфологи, не обнаружено двух одинаковых экземпляров мозга с полностью совпадающим рисунком поверхности. Например, С.М. Блинков пишет: «Рисунок борозд и извилин на поверхности коры больших полушарий мозга у людей столь же различен, как их лица, и также отличается некоторым семейным сходством» [17, с. 24]. Одни борозды и извилины, в основном наиболее крупные, встречаются в каждом мозге, другие не столь постоянны. Вариабельность борозд и извилин проявляется в их длине, глубине, прерывистости и многих других более частных особенностях [17].
Индивидуальная специфичность характерна и для подкорковых образований, глубоких структур мозга, а также проводящих путей, соединяющих разные отделы мозга [139]. В то же время многообразие индивидуальных различий в строении коры и других образований мозга всегда находится в пределах общего плана строения, присущего человеку.
Индивидуальные различия в строении мозга дают основания для попыток связать их с индивидуально-психологическими различиями большое внимание уделялось поиску морфологических и цитоархи-тектонических (клеточных) оснований индивидуальных особенности Умственного развития, в первую очередь одаренности. Было установлено, что вес мозга не связан с умственным развитием человека Наряду с этим при анализе особенностей клеточного строения корь больших полушарий обнаружили, что индивидуальным особенностям психической деятельности соответствуют определенные соотношения в развитии проекционных и ассоциативных областей.
Так, постмортальные исследования мозга людей, которые обладали выдающимися способностями, демонстрируют связь между спецификой их одаренности и морфологическими особенностями мозга в первую очередь — с размерами нейронов в так называемом рецептивном слое коры. Например, анализ мозга выдающегося физика А. Эйнштейна показал, что именно в тех областях, где следовало ожидать максимальных изменений (передние ассоциативные зоны левого полушария, предположительно отвечающие за абстрактно-логическое мышление), рецептивный слой коры был в два раза толще обычного. Кроме того, там же было обнаружено значительно превосходящее статистическую норму число так называемых глиальных клеток, которые обслуживали метаболические нужды нейронов. Характерно, что в других отделах мозга Эйнштейна особых отличий не выявлено [418]. Предполагается, что столь неравномерное развитие мозга связано с перераспределением его ресурсов (медиаторов, нейропептидов и т.д.) в пользу наиболее интенсивно работающих отделов. Особую роль здесь играет перераспределение ресурсов медиатора ацетилхолина. Холинэргическая система мозга, в которой ацетилхолин служит посредником проведения нервных импульсов, по некоторым представлениям, обеспечивает информационную составляющую процессов обучения [82]. Эти данные свидетельствуют о том, что индивидуальные различия в умственной деятельности человека, по-видимому, связаны с особенностями обмена веществ в мозге.
Структурная индивидуализированность мозга, неповторимость топографических особенностей у каждого человека складывается в онтогенезе постепенно [171, 172]. Вопрос о том, как влияют генетические особенности на формирование индивидуализированное™ мозга, пока остается открытым. По-видимому, в формировании этих морфологических характеристик играют роль генетические факторы. Например, отмечается семейное сходство в рисунке борозд коры мозга. Кроме того, при сравнении мозга МЗ близнецов обнаружено довольно значительное сходство морфологических особенностей, причем в левом полушарии больше, чем в правом [427].
Наряду с этим существуют традиционные и разработанные методы неинвазивного изучения функциональной активности мозга. Речь идет о методах регистрации биоэлектрической активности мозга, в первую очередь коры больших полушарий. Методы регистрации энцефалограммы и вызванных потенциалов позволяют зарегистрировать активность отдельных зон коры больших полушарий, оценить индивидуальную специфичность этой активности как качественно, так и количественно и применить к полученным результатам генетико-статистический анализ. По совокупности таких данных можно судить о роли генетических факторов в происхождении индивидуальных особенностей функциональной активности отдельных областей коры как в состоянии покоя, так и в процессе деятельности. Итоги конкретных исследований изложены в гл. XIII и XIV. Системный уровень    продолжение
--PAGE_BREAK--
В широком понимании живая система представляет собой совокупность взаимосвязанных элементов, которые обладают способностью к совместному функционированию и приобретению свойств, не присущих отдельным входящим в ее состав элементам. В настоящее время принято считать, что мозг представляет собой «сверхсистему», состоящую из множества систем и сетей взаимосвязанных нервных клеток и структурных образований более высокого уровня.
Морфологически в строении мозга выделяются два типа систем: микрои макросистемы. Первые представляет собой совокупность популяций нервных клеток, осуществляющих относительно элементарные функции. Примером микросистем могут служить нейронный модуль (вертикально организованная колонка нейронов и их отростков в коре больших полушарий) или гнезда взаимосвязанных нейронов и глиальных клеток в подкорковых структурах. Предполагается, что таким микроансамблям свойственна преимущественно жесткая генетически детерминированная форма конструкции и активности [176]. Сходные по своим функциям микроансамбли, или микросистемы, объединяются в макросистемы, сопоставимые с отдельными структурными образованиями мозга. Например, отдельные зоны коры больших полушарий, имеющие разное клеточное строение (цитоархитектонику), представляют собой разные макросистемы. Сюда же относятся системы подкорковых и стволовых образований, корково-под-корковые системы мозга [139].
Современная наука располагает методами, позволяющими экспериментально изучать некоторые аспекты функционирования мозговых систем. Речь идет об уже упоминавшихся ранее электрофизиологических методах: электроэнцефалограмме и вызванных потенциалах. Исходно энцефалограмма характеризует специфику функциональной активности той зоны мозга, где она регистрируется. Однако наряду с этим разработаны способы оценки взаимосвязанности локальных показателей биоэлектрической активности мозга при регистрации ее в разных отделах. В основе данного подхода лежит простая логика: если работает как целое (система), то изменения в активности элементов системы должны иметь взаимосвязанный характер. подробнее речь о них пойдет в гл. XIII, здесь же подчеркнем, что ектрофизиологические показатели взаимодействия разных зон коры в покое и при реализации той или иной деятельности демонстрируЮт значительную межиндивидуальную вариативность. Последнее дает основание ставить вопрос о роли факторов генотипа и среды в происхождении этой вариативности. Другими словами, используя генети-ко-статистический анализ, можно выявить причины межиндивидуальной вариативности не только локальных электрофизиологических показателей, но и производных от них показателей, отражающих степень взаимосвязанности последних, т.е. работу мозговых систем. Электроэнцефалография как метод исследования. описание и анализ электроэнцефалограммы
Электроэнцефалография — метод регистрации и анализа электроэнцефалограммы (ЭЭГ), т.е. суммарной биоэлектрической активности мозга.
Описание ЭЭГ включает ряд параметров: частоту волн, их амплитуду, индекс выраженности, спектральные плотности ритмов и некоторые другие.
По частоте волн различают следующие типы ритмических составляющих ЭЭГ: дельта-ритм (0,5-4 Гц); тэта-ритм (5-7 Гц); альфа-ритм (8-13 Гц) — основной ритм ЭЭГ, преобладающий в состоянии покоя; бета-ритм (15-35 Гц); гамма-ритм (выше 35 Гц). Другая важная характеристика электрических потенциалов мозга — амплитуда, т.е. величина колебаний. Амплитуда и частота колебаний связаны друг с другом. Амплитуда высокочастотных бета-волн у одного и того же человека может быть почти в 10 раз ниже амплитуды более медленных альфа-волн.
Наряду с этим нередко используется показатель выраженности ритма, именуемый индексом. Он характеризует (в %) долю, занимаемую в записи ЭЭГ данным ритмом. Наиболее часто он употребляется для оценки выраженности альфа-ритма. Высокий альфа-индекс говорит о преобладании в ЭЭГ альфа-ритма, низкий — о его слабой выраженности.
С появлением автоматического частотного и спектрального методов анализа ЭЭГ исследователи получили возможность проводить сопоставления не только по параметрам альфа-ритма, как правило, доминирующего в общем паттерне ЭЭГ, но и по другим частотным диапазонам.
При регистрации ЭЭГ важное значение имеет расположение электродов, причем электрическая активность, одновременно регистрируемая с разных точек головы, может сильно различаться. Международная федерация обществ електроэнцефалографии приняла так называемую систему «10-20», позволяет точно указывать расположение электродов. При этом для удобства регистрации весь череп разбивают на области, обозначенные буквами: р__ лобная, О — затылочная область, Р — теменная, Т— всочная, С — область центральной борозды. Нечетные номера точек отведения относятся к левому четные — к правому полушарию. Буквой Z обозначаются отведения по сред.! ней линии, разделяющей полушария. Для записи ЭЭГ используют два основных метода: биполярный и монополярный. При первом оба электрода помещаются в электрически активные точки скальпа; при втором один из электродов располагается в точке, которая условно считается электрически нейтральной (мочка уха, сосцевидные отростки и др.). В случае биполярной записи регистрируется ЭЭГ, представляющая собой результат взаимодействия двух электрически активных точек (например, лобного и затылочного отведений); в случае монополярной записи — активность какого-то одного отведения относительно электрически нейтральной точки (например, затылочного отведения относительно мочки уха).
Традиционно существуют два подхода к анализу ЭЭГ: визуальный (клинический) и статистический. При визуальном анализе ЭЭГ электрофизиолог, опираясь на доступные непосредственному наблюдению признаки ЭЭГ, выделяет характерные особенности ЭЭГ, отличающие данную запись от других. Таким образом оценивается выраженность и соотношение отдельных ритмических составляющих, соответствие общепринятым стандартам нормы и т.д. Визуальный анализ ЭЭГ всегда строго индивидуален и имеет преимущественно качественный характер. Несмотря на принятые стандарты описания ЭЭГ, ее визуальная интерпретация в значительной степени зависит от опыта электрофизиолога, его умения «читать» электроэнцефалограмму.
Статистические методы исследования ЭЭГ исходят из того, что фоновая ЭЭГ стационарна и стабильна. Стационарными называются процессы, статистические параметры которых с течением времени не меняются. Установлено, что ЭЭГ сохраняет стационарность всего лишь в пределах нескольких секунд. Дальнейшая обработка в подавляющем большинстве случаев опирается на преобразование Фурье, смысл которого состоит в том, что волна любой сложной формы математически идентична сумме синусоидальных волн разной амплитуды и частоты. С помощью преобразования Фурье самые сложные по форме колебания ЭЭГ можно свести к ряду синусоидальных волн с разными амплитудами и частотами. Для выделения повторяющихся периодических компонентов ЭЭГ используется автокорреляционная функция, которая характеризует степень связи между отдельными временными моментами одного и того же процесса и позволяет судить о преобладании в изучаемой записи периодических или случайных составляющих. пециальной задачей является анализ спектров мощности разных частот, которая зависит от амплитуд синусоидальных составляющих-спектр мощности представляет собой совокупность всех значении мощности ритмических составляющих ЭЭГ, вычисляемых с опреД6 ленным шагом дискретизации (в размере десятых долей Гц). Спектр могут характеризовать абсолютную мощность каждой ритмической составляющей или относительную, т.е. выраженность мощности каждой составляющей (в %) по отношению к общей мощности ЭЭГ в анализируемом отрезке записи.
Спектры мощности ЭЭГ можно подвергать дальнейшей обработке, например, корреляционному анализу, при котором вычисляют автои кросскорреляционные функции, а также когерентность. Последняя характеризует меру синхронности частотных диапазонов ЭЭГ в двух различных отведениях. Когерентность изменяется в диапазоне от +1 (полностью совпадающие участки спектра) до 0 (абсолютно различные). Такая оценка проводится в каждой точке непрерывного частотного спектра или как средняя в пределах частотных поддиапазонов. При помощи вычисления когерентности можно определить, какие структуры мозга более заинтересованы в данной деятельности, где находится фокус активации и др. Благодаря этому спектрально-корреляционный метод оценки ритмических составляющих ЭЭГ и их когерентности является в настоящее время одним из наиболее распространенных. Функциональное значение ЭЭГ и ее составляющих
Существенным является вопрос о функциональном значении отдельных составляющих ЭЭГ. Наибольшее внимание исследователей здесь всегда привлекал альфа-ритм — доминирующий ритм ЭЭГ покоя у человека.
Альфа-ритм непосредственно связан с эволюционным усложнением мозга и филогенетически отражает высшие уровни его организации. Он отсутствует у млекопитающих со слабо развитым неокортексом. Считается, что активность, близкая по типу к альфа-ритму, появляется у человекообразных обезьян, но полностью этот ритм со всеми специфическими функциональными особенностями формируется лишь у человека. Таким образом, альфа-ритм развивается как специфический сапиентный (присущий человеку как виду) признак, который отражает особенности активности мозга, присущие только человеку.
Существует немало предположений, касающихся функциональной роли альфа-ритма. Основоположник кибернетики Н.Винер и вслед за ним ряд других исследователей считали, что этот ритм выполняет функцию временного сканирования («считывания») информации и тесно связан с механизмами восприятия и памяти. Предполагается, то альфа-ритм отражает реверберацию возбуждений, кодирующих внутримозговую информацию и создающих оптимальный фон для процесса приема и переработки афферентых сигналов. Его роль заключается в своеобразной функциональной стабилизации состояний мозга и обеспечении готовности к реагированию. Предполагается так же что альфа-ритм связан с действием селектирующих механизмов мозга, выполняющих функцию резонансного фильтра и таким образом регулирующих поток сенсорных импульсов [183].
В покое в ЭЭГ могут присутствовать и другие ритмические составляющие, но их значение лучше всего выясняется при изменении функциональных состояний организма [46]. Так, дельта-ритм у здорового взрослого человека в покое практически отсутствует, но доминирует в ЭЭГ на четвертой стадии сна, которая получила свое название по этому ритму (медленноволновый сон, или дельта-сон). Напротив, тэта-ритм тесно связан с эмоциональным и умственным напряжением. Его иногда так и называют «стресс-ритм» или «ритм напряжения» [143 313]. У человека одним из ЭЭГ симптомов эмоционального возбуждения служит усиление тэта-ритма с частотой колебаний 4—7 Гц, сопровождающее переживание как положительных, так и отрицательных эмоций. При выполнении мыслительных заданий может усиливаться и дельта-, и тэта-активность. Причем усиление последней составляющей положительно соотносится с успешностью решения задач [313]. По своему происхождению тэта-ритм связан с кортико-лимбическим взаимодействием. Предполагается, что усиление тэта-ритма при эмоциях отражает активацию коры больших полушарий со стороны лимбической системы. Переход от состояния покоя к напряжению всегда сопровождается реакцией десинхронизации, главным компонентом которой служит высокочастотная бета-активность. Умственная деятельность у взрослых сопровождается повышением мощности бета-ритма, причем значимое усиление высокочастотной активности наблюдается при умственной деятельности, включающей элементы новизны, в то время как стереотипные, повторяющиеся умственные операции сопровождаются ее снижением. Установлено также, что успешность выполнения вербальных заданий и тестов на зрительно-пространственные отношения положительно связана с высокой активностью бета-диапазона ЭЭГ левого полушария. По некоторым предположениям, эта активность связана с отражением деятельности механизмов сканирования структуры стимула, осуществляемой нейронными сетями, продуцирующими высокочастотную активность ЭЭГ [183].
Стабильность индивидуальных особенностей ЭЭГ
Известно, что рисунок (паттерн) ЭЭГ отличается значительной межиндивидуальной вариативностью как по ее общему виду, так и по отдельным признакам. Иначе говоря, несмотря на наличие некоторых общих для всех людей признаков (например, единого спектрального состава ЭЭГ), при соблюдении одинаковых условий регистрации энцефалограммы у разных испытуемых существенно различаются.
В то же время индивидуально-специфический паттерн ЭЭГ человека, сложившись к 15—18 годам, сохраняется на протежении всей жизни; некоторые изменения появляются только в пожилом возрасте (преимущественно у женщин). Начиная с первых работ по энцефалографии, отмечалась устойчивость и общего типа ЭЭГ, и ее отдельных параметров (альфа-индекса, средней частоты и др.). Повторные регистрации ЭЭГ, сделанные в одних и тех же условиях с интервалом в недели, месяцы и даже годы, свидетельствуют о высокой внутрииндивидуальной воспроизводимости паттерна ЭЭГ у одного и того же человека. С развитием способов анализа ЭЭГ появились работы, демонстрирующие стабильность и более сложных ее характеристик, в первую очередь отдельных спектральных составляющих и спектра ЭЭГ в целом [33, 46].
Коэффициенты корреляции, характеризующие воспроизводимость параметров ЭЭГ при регистрации с интервалом от одного до четырех месяцев, могут достигать: максимальный — 0,96 для альфа-ритма, а минимальный — 0,51 для ритма бета-1. Вообще наибольшая стабильность ЭЭГ, как правило, наблюдается у индивидов с высокой альфа-активностью. Это хорошо согласуется с мнением о том, что индивидуальная специфика ЭЭГ определяется главным образом параметрами альфа-активности. Однако более дифференцированный подход позволяет считать, что и индивидуализированность (межиндивидуальная вариативность) ЭЭГ, и стабильность (внутрииндивидуальная вариативность) различны в разных параметрах ЭЭГ и в разных зонах регистрации. Так, оказывается, что наибольшие межиндивидуальные вариации наблюдаются по общей амплитуде ЭЭГ и выраженности альфа-ритма, в меньшей степени — по выраженности медленной и быстрой составляющих. Выраженность альфа-ритма варьирует от практически полного его отсутствия до сплошного монотонного альфа-ритма с правильными, почти синусоидальными колебаниями. Амплитуда ЭЭГ варьирует от сильно уплощенной кривой до высокоамплитудных колебаний преимущественно в альфа-диапазоне. Между этими крайними типами существуют многочисленные промежуточные варианты. Энергетические показатели ЭЭГ характеризуются чрезвычайно высоким размахом изменчивости: коэффициенты вариации в зависимости от зоны Регистрации варьируют от 30-40% для бета-ритма до 50-80% для альфа-ритма. При этом максимальные значения индивидуализированности и индивидуальной изменчивости характерны для альфа-Ритма в затылочных зонах. Кроме того, высоко индивидуализированы показатели альфа-ритма и бета-ритма в левой височной зоне в 139].    продолжение
--PAGE_BREAK--
В анализе периодической структуры локальной ЭЭГ используется автокорреляционная функция. На основе вычисления автокорредяциионных функций строятся индивидуальные автокоррелограммы, отражающие сооотношение периодических и случайных ритмических компонентов, а также может быть определен коэффициент периодичности ЭЭГ—Кп/с (отношение мощностей периодической и случайной составляющих). По этому показателяю существуют устойчивые индивидуальные различия: у одних испытуемых преобладает периодическая составляющая, у других — случайная.
При оценке межзонального взаимодействия ЭЭГ применяется анализ когерентности. Установлено, что средний уровень когерентности, вычисленный для симметричных точек двух полушарий или двух точек одного полушария, является достаточно устойчивой и мало изменяющейся по времени характеристикой при условии, что функциональное состояние человека в процессе проведения эксперимента существенно не меняется [46]. У разных испытуемых даже с сильно различающимися спектрами мощности ЭЭГ (например, с альфа-ритмом или без него) вариативность среднего уровня когерентности двух точек мозга для спокойного бодрствования не превышает 20%. Иначе говоря, у всех здоровых людей с разными типами ЭЭГ имеется некий достаточно стабильный минимальный средний уровень связей электрической активности различных точек мозга. Средний уровень когерентности по отдельным ритмам (дельта, тэта, альфа, бета) в состоянии покоя также характеризуется относительно высокой внутрииндивидуальной воспроизводимостью. В совокупности все эти данные позволяют отнести общий паттерн ЭЭГ в покое, основные частотно-энергетические параметры ЭЭГ покоя отдельных зон коры, а также показатели взаимодействия этих зон (когерентность) к числу индивидуально устойчивых свойств головного мозга. Последнее дает основание для проведения генетических исследований, целью которых является выяснение роли генотипа и среды в их формировании.
Роль наследственности и среды в формировании функциональной асимметрии
В настоящее время особенности функциональной специализации левого и правого полушарий мозга хорошо исследованы. Подробный анализ этой проблемы представлен в книгах Н.Н. Брагиной и Т.А. Доброхотовой [22], Е.Д. Хомской [167], С. Спрингер и Г.Дейча, [42], В.Л. Бианки [15] и других. В результате многих экспериментальных исследований было установлено, что основные межполушарные различия кратко укладываются в ряд дихотомий: абстрактный (вербально-логический) и конкретный (наглядно-образный) способы переработки информации, произвольная и непроизвольная регуляция деятельности, осознанность-неосознанность психических функций и состояний, сукцессивная и симультанная организация высших психических функций.
Более того, можно констатировать, что в последние десятилетия изучения межполушарных отношений фактически произошла смена парадигмы: от теории тотального доминирования левого полушария исследователи перешли к гипотезе парциальной полушарной доминантности и взаимодействия полушарий. Развитие функциональной асимметрии в онтогенезе
Известны две концепции функциональной асимметрии в онтогенезе: эквипотенциальное полушарий и прогрессивной латерализации [138]. Первая предполагает изначальное равенство, или эквипотенциальность, полушарий в отношении всех функций, в том числе речевой. В ее пользу говорят данные о высокой пластичности мозга ребенка и взаимозаменяемости симметричных отделов мозга на ранних этапах развития.
Согласно второй концепции специализация полушарий существует уже с момента рождения. У праворуких людей она проявляется, как предполагают, в виде генетически запрограммированной способности нервного субстрата левого полушария обнаруживать способность к развитию речевой функции и определять деятельность ведущей руки. Установлено, что задолго до реального развития речевой функции можно обнаружить различия в морфологическом строении будущих речевых зон. Так, у новорожденных сильвиева борозда слева существенно больше, чем справа. Этот факт свидетельствует о том, что структурные межполушарные различия в известной степени являются врожденными.
В пользу исходной эквипотенциальное полушарий, казалось бы, говорит тот факт, что первые проявления предпочтения руки обнаруживаются У детей 7-9 месяцев. Разница между сторонами, сначала слабая, постепенно увеличивается и становится отчетливой в 3 года, а затем стабилизируется. Однако в ходе наблюдений было установлено, что у младенцев есть другие признаки латерализации, например, предпочитаемая сторона при повороте головы, различный тонус мышц справа и слева и др. [196].
В связи с этим представляет интерес предложение выделять два относительно независимых показателя мануальной латерализации: направление и степень [336]. Направление латерализации, т.е. установление ведущей руки можно рассматривать как нормативную, или видоспецифическую, характеристику, имеющую два измерения — левое, правое. Степень латерализации есть количественная индивидуально специфическая характеристика, обладающая непрерывной изменчивостью в широком диапазоне. Об относительной независимости этих характеристик говорит тот факт, что они обнаруживают разную онтогенетическую динамику и, по-видимому, в разной степени зависят от факторов генотипа. Если выбор ведущей руки определяется к 3 годам, то степень (интенсивность) ее использования существенно возрастает от 3 до 9 лет. Выделение направления и степени/интенсивности как самостоятельных характеристик асимметрии возможно применительно ко всем парным органам, в том числе и показателям электроэнцефалограммы левого и правого полушарий [132]… Индивидуально-типологические различия функциональной асимметрии
Считается, что все парные органы человека имеют ту или иную степень функциональной асимметрии. Однако наблюдению доступны только некоторые из них: в двигательной сфере (ведущие рука и нога) и сенсорной (ведущие глаз, ухо, ноздря). Неоднократно показано, что перечисленные асимметрии относительно автономны. Другими словами, у каждого человека возможно свое сочетание правои левосторонних признаков. Для обозначения этого явления используют термин «профиль латеральной организации» (ПЛО), которым обозначается сочетание моторных и сенсорных асимметрий, характерных для данного человека.
Исследования типов, или профилей, латеральной организации парных органов находятся в начальной стадии, по этой же причине внутрииндивидуальная устойчивость функциональных асимметрий и профилей латеральной организации мозга изучена мало. Имеются сведения, что функциональные асимметрии парных органов достаточно пластичны, и профиль латеральной организации при повторных тестированиях или при изменении условий регистрации может изменяться [167]. Роль наследственности и среды в формировании асимметрии. Генетические аспекты леворукости
Происхождение леворукости традиционно связывается с действием трех групп факторов: средовых (в том числе культурных), генетических и патологических. В соответствии с первыми условия среды, общественные традиции и система воспитания задают преимущественный выбор ведущей руки. До недавних пор считалось, что леворукие Доставляют в среднем 5% населения. Однако в разных регионах наблюдаются определенные различия в частоте леворукости.
По некоторым данным, частота встречаемости «латерального фенотипа», оцениваемого по характеру сенсомоторных асимметрий и межполушарных различий ЭЭГ, обнаруживает связь с особенностями экологических условий Так, среди коренного населения северо-востока России (эскимосы, чукчи, коряки и др.) значительно чаще встречается «правополушарный фенотип»,'для которого характерно преобладание правополушарных функций во взаимодействии полушарий [8]. Предполагается, что увеличение доли левшей и амбидекстров в северных популяциях свидетельствует об их более оптимальной адаптированности к жизни в тех условиях. Возможно, большая доля леворуких среди этих групп населения отчасти обусловлена тем обстоятельством, что давление культурных традиций, направленное на преимущественное использование правой руки, в указанном регионе всегда было слабее чем в средней полосе России. Высказывается также точка зрения, что «правополушарный фенотип» вообще более характерен для популяций, близких природе и менее приобщенных к научно-техническому прогрессу [67].
Среди школьников Китая и Таиланда только 3,5 и 0,7% соответственно используют для письма левую руку [293]. В то же время 6,5% детей выходцев из восточных стран, обучающихся в школах США (где давление в сторону использования правой руки ослаблено), предпочитают левую руку [283]. Среди японских школьников 7,2% не являются праворукими, а если учесть и переученных, то эта цифра увеличивается до 11 % [403]. До недавних пор во многих странах существовала практика переучивания леворуких детей. По мере ослабления давления со стороны среды число пишущих левой рукой заметно увеличивается, вплоть до 10—12% [312]. Существенная роль средового опыта в определении рукости, казалось, подтверждается тем фактом, что у младенцев ведущая рука не обнаруживается. Однако известно, что относительно позднее проявление признака не означает его средовую обусловленность. При изучении рукости приемных детей, усыновленных в младенчестве, было также показано, что приемные родители (в отличие от биологических) оказывают мало влияния на установление ведущей руки у детей [196].
Одним из подходов к решению этой проблемы является разработка конкретных генетических моделей, объясняющих возможность передачи рукости от поколения к поколению. Экспериментальные данные для построения генетических моделей получают в основном в семейных исследованиях рукости, в том числе при изучении приемных детей, а также в близнецовых исследованиях.
Первые семейные исследования рукости дали основания предположить, что сегрегация по этому признаку происходит по закону Менделя-В результате была предложена простая генетическая модель, в соответствии с которой предполагалось, что рукость определяется действием одного гена, имеющего две различные формы (два аллеля): один аллель R — доминантный, кодирует праворукость, второй — рецессивный! кодирует леворукость.
Эта модель, однако, не может объяснить тот факт, что, по разным данным, от 45 до 54% детей двух леворуких родителей являются праворукими. Модель предсказывает, что все дети таких родителей должны быть леворукими, поскольку единственный аллель, который леворукие родители могут передать своим детям, это аллель. Предпринимались попытки усовершенствовать данную модель введением понятия пенетрантности. В частности, предлагалось считать, что манифестация рецессивного гена зависит от случайных факторов, а возможно, и от действия других генов.
Более сложная модель была предложена Дж. Леви и Т. Нагилаки [315]. Они предположили, что рукость является функцией двух генов. Один ген с двумя аллелями определяет полушарие, которое будет контролировать речь и ведущую руку. Аллель L определяет локализацию центров речи в левом полушарии и является доминантным, а аллель / — локализацию центров речи в правом полушарии и является рецессивным. Второй ген определяет то, какой рукой будет управлять речевое полушарие — на своей стороне (ипсилатеральной) или противоположной (контрлатеральной). Контрлатеральный контроль кодируется доминантным аллелем С, а ипсилатеральный — рецессивным аллелем с. Индивид с генотипом LICC, например, будет правшой с центром речи в левом полушарии. У индивида с генотипом Lice центры речи также будут расположены в левом полушарии, но он будет левшой. Эта модель предполагает, что рукость конкретного человека связана с характером его межполушарной асимметрии и типом двигательного контроля. Ключевым допущением данной модели было предположение, что позиция руки при письме (прямая или вывернутая/инвертированная) может служить фенотипическим проявлением специфического генотипа. Индивиды, использующие инвертированное положение руки при письме, с точки зрения авторов, не имеют перекреста пирамидного тракта, т.е. для них характерен ипсилатеральный тип организации моторного контроля. Напротив, индивиды с обычной (прямой) позицией руки при письме в строении пирамидного тракта имеют перекрест, который приводит к ипсилатеральному контролю. В последние годы модель Дж. Леви и Т. Нагилаки неоднократно подвергалась критике. Было показано, что она вступает в противоречие с некоторыми фактами. Например, клинические данные, полученные у 131 пациента, не дают основания считать, что существует связь между положением руки при письме и локализацией центра речи, определяемой по пробе Вада. Известно также, что многие левши мо-ГУТ использовать для письма как прямую, так и инвертированную позицию руки. Кроме того, модель не получила должного статистического подтверждения в семейных исследованиях [196].
Для точного установления специализации полушарий по отношению к |Речи используют метод Вада — избирательный «наркоз полушарий». В одну из сонных артерий на шее (слева или справа) вводят раствор снотворного (амитал-натрий). Каждая сонная артерия снабжает кровью лишь одно полушарие, поэтому с током крови снотворное попадает в соответствующее полушарие и оказывает на него свое действие. Наибольшие изменения в речевой активности наблюдаются тогда, когда под воздействием оказывается полушарие, в котором локализован центр речи.
Известный английский психолог М. Аннет [184, 185] на протяжении двадцати лет разрабатывает оригинальную генетическую модель Латерализация, коренным образом отличающуюся от модели Леви и Нагилаки. Она высказала гипотезу о том, что большинство людей имеют ген, который называется фактором «правостороннего сдвига» (rs+). Если человек имеет этот ген, то он предрасположен стать правшой с левополушарной локализацией центров речи. При его отсутствии и наличии пары его рецессивных аллелей (га—) человек может стать как правшой, так и левшой в зависимости от обстоятельств (например, от условий внутриутробного развития).
В соответствии с гипотезой М. Аннет, в человеческой популяции существует сбалансированный полиморфизм, связанный с распространением доминантного гена «правостороннего сдвига» и его рецессивного аллеля. Более того, с ее точки зрения, влияние этих генов распространяется не только на рукость (правшество или левшество), но и на церебральное доминирование, т.е. общее доминирование того или иного полушария головного мозга. Она считает, что выбор предпочитаемой руки является лишь одним из результатов церебральной латерализации, а поскольку невозможно оценить степень латерализации непосредственно, то наиболее простым оказывается использование косвенных способов, среди которых ведущее место занимает оценка рукости. М. Аннет разработала своеобразный тест, позволяющий оценить степень использования руки, — тест перекладывания колышек. В этом тесте испытуемый должен перекладывать колышки из одной ячейки в другую, причем ячейки расположены на двух паралельных панелях. Поскольку он выполняет это задание на время и поочередно левой и правой рукой, постольку, сравнивая результаты, можно оценить различия в эффективности действия одной и другой рукой. Таким образом, показателем мануальной асимметрии здесь служит время выполнения теста: доминирующая рука работает быстрее. Используя главным образом этот тест, она провела многочисленные исследования мануальной асимметрии у детей и подростков с нарушениями речевого развития (в частности, с дизлексией) и у здоровых в связи с успешностью выполнения разных тестов на умственное развитие. Эти исследования позволили М. Аннет сделать некоторые весьма существенные дополнения к ее теории.    продолжение
--PAGE_BREAK--
Предполагается, что ген правого сдвига приводит к развитию асимметрии, тормозя в раннем онтогенезе развитие, во-первых, височной области (planum temporale) в правом полушарии, во-вторых, левой заднетеменной области коры в левом полушарии. Благодаря этому левая височная область получает возможность преимущественного участия в процессах фонологической обработки, а правая заднетеменная — в процессах зрительно-пространственного анализа.
В соответствии с такими представлениями гомои гетерозиготные состояния гена правого сдвига могут привести к существенным изменениям в особенностях функционирования каждого полушария, причем наибольшими преимуществами в когнитивной сфере будут обладать гетерозиготы по этому гену. Гомозиготы по доминантному гену (+) будут испытывать особенно сильный эффект сдвига, следствием которого на поведенческом уровне явится слабость левой руки, вероятно, объединяемая с некоторым ущемлением функций правого полушария (например, пространственных способностей). Присутствие гена rs+, с точки зрения Аннет, вообще отрицательно сказывается на пространственных способностях. Гомозиготы по рецессивному гену (rs-), напротив, образуют группу риска в отношении развития речевых навыков, в частности фонологических. Экспериментальные доказательства преимущества гетерозигот были установлены при изучении некоторых академических достижений. Теория М. Аннет получила широкую известность и является предметом серьезных дискуссий. Например, в 1995 г. целый номер журнала (Current Psychology of Cognition. V. 14. No 5) был посвящен ее коллективному обсуждению. При этом теория имеет как сторонников, так и критиков.
Мишенью критики служат основные позиции теории: идея сбалансированного полиморфизма и преимущество гетерозигот по гену правого сдвига. Например, Ф. Бриден [216], рассматривая предполагаемые пропорции распространения в популяции генов rs+ и rs—, которые, по данным Аннет, проявляются в особенностях когнитивного дефицита, отмечает несоответствие между постулируемыми теорией и реально существующими фактами нарушений в когнитивном функционировании. Он, как и И. Макманус с соавторами [336], считает целесообразным выделение двух измерений латерализации — направления и степени — и придерживается точки зрения, что эти измерения могут иметь разную генетическую детерминацию.
Наряду с теорией Аннет разрабатываются и другие генетические модели латерализации. К их числу относится, например, генетическая модель И. Макмануса [335]. Его модель, однако, по многим позициям очень близка к модели Аннет. Макманус постулирует существование одного гена D, который предопределяет праворукость, второй ген С определяет не леворукость, а ситуативный вариант становления ведущей руки. Кроме того, допускается существование гена-модификатора, локализованного в Т-хромосоме и влияющего на половые различия в лево-праворукости. В отличие от Аннет, Макманус не касается особенностей когнитивного функционирования, т.е. он не распространяет действия генов D и С на когнитивные функции.
Как уже отмечалось, высказываются предположения, что мануальная асимметрия может иметь полигенную природу. Однако полигенные модели латерализации, которые были бы также детально разработаны, как теория М. Аннет, отсутствуют [обзор: 196]. Например, в соответствии с одной из них предполагается, что умеренная степень латерализации представляет собой видоспецифическую норму, при этом допускается, что полигенная гомозиготность ведет к дестабилизации развития, которая проявляется в значительном числе нарушений развития, включая шизофрению, аутизм, некоторые физические аномалии, в том числе крайние сдвиги в ту и другую сторону от ви-доспецифически предопределенной умеренной праворукости [269,4561. Однако с этих позиций трудно объяснить, каким образом в антропогенезе возникли генетически детерминированные механизмы латерализации. В контексте простых генетических моделей этот вопрос решается легче, поскольку можно допустить изменение или появление одного-двух новых генов в эволюции. Признано, что функциональная асимметрия мозга, как и левополушарное доминирование, — уникальная, специфическая особенность мозга человека, возникшая в антропогенезе в связи с появлением речи и праворукости. Можно говорить о преобладании левого полушария и осуществлении им контроля двигательных функций у животных. Однако латеральный контроль двигательных функций у животных динамичен, и его латерализация может смещаться в зависимости от обслуживаемой функции [15]. По некоторым предположениям склонность к преимущественному использованию правой руки возникла в первобытных популяциях, когда их члены еще не имели генетически обусловленного превосходства в использовании той или иной руки. Эволюционные события, определившие появление ведущей руки, произошли, по-видимому, уже после отделения человека как вида от его ближайшего родственника — шимпанзе [312].
Как следует из вышеизложенного, несмотря на значительное число исследований в этой области, в настоящее время нет общепринятой генетической модели, объясняющей феномены латерализации руки и центров речи. Имеются также факты, которые трудно объяснить всеми генетическими моделями. Речь идет, в первую очередь, о приблизительно одинаковом сходстве МЗ и ДЗ близнецов по показателям мануальной асимметрии [обзор 196]. Эти данные нередко привлекаются как доказательство отсутствия генетической детерминации рукости. Однако, как отмечает Д. Бишоп, возможность ситуативного определения рукости под действием эпигенетических факторов (модели Аннет и Макмануса) позволяет отклонить это возражение. Есть еще одно любопытное наблюдение, касающееся наследуемости ведущей руки у близнецов. Родители, у которых отсутствует явно выраженная праворукость, с большей вероятностью рождают близнецов.
М. Аннет, чтобы объяснить отсутствие существенных различий между МЗ и ДЗ близнецами по показателям мануальной асимметрии, допускает также, что проявление гена правостороннего сдвига у близнецов по сравнению с одиночнорожденными снижено на 33-50%.
На этом весьма противоречивом фоне сформулирован ряд критериев, которым должны удовлетворять генетические модели рукости [312, 335]. В соответствии с этими критериями модель должна объяснять следующие факты: 1) соотношение рукости родителей и детей в таких пропорциях: приблизительно 90, 80 и 60% детей при родительских сочетаниях правый/правый, правый/левый, левый/ левый должны быть праворукими; 2) невозможность предсказать рукость ребенка на основе рукости его братьев и сестер, а также приблизительно равную степень конкордантности МЗ и ДЗ близнецов по рукости; 3) существование различий частот рукости в разных географических регионах, которые прослеживаются весьма отчетливо, хотя все человеческие сообщества преимущественно праворуки. Кроме того, модель должна объяснить, какие механизмы лежат в основе установления рукости в онтогенезе. Последний пункт не может получить обоснования в рамках чисто генетических моделей рукости. Вместе с тем средовые модели рукости не могут объяснить первые два положения. Иной, недавно сформулированный подход связан с предложением ввести генотип-культурную, коэволюционную модель установления рукости [312]. Она базируется на трех положениях: 1) существующее разнообразие по преобладанию руки не определяется генетическим разнообразием; 2) индивидуальные различия между людьми по этому признаку возникают в результате взаимодействия влияний культуры и условий развития; 3) генетические влияния сохраняются, поскольку рукость выступает как необязательная (факультативная), приобретаемая в онтогенезе черта. Таким образом, авторы модели исходят из того, что вариации рукости не определяются только генетическими факторами; иначе говоря, все индивиды, независимо от происхождения, имеют общий генотип, обусловливающий преимущественное использование правой руки. Тем не менее, поскольку эта склонность однозначно не предопределяет праворукость, некоторая часть популяции становится леворукой. Решающую роль здесь играют родители: они существенно повышают склонность детей к праворукости (если они оба правши) или не менее ощутимо понижают ее, будучи левшами. Авторы модели ограничиваются анализом только рукости, не касаясь проблем полушарной специализации и роли генотип-культурных факторов в ее становлении.
В заключение следует сказать, что существующие ныне модели Функциональной латерализации касаются только установления ведущей руки и до некоторой степени доминирования полушарий. При этом они совершенно не учитывают такого явления, как профиль латеральной организации, и не включают в анализ всех возможных аспектов латерализации функций. В связи с этим можно добавить еще °Дно требование к полноценной генетической модели латерализации: °на должна предусматривать возможность описания и объяснения всех аспектов функциональной латерализации и специализации мозга. Особенности функциональных асимметрий у близнецов
По признакам асимметрии близнецы существенно отличаются от стальных представителей популяции. Например, среди близнецов НеРедко встречаются зеркальные пары, в которых один близнец являйся правшой, а другой — левшой.
Широко распространено мнение, что леворукость среди близнецов встречается чаще, чем в общей популяции, однако специальное сравнение частоты леворукости среди близнецов и одиночнорожденных обнаружило лишь незначительную тенденцию к преобладанию леворукости в популяции близнецов [196].
Различия между близнецами отмечаются также по асимметрии глаз, ног и по ряду морфологических признаков (например, направлению завитка волос на затылке, дерматоглифическим узорам на пальцах и ладонях рук).
Исследования асимметрии рук у близнецов довольно многочисленны, при этом отмечается, как правило, приблизительно одинаковое сходстве МЗ и ДЗ близнецов по показателям мануальной асимметрии. По данным разных исследований, 22,5-24,6% МЗ близнецов и 19,3-30,7% ДЗ обнаруживают дискордантность (несовпадение) пору-кости [обзор 196, 334]. Работ по асимметрии других психофизиологических функций единицы: это исследования слуховой асимметрии по данным дихотического прослушивания и асимметрии некоторых зрительных функций. Причем в обоих содержатся указания на несходство МЗ близнецов по изучаемым явлениям [132].
Не исключено, что отсутствие достоверных различий между МЗ и ДЗ близнецами при изучении асимметрий организма обусловлено методическими особенностями оценки асимметрий, как таковых. Как правило, в группах ДЗ и МЗ близнецов оценивают сходство по стороне доминирования признака или функции. Количественная выраженность асимметрии далеко не всегда принимается во внимание. Между тем, как отмечалось, направление асимметрии и ее интенсивность являются скорее всего относительно независимыми признаками, которые могут иметь разные источники генетической детерминации.
Применение близнецового метода для изучения наследственных и средовых влияний на формирование функциональных асимметрий может оказаться более продуктивным, если сравнивать близнецов не только по стороне предпочтения или направлению асимметрии, но и по количественной выраженности признака на обеих сторонах (при условии, что изучаемый признак может быть измерен), а также по степени интенсивности асимметрии, не зависящей от стороны предпочтения. По некоторым представлениям, генотип контролирует не только и не столько направление асимметрии, как таковое, а степень ее выраженности. Предпринимались разные попытки объяснить появление дискор-дантных по асимметрии близнецовых пар. Так, например, была высказана гипотеза, что инверсия асимметрии в парах МЗ близнецов, названная зеркальностью, связана с особенностями их эмбрионального развития, а именно со стадией, на которой произошло разделение зародыша на два самостоятельных организма [345].
Если деление происходит на ранних стадиях развития, когда отсутствует дифференцировка на правую и левую половины эмбриона, то никаких признаков зеркальности не будет. В случае же если разделение происходит позднее, на стадии, когда такая дифференцировка уже возникла, можно ожидать появления зеркальных МЗ пар. В пользу данной гипотезы говорит тот факт, что у соединенных близнецов, которых считают сформировавшимися на сравнительно поздних стадиях эмбрионального развития, зеркальность встречается гораздо чаще, причем возможны случаи крайнего выражения зеркальности (инверсия расположения внутренних органов). Однако эта гипотеза не объясняет, почему среди МЗ близнецов встречаются пары, зеркальные по одним признакам и совпадающие по другим. Кроме того, гипотеза Ньюмана не может объяснить существования дискордантных пар среди ДЗ близнецов. Да и среди МЗ близнецов зеркальные пары встречаются довольно редко: по данным близнецовой статистики, число МЗ близнецов, разделившихся после формирования первой околоплодной оболочки (8-9-й день эмбрионального развития), когда уже возможна латерализация признаков, составляет всего 34% от общего количества пар МЗ близнецов.
Другая возможная причина появления дискордантных по асимметрии пар — большая подверженность близнецов действию патогенетических средовых факторов, которые могут по-разному влиять на каждого из партнеров. Такие факторы, вероятно, в равной мере увеличивают число дискордантных пар как среди ДЗ, так и среди МЗ близнецов. Возможность появления дискордантных по асимметрии пар за счет неравномерности внутриутробных условий и родового стресса признается многими авторами.
Среди патогенных внутриутробных факторов, влияющих на общее развитие близнецов, называется также задержка созревания. У одиночного плода внутриутробное положение лучше, близнецы, как МЗ, так и ДЗ, испытывают большие ограничения и во внутриутробном пространстве, и в ресурсах. На поздних сроках беременности эти ограничения могут привести к существенной задержке созревания. Действительно, есть данные, что в период от 19 до 32 недель развитие некоторых борозд и извилин на поверхности коры больших полушарий у близнецов задерживается на 2—3 недели по сравнению с оди-ночнорожденными [185, 196]. Эта задержка созревания коры больших полушарий создает неблагоприятные условия, которые отчасти могут объяснить задержку речевого развития и появление леворукости среди близнецов обоего типа. Таким образом, возникновение дискордантных по асимметрии пар близнецов может быть вызвано различными причинами. Помимо He-Равноценности условий внутриутробного развития и родов, равно возможных в парах близнецов обоего типа, в парах МЗ близнецов встречаются случаи собственно зеркальности за счет специфики их образо-вания из одного эмбриона.    продолжение
--PAGE_BREAK--
Признанным методом изучения функциональной асимметрии мозга Человека служит изучение проявлений асимметрии в биоэлектрической активности коры больших полушарий ЭЭГ и ВП. Систематическое исследование показателей межполушарной асимметрии фоновой ЭЭГ проводилось ТА. Мешковой [см. гл. XIII]. Она приводит следующие наблюдения, касающиеся асимметричных проявлений в ЭЭГ взрослых близнецов.
1) Партнеры характеризуются различной степенью асимметричности ЭЭГ. Если один близнец имеет выраженную асимметрию, то ЭЭГ второго, как правило, симметрична. Отсутствуют собственно зеркальные пары, т.е. партнеры с выраженной асимметрией противоположного знака. Существуют пары ДЗ близнецов, дискордантные по доминированию руки, в которых правша характеризуется выраженной и даже повышенной асимметрией ЭЭГ височных отведений, ЭЭГ левши при этом симметрична.
2) Зафиксирована значительная асимметрия ЭЭГ височных отведений при повышенной активированности слева.
3) Генетические факторы сильнее проявляются в правом полушарии, а средовые — в левом.
4) Интенсивность асимметрии ЭЭГ определяется средовыми факторами.
Характерно, что все перечисленные особенности наиболее четко обнаруживаются при анализе ЭЭГ височных областей или частично справедливы для ЭЭГ других симметрично расположенных зон.
В исследовании, проведенном ТА. Мешковой с коллегами [114], у близнецов 7-8 лет (28 пар МЗ и 22 пары ДЗ) параллельно изучалась наследуемость мануальной асимметрии и степени асимметричности фоновой ЭЭГ. У детей, как и у взрослых близнецов, по показателям мануальной асимметрии (ее оценка проводилась по нескольким количественным тестам) и показателям асимметричности ЭЭГ достоверных различий в парах МЗ и ДЗ близнецов выявлено не было. Авторы приходят к выводу, что наследственные факторы не влияют на интенсивность латерализации ни в моторике, ни в биоэлектрической активности мозга. Таким образом, изучение асимметрий в парах МЗ и ДЗ близнецов не дает возможности решить вопрос о том, какой вклад вносят факторы генотипа в формирование межиндивидуальной вариативности по показателям асимметрии.
Одновременно проводилось сравнительное изучение природы межиндивидуальной изменчивости показателей ЭЭГ левого и правого полушарий, взятых независимо друг от друга [132; гл. III]. Полученные данные свидетельствуют о том, что индивидуальные особенности ЭЭГ левого и правого полушарий в разной степени зависят от факторов генотипа. Причем это справедливо как для относительно элементарных показателей ЭЭГ (амплитуда и индекс альфа-ритма), так и ДО13 более сложных, таких, как коэффициент периодичности ЭЭГ (отношение мощности периодической к случайной составляющей), дисперсия мгновенных значений амплитуды, коэффициент локальной нестационарности. По совокупности всех данных ТА. Мешкова пришла к заключению, что существуют значительные межполушарные различия в степени генетических влияний на перечисленные показатели, причем отмечается большая подверженность действию средовых факторов некоторых параметров ЭЭГ левого полушария по сравнению с правым, особенно по показателям ЭЭГ височных зон.
При изучении генетической обусловленности зрительных вызванных потенциалов на стимулы разной формы и содержания были установлены достоверные межполушарные различия: в височной зоне левого полушария изменчивость ответов на большинство стимулов определялась в основном средовыми влияниями, в височной зоне правого, напротив, изменчивость аналогичных ответов определялась влияниями генотипа [132; гл. IV].
ТА.Мешкова с коллегами [114] установили и некоторые другие факты, свидетельствующие о сравнительно большем вкладе правого полушария в межиндивидуальную дисперсию по показателям моторики и ЭЭГ. Другими словами, интенсивность асимметрии и в моторике (по показателям использования левой руки), и в ЭЭГ формируется главным образом за счет индивидуальных различий в функционировании правого полушария. Были установлены также некоторые половые различия, в частности, например, у девочек-правшей более выражена асимметрия ЭЭГ. Кроме того, оказалось, что дети с более высокими показателями интеллекта отличались более развитой моторикой левой руки. Привлекая данные о большем сходстве людей по анатомическим особенностям левого полушария, ТА. Мешкова с коллегами высказали следующее предположение. Левое полушарие, в силу локализации в нем центров речи и ведущей руки, больше подвержено унифицирующим влияниям среды и поэтому функционально более единообразно у всех людей. Правое полушарие больше, чем левое, определяет природную индивидуальность человека, связанную с его биологическими, в том числе наследственными, характеристиками. Функциональная асимметрия и специализация полушарий — уникальная особенность мозга человека, возникшая в антропогенезе в связи с появлением речи и праворукости. В онтогенезе специализация Полушарий формируется постепенно и достигает своей дефинитив-Ной формы лишь к периоду зрелости. По асимметриям парных органов существуют большие индивидуальные различия, позволяющие говорить о типах, или устойчивых профилях, латеральной организации индивида. Генетические исследования асимметрии посвящены изучению наследуемости мануальной асимметрии и, до некоторой степени, полушарного доминирования. Существует ряд генетических моделей, описывающих возможные варианты наследования ведущей руки, однако ни одна не является общепризнанной. Сформулированы критерии, которым должна удовлетворять генетическая модель, адекватно описывающая тип наследования ведущей руки.
МЗ и ДЗ близнецы, как правило, обнаруживают сходную степень конкордантности по показателям функциональной асимметрии. Для некоторых МЗ близнецов характерен феномен зеркальности по парным признакам. В то же время выполненные на близнецах исследования наследуемости электрофизиологических показателей левого и правого полушарий, дают основания предполагать больший вклад генотипа в изменчивость показателей функционирования правого полушария.
Нормативное и индивидуальное в развитии психологических признаков
Итак, генотип в процессе онтогенеза выполняет две функции: во-первых, типизирует и, во-вторых, индивидуализирует развитие. Генетические факторы ответственны за формирование единых для всей человеческой популяции признаков (телесной организации, прямо-хождения, универсальности руки, способности к речевой коммуникации, высшим психическим функциям и т.д.), которые возникли в результате антропогенеза. Они присущи всем здоровым людям, и в онтогенезе каждого человека эти признаки реализуются благодаря консервативной наследственности — фонду неизменных видовых признаков, детерминируемых генотипом и не имеющих межиндивидуальной изменчивости.
Между тем человеческое разнообразие настолько велико, что невозможно встретить двух одинаковых людей (за исключением однояйцевых близнецов). И это разнообразие тоже в значительной степени может определяться наследственностью, поскольку наряду с консервативным фондом генотип каждого человека содержит уникальное, присущее только ему, сочетание генов. По некоторым данным, около 60-70% генофонда каждого человека индивидуализировано. По образному замечанию Р. Пломина, каждый человек — это уникальный генетический эксперимент, который никогда не будет повторен [355]. Таким образом, при анализе генетической детерминации психического развития человека также следует различать два относительно независимых аспекта: 1) формирование нормативных (универсальных, общевидовых) закономерностей и 2) формирование межиндивидуальной вариативности в реализации этих закономерностей, т.е. формирование индивидуальных различий.
Для своей реализации генотип требует определенных условий среды. Его видоспецифическая часть (консервативный фонд наследственности) предусматривает наличие диапазона средовых условий, в которых возможно полноценное развитие человека как представителя Homo Sapiens. При этом имеются в виду, с одной стороны, соответствующие видовым требованиям природные, экологические условия, позволяющие удовлетворить базисные потребности организма (в пище, безопасности и т.д.), а с другой — социальные, которые предусматривают необходимую заботу и поддержку со стороны взрослых, об-Щение со сверстниками, возможность присвоения соцального опыта и др. Необходимо подчеркнуть, что нормативное развитие допускает Довольно существенные колебания значимых факторов среды, в пределах которых оно остается возможным. Однако выход за пределы адаптивных возможностей организма влечет за собой искажение нормативного развития и в крайних случаях — его гибель, как, например, развитие эндемического кретинизма при сильном недостатке йода в окружающей среде. То же самое касается требований к социальной среде: ребенок в условиях социальной изоляции лишается возможности реализовать имеющиеся у него видоспецифические способности к развитию высших психических функций, речевой коммуникации и т.д. Известно, что дети, в раннем возрасте подвергшиеся социальной и когнитивной депривации, обнаруживают существенные отклонения в психическом развитии, в большинстве случаев необратимые. Следовательно, консервативный фонд наследственности и экологически валидные природные и социальные условия среды неразрывно взаимосвязаны.
Формирование индивидуально-психологических различий тоже может быть связано с двумя источниками детерминации: генотипом и средой. Но в этом случае речь идет о взаимодействии уникальной части генотипа и индивидуально-специфической среды. (Вариативность последней, однако, не должна выходить за пределы, допускаемые нормативным развитием.) Таким образом, своеобразный в каждом конкретном случае вариант развития (фенотип) любого индивидуального (в том числе психологического) признака может быть результатом как уникальной генетической конституции, так и уникального жизненного опыта.
Соотношение генотипических и средовых влияний в формировании индивидуальных различий (в отличие от нормативного развития) является предметом многочисленных экспериментальных исследований, поскольку входит в круг наиболее существенных проблем возрастной психогенетики, или психогенетики развития, — науки, изучающей природу межиндивидуальной изменчивости психологических особенностей человека в процессе онтогенеза. Отличия этого направления от реализуемого в генетике развития простираются от несовпадения объекта исследования до различий в возможности обработки результатов экперимента и интерпретации данных. Стабильность психологических признаков в онтогенезе
Проблемы индивидуализации развития относятся к числу мало разработанных в возрастной психологии, которая традиционно была направлена в основном на изучение общих закономерностей развития и возрастных особенностей психики на разных этапах онтогенеза (Л.С. Выготский, А.Н. Леонтьев, А.В. Запорожец, Д.Б. Эльконин, Ж. Пиаже, Э. Эриксон и др.). Другими словами, предметом ее изучения были в основном нормативные, или «общечеловеческие», закономерности психического развития. Формирование индивидуальных Различий рассматривалось не как самостоятельная линия онтогенеза психики, а как проблема соотношения возрастного и индивидуального в психическом развитии. Между тем имеются определенные основания полагать, что нормативное развитие и формирование индивидуальных различий имеют различную возрастную динамику, а возможно, и разные механизмы.
Имея разную природу, детерминанты нормативных закономерностей раз-вития могут не совпадать с детерминантами индивидуальных различий. Более того, по некоторым данным, нормативная генетическая детерминация реализуется в онтогенезе значительно раньше, чем генетическая детерминация индивидуальных различий. Не исключено также, что первая в основном обусловлена действием структурных генов, вторая — регуляторных [331, 397].
Феноменологически исследование формирования индивидуальных различий в онтогенезе упирается в необходимость предварительного определения их устойчивости, или стабильности теоретическим основанием для выявления устойчивости (стабильности) индивидуально-психических особенностей ребенка служит представление о непрерывности (континуальности) развития. Непрерывность развития в общем виде интерпретируется как преемственность процессов психического развития человека и формирования его индивидуальных особенностей. Она предполагает, что все структурно-функциональные изменения психики, возникшие в раннем онтогенезе, непосредственно связаны и, возможно, в определенной степени предопределяют более поздние эффекты развития [247].
О непрерывности и преемственности развития судят в первую очередь, оценивая устойчивость, или стабильность, показателей психического развития. Однако понятие «стабильность» чрезвычайно емко и имеет ряд интерпретаций. Например, Дж. Кэган [301] выделяет: 1) стабильность как временную устойчивость некоторой характеристики, т.е. отсутствие или минимальное изменение этой характеристики при повторных измерениях; 2) устойчивость соотношения между свойствами одного и того же индивида при изменении их абсолютных значений в ходе развития (ипсативная или внутрииндивидуальная стабильность); 3) сохранение рангового места в группе (онтогенетическая стабильность). При оценке непрерывности когнитивного развития предлагается выделять три типа стабильности: первый характеризует континуальность идентичного поведения; второй — разных типов поведения, отражающих одни и те же базовые процессы, которые обладают континуальной природой; третий — постоянство самих возрастных изменений, их этапов и последовательности, хотя сроки их проявления у разных людей разные [205]. В экспериментальных исследованиях наиболее часто фигурирует онтогенетическая стабильность, которая подразумевает не отсутствие изменений в абсолютных значениях показателей созревания, а относительное постоянство темпа их преобразований в онтогенезе, т.е. стабильность индивидуальных особенностей человека на всем протяжении его жизненного пути. Конкретным показателем онтогенетической стабильности служит постоянство рангового места в группе, которое занимает индивид при повторных обследованиях. Предполагается, что в пределах общих закономерностей онтогенеза есть своя типология индивидуального развития, одним из проявлений которой служит более или менее постоянное положение индивида (его рангового места) в группе представителей своей возрастной когорты.    продолжение
--PAGE_BREAK--
Лонгитюдные исследования, охватывающие иногда большие промежутки времени — до 30-40 лет, дают, несмотря на некоторую пестроту результатов, доказательства большей или меньшей, но все же стабильности интеллектуальных особенностей, личностных черт и т.д. Оценки стабильности имеют возрастную динамику: стабильность оценок интеллекта растет, она тем выше, чем старше сопоставляемые возраста и чем меньше интервал между ними [см.: Введение; 213].
Стабильными оказываются и такие черты, как экстра-интроверсия и нейротицизм, хотя в этой области существуют методические трудности, снижающие информативность лонгитюдных исследований, поскольку результаты могут говорить о стабильности самооценки, а не исследованной черты [250]. Однако другие диагностические техники (Q-техника, экспертные оценки и т.д.) подтверждают стабильность личностных черт. Особенно информативны и здесь, очевидно, обобщенные оценки, полученные так называемым «гетерометодом», т.е. объединением разных техник [213].
Таким образом, индивидуальные особенности и в когнитивной, и в личностной сфере, закономерным образом изменяясь в процессе развития, отличаются значительной внутрииндивидуальной устойчивостью, что позволяет ставить вопрос о роли факторов генотипа и среды в происхождении этих особенностей на разных этапах онтогенеза.
Понятия, методы и модели возрастной пспхогенетики
Главным понятием психогенетики развития является «генетическое изменение». Оно характеризует изменения в эффекте действия генов на разных стадиях онтогенеза. При этом выделяются два аспекта. Первый связан с оценкой в разных возрастах относительной доли генетической вариативности в общей вариативности признака, что позволяет оценить, как меняется наследуемость признака в ходе онтогенеза, второй — насколько связаны между собой генетические компоненты дисперсии признака в разных возрастах [355].
В первом случае проводится сопоставление показателей наследуемости у аналогичных групп родственников в разных возрастах, т.е. используется вариант метода возрастных срезов, что обеспечивает выделение возрастных различий в наследуемости признаков. В силу того, что гены в развитии «включаются» и «выключаются», высокая наследуемость признака в разных возрастах ничего не говорит о том, разные или одни и те же гены обеспечивают этот эффект. Вот почему второй аспект предполагает лонгитюдное исследование, в котором определяется корреляция между генетическими компонентами дисперсии изучаемой характеристики, полученными в разных возрастах одной и той же группе испытуемых. Этот способ дает возможность оценить вклад генетических факторов в изменчивость возрастных преобразований, а также установить, насколько связаны между собой генетические и средовые компоненты межиндивидуальной вариативности признака в разные периоды. Иначе говоря, для того чтобы судить о преемственности или стабильности генетических и средовых влияний, необходимо лонгитюдное исследование близнецов или сибсов, которое позволит установить степень связи между генетическими компонентами (межвозрастная генетическая корреляция) и средовыми компонентами (межвозрастная средовая корреляция) фенотипической дисперсии признака.
Таким образом, полная схема исследования в психогенетике развития с необходимостью включает эмпирическое исследование и наследуемости, и генетических корреляций. Сама по себе высокая наследуемость признака, полученная в разных возрастах, ни в коей мере не свидетельствует о стабильности генетических влияний.
По представлениям Р. Пломина, эти две переменные — наследуемость и степень генетической общности, определяемая величиной генетической корреляции, — относительно независимы и могут образовывать разные варианты сочетаний (рис. 17.2). Модель А, например, предполагает, что наследуемость признака с возрастом может оставаться без изменений (левый столбик) или возрастать (правый), но независимо от этого генетической преемственности при этом не обнаруживается, т.е. генетические эффекты в раннем возрасте и зрелости абсолютно не связаны между собой. В моделях В и С, напротив, допускаются варианты частичной (В) или (С) полной генетически опосредованной преемственности в формировании признака. Последний вариант (с точки зрения Р. Пломина, наиболее вероятный) получил название амплификационной модели. Амплификационная модель реализации генетических влияний в онтогенезе предполагает, что с возрастом, по мере созревания ЦНС и формирования индивидуально устойчивых способов переработки информации, возрастает наследуемость признака, при этом сохраняется высокая межвозрастная генетическая корреляция, т.е. генетические эффекты, действовавшие в младенчестве, высоко коррелируют с генетическими эффектами в зрелости. Более детализованную модель предлагает Л. Иве с соавторами [245]. В зависимости от времени начала экспрессии генов они выделяют две альтернативы в генотипической детерминации развития. Первая предполагает, что все гены находятся в действенном состоянии с момента рождения и развитие есть модификация фенотипа средовыми влияниями. В этом случае наследуемость признака в онтогенезе будет уменьшаться, приближаясь к некой асимптотической величине, которая есть функция исходной наследуемости и «условной памяти», ответственной за фиксацию средового опыта. Вторая исходит из того, что гены постоянно синтезируют продукты, требуемые для информационной обработки. В таком случае наследуемость будет возрастать от небольшой величины в момент рождения до высокой асимптотической величины, которая является функцией исходной или первоначальной наследуемости и постоянства экспрессии генов во время развития.
При анализе данных лонгитюдного исследования близнецов модель Ивса предполагает, что фенотип каждого индивида во времени О, 1, 1… Л выступает как функция аддитивных генетических эффектов и уникального средового опыта. В каждый момент времени имеются новые генетические эффекты и новые специфические средовые влияния. Если принять, что все средовые эффекты являются случайно-специфическими, а генетические эффекты действуют через интервенцию генного продукта, который может сохраняться в течение времени, то генетические эффекты на фенотип в данный момент времени есть результат генов, экспрессирующихся вновь вместе с эффектами генов, которые экспрессировались на всех предшествующих стадиях развития в той степени, в какой они сохраняются во времени. По мере развития признака генетические эффекты будут накапливаться, приводя к увеличению генотипической и фенотипической вариативности.
Таким образом, модель Ивса в простейшем случае (когда генетические эффекты постоянны во времени, средовые — случайно специфичны, а пути распространения влияний постоянны), как и амплификационная модель Пломина, предсказывает увеличение генотипического компонента фенотипической вариативности в онтогенезе. Однако, анализируя межвозрастные связи между генетическими составляющими вариативности, Иве прогнозирует уменьшение генетического компонента ковариации между двумя фенотипами одного и того же индивида в разные моменты времени и и /, причем генетический компонент ковариации будет уменьшаться как экспоненциальная функция интервала времени и—t. В моделях Пломина и Ивса в центре анализа находится структура фенотипической дисперсии и рассматривается онтогенетическая динамика в формировании индивидуальных особенностей, при этом генетический анализ динамики средних значений изучаемых характеристик, как таковых, остается за пределами внимания авторов.
Однако существует модель, в которой органически сочетается генетический анализ лонгитюдных средних и ковариационной структуры. Она базируется на использовании авторегрессионной симплексной модели [202, 258]. Не вдаваясь в детали математического аппарата, отметим, что эта модель позволяет экспериментально выяснить, одни и те же или разные генетические и средовые факторы объясняют фенотипическую вариативность и фенотипические средние. Фактически данная модель впервые на экспериментальном уровне ставит проблему взаимосвязи генотип-средовой детерминации нормативных характеристик и их индивидуальных различий. Возрастная динамика генетических и средовых детерминант в изменчивости когнитивных характеристик
Представления о том, что в онтогенезе меняется соотношение генетических и средовых влияний, определяющих индивидуально-психологические особенности, родились в контексте самой психогенетики, тем не менее они хорошо согласуются с представлениями возрастной психологии, касающимися изменения механизмов реализации психических функций в онтогенезе.
Выдающийся отечественный психолог А.Р.Лурия писал: «Мы имеем все основания думать, что природа каждой психической функции (иначе говоря, ее отношение к генотипу) так же меняется в процессе психического развития человека, как и ее структура, и что поэтому ошибочными являются попытки раз и навсегда решить вопрос «о степени наследственной обусловленности» той или иной психической «функции», не принимая в расчет тех изменений, которые она претерпевает в своем развитии» [99].
На основе теоретических представлений, существующих в отечественной возрастной психологии, делались попытки определить направление этих изменений. Так, А.Р. Лурия, исходя из фактов качественной перестройки всей психической деятельности человека и замены элементарных форм деятельности сложноорганизованными функциональными системами, которые происходят в процессе психического развития, предположил, что по мере изменения структуры высших психических функций, возрастания степени их опосредования зависимость той или иной деятельности от генотипа будет закономерно уменьшаться. Действительно, исследования некоторых особенностей памяти и внимания выявили именно такой характер изменений. Было установлено, что от дошкольного к подростковому возрасту сохраняется преимущественно генотипическая обусловленность образной зрительной памяти и устойчивости внимания. В то же время наблюдается фактическая смена детерминации, т.е. переход от генотипической к средовой обусловленности у опосредованных форм памяти и у более сложных форм внимания, таких, как его распределение [2, 97]. Наряду с этим исследования генотип-средовых отношений в показателях интеллекта в ходе развития дают другую картину.
Возрастная стабильность и изменчивость генетических и средовых влияний, лежащих в основе межиндивидульных различий по интеллекту, в последнее время являются предметом многих исследований [25, 56, 106, 355]. В большинстве исследований делается вывод о том, что в младенчестве наследственная обусловленность показателей интеллекта относительно низка, а влияние систематической семейной среды сравнительно велико. Начиная с шести лет и далее, а также у подростков и взрослых оценка наследуемости показателей интеллекта возрастает до 50—70%, влияние же общей семейной среды существенно снижается (подробнее об этом см. гл. VI).
Эти выводы представляют обобщение результатов целого ряда исследований, выполненных на близнецах и приемных детях. Рассмотрим сначала результаты некоторых близнецовых исследований.
Наиболее известным из них является Луисвиллское близнецовое исследование, посвященное изучению природы межиндивидуальной изменчивости показателей интеллекта. Оно было начато в 1957 г. Ф. Фолкнером и к середине 80-х годов охватывало около 500 пар близнецов, чье развитие было прослежено от рождения до 15-летнего возраста. Близнецы, участвовавшие в этом исследовании, тестировались по интеллекту, начиная с первого года жизни до 15 лет (каждые три месяца на протяжении первого года жизни, дважды в год — до 3 лет, ежегодно до 9 лет и последний раз — в 15 лет). При этом использовалась шкала психического развития Бейли в младенческом периоде, шкалы Векслера — WPPSI в возрасте 4,5 и 6 лет и WISC в более старшем возрасте.
Анализ полученных оценок IQ в парах МЗ и ДЗ близнецов отчетливо демонстрирует увеличение показателя наследуемости с возрастом. Показатели наследуемости у детей в возрасте 1,2,3 лет составляют 10, 17, 18% соответственно. С 3 лет внутрипарное сходство МЗ близнецов сохраняется на очень высоком уровне, коэффициенты корреляции не ниже 0,83. У ДЗ близнецов внутрипарное сходство по показателю интеллекта уменьшается с 0,79 в 3 года до 0,54 в 15 лет. Показатели наследуемости у детей в 4 года составляют 26% и далее Увеличиваются до 55%.
Интересно, что значимые различия в сходстве МЗ и ДЗ близнецов начали обнаруживаться до того, как была установлена их зиготность. Тип близнецовых пар, т.е. отнесенение их к МЗ или ДЗ близнецам, был определен только в 3 года. По мнению исследователей, полученные данные показывают, что процессы развития инициируются и в значительной степени управляются генотипом. Это предположение было подтверждено при изучении внутрипарного сходства индивидуальных траекторий, или профилей, развития МЗ и ДЗ близнецов. Профиль индивидуального развития характеризует не только направление развития психологических характеристик, но и индивидуальные особенности движения в этом направлении, которые могут включать периоды ускорения и замедления, спада и подъема. В Луисвиллском близнецовом исследовании по результатам многолетнего прослеживания изменений в уровне интелекта МЗ и ДЗ близнецов оказалось возможным провести внутрипарное сравнение профилей индивидуального развития по показателям интеллекта [452, 453].
Внутрипарное сравнение профилей показало, что в парах МЗ близнецов наблюдается значительно большее совпадение значений интеллекта по каждому году, т.е. наблюдается больше сходства по ходу развития в целом. В парах ДЗ близнецов совпадения были выражены значительно меньше. Мерой количественной оценки внутрипарного сходства профилей показателей IQ служат коэффициенты корреляции, которые составляют 0,87 для МЗ близнецов и 0,65 для ДЗ в возрастном диапазоне от 3 до 6 лет и 0,81 и 0,66 соответственно в диапазоне от 6 до 8 лет. Коэффициенты наследуемости равны соответственно 0,44 для первого возрастного отрезка и 0,30 — для второго. Таким образом, индивидуальные особенности профилей развития по показателям интеллекта испытывают на себе существеннное влияние генотипа, однако вполне возможно, что степень этого влияния на разных отрезках онтогенеза также будет варьировать.    продолжение
--PAGE_BREAK--
Как уже отмечалось, основным достоинством лонгитюдного исследования близнецов является то, что только оно может ответить на вопрос: обусловлено ли увеличение наследуемости проявлением новых дополнительных генетических факторов, начинающих функционировать по мере взросления ребенка, или происходит усиление уже действующих генетических факторов?
Л. Иве с коллегами [245] подошел к анализу генотип-средовых соотношений в развитии интеллекта именно с этих позиций, используя для анализа материалы лонгитюдного Луисвиллского близнецового исследования. Анализ полученных у близнецов в разные годы оценок IQ выявил изначально небольшое, но устойчивое и возрастающее влияние одних и тех же генетических факторов. Было установлено и существенное влияние систематической семейной среды, причем эффекты систематической среды также сохраняли преемственность, хотя по мере взросления к стабильным присоединялись и новые. He-систематические средовые влияния были менее устойчивы по сравнению с генетическими и систематическими средовыми эффектами. В целом эти данные свидетельствуют в пользу амплификационной модели наследуемости показателей IQ. Сходные проблемы решались и в ряде других подобных исследований. Так, голландские исследователи Д. Бумсма и К. Ван Баал [25] приводят результаты лонгитюдного генетического исследования IQ у близнецов 5-7 лет. Они ставили задачу проанализировать изменения соотношения средовых и генетических факторов, влияющих на IQ, и выделить компоненты фенотипической стабильности в указанном возрастном диапазоне. Для оценки интеллекта близнецов использовался один и тот же тест RAKIT (обновленный амстердамский тест детского интеллекта). Выборка испытуемых включала: в 5 лет 209 пар близнецов, в 7 лет повторно 192 пары. Генетико-статистический анализ проводился с привлечением генетической модели, которая в качестве источников вариативности рассматривала генетические эффекты, систематическую среду, несистематическую среду.
Сопоставление оценок наследуемости и их доверительных интервалов в 5 и 7 лет показало, что относительное влияние генетических факторов действительно различается в двух возрастах. Несмотря на то что в 5 лет верхняя граница наследственной обусловленности — 42 %, а в 7 лет ее нижняя граница — 50%, непересекающийся доверительный интервал свидетельствует о значительно более высокой наследуемости в 7 лет. Соответственно относительное влияние систематической среды ниже в 7 лет, чем в 5 лет. Корреляция между оценками интеллекта в 5 и 7 лет составила 0,65. В генетической модели ковариация показателей IQ между 5 и 7 годами разлагалась на генетическую и средовую составляющие, при этом большая часть ее — 64% объясняется стабильностью генетических факторов, а меньшая — 36% — стабильностью систематической среды.
Таким образом, исследование Д. Бумсмы и К. Ван Баал показало, что, во-первых, наследуемость показателей IQ в возрастном интервале с 5 до 7 лет возрастает и, во-вторых, в основе межиндивидуальной изменчивости показателей IQ в обоих возрастах лежат преимущественно одни и те же генетические факторы. Следует указать, что данное близнецовое исследование в некотором роде уникально, так как наряду с оценкой когнитивных функций в нем проводился анализ межиндивидуальной изменчивости большого числа психофизиологических показателей, характеризующих особенности созревания ЦНС (описание этих данных см. в гл. XVIII). Перспективы подобного параллельного изучения представляются очень интересными, поскольку можно будет, фактически впервые, проанализировать природу межуровневых и межвозрастных связей в структуре развивающейся индивидуальности. Изменения генотип-средовых соотношений в показателях интеллекта приблизительно в том же возрастном диапазоне изучались в близнецовом лонгитюдном исследовании, проводившемся М.С. Егоровой и ее коллегами [56]. Ставилась задача проследить динамику генотип-средовых соотношений в показателях интеллекта при переходе от дошкольного возраста к школьному. В исследовании приняли участие около 100 пар близнецов. Диагностика интеллекта проводилась по тесту Векслера (WISC), адаптированному А. Панаскжом. Показатели наследуемости для общего интеллекта (ОИ) составили 28, 34 и 52% в 6, 7 и 10 лет соответственно; для вербального интеллекта (ВИ) — 22, 16 и 26%, для невербального (НИ) — 16, 84 и 70%. Эти данные интересны тем, что, с одной стороны, подтверждают тенденцию к возрастанию наследуемости общего интеллекта с возрастом, а с другой — свидетельствуют о возможности иных вариантов возрастных изменений наследуемости отдельных сторон интеллекта.
В этом же исследовании анализировались межвозрастные генетические корреляции, позволявшие оценить генетический вклад в фенотипическую стабильность показателей интеллекта.
Генетические корреляции между показателями вербального, невербального и общего интеллекта в 6 и 7 лет, а также генетические корреляции между этими показателями в 6 и 10 лет за небольшим исключением достаточно высоки. В то же время генетические корреляции между всеми показателями интеллекта в 7 и 10 лет намного ниже. Таким образом, генетические факторы в изменчивости интеллекта в 6 лет достаточно тесно связаны с генетическими факторами, обусловливающими индивидуальные различия в 7 и 10 лет. Авторы обращают внимание на то, что «выпадение» из общей картины корреляций между показателями в 7 и 10 лет может быть обусловлено резкими изменениями средовых условий, связанных с началом обучения в школе.
В целом описанные близнецовые исследования убедительно свидетельствуют о весьма существенных возрастных изменениях в картине генотип-средовых соотношений в изменчивости показателей IQ. Более того, очевидны и дальнейшие перспективы близнецовых лонгитюдных исследований, связанные с более дробным дифференцированным анализом генетических и средовых влияний в показателях когнитивных характеристик разного уровня и содержания, оценкой их стабильности и преемственности в онтогенезе. Наряду с близнецовыми проводятся лонгитюдные исследования приемных детей. Среди них наиболее известным является Колорадское исследование приемных детей, которое было начато по инициативе Р. Пломина и Дж. Дефриза в 1975 г. [361]. В исследовании принимали участие 246 семей с детьми первого года жизни. По мере ежегодного тестирования число семей уменьшалось, и к девятилетнему возрасту детей оно составило 173. Предполагается продолжать исследование до того времени, когда детям исполнится 16 лет.
У детей, начиная с первого года жизни, ежегодно диагносцировали показатели физического и умственного развития по шкалам Н. Бейли. На основании наблюдений и оценок родителей делались выводы об особенностях темперамента ребенка. (О возрастной динамике генотип-средовых соотношений в индивидуальных различиях темперамента см. в гл. X.) В дальнейших обследованиях ежегодно тестировались особенности умственного развития ребенка, некоторые показатели темперамента и личности, условия развития ребенка.
Масштабы этого исследования весьма внушительны, результаты еще полностью не опубликованы. Мы остановимся на некоторых наиболее важных в данном контексте фрагментах. Речь в первую очередь идет об изучении генетически опосредуемой стабильности когнитивного развития. С целью определения роли генотипа в межвозрастной преемственности когнитивных характеристик анализировались межвозрастные кросскорреляции сиблингов, т.е. подсчитывались корреляции между показателями одного сиблинга — младшего возраста и второго — более старшего возраста. Сравнение корреляций у биологических сиблингов, т.е. имеющих и общие гены и общую среду, а также приемных сиблингов, т.е. имеющих только общие средовые условия, позволили авторам определить вклад генотипа в межвозрастую стабильность и изменчивость когнитивных показателей (табл. 17.3). Анализ позволил выявить увеличение год от года роли генетических влияний в межвозрастной стабильности таких признаков, как общий интеллект и вербальные способности. Что же касается другого признака — пространственных способностей, то генетические влияния определяют его межвозрастную преемственность в более младших возрастах, но в 3—4 года решающую роль начинают играть средовые условия. Сравнение IQ родителей и детей проводилось по трем вариантам: дети и их биологические родители, с которыми они были разлучены очень рано; дети и родители-усыновители; дети и биологические родители, с которыми они живут вместе. Результаты сравнения подтвердили значительную роль генетических факторов в опосредовании возрастной стабильности IQ.
В итоге можно констатировать, что вклад генотипа в индивидуальные различия интеллекта с возрастом увеличивается, причем генетические влияния в детском и взрослом возрасте преемственно связаны.
Соотношение генотипических и средовых влияний в формировании индивидуальных различий (в отличие от нормативного развития) является предметом многочисленных экспериментальных исследований в русле возрастной психогенетики (или психогенетики развития) — науки, изучающей природу межиндивидуальной изменчивости психологических особенностей человека в процессе онтогенеза. Генетические изменения в онтогенезе имеют два аспекта: изменения в сравнительной величине генетических и средовых компонентов межиндивидуальной изменчивости признака, т.е. изменения наследуемости; изменение генетической ковариации в ходе онтогенеза. В первом случае используется вариант метода возрастных срезов; во втором — лонгитюдное исследование, в котором определяется корреляция между генетическими компонентами дисперсии изучаемой характеристики, полученными в разных возрастах на одной и той же группе испытуемых. Этот способ дает возможность оценить вклад генетических факторов в изменчивость возрастных преобразований.
Лонгитюдные исследования близнецов и приемных детей свидетельствуют о том, что вклад генотипа в индивидуальные различия IQ с возрастом увеличивается, причем генетические составляющие дисперсии интеллекта в младенчестве и в старших возрастах высоко коррелируют между собой. Это значит, что, несмотря на сравнительно низкий уровень наследуемости интеллекта в младенчестве, генетические эффекты, проявившиеся в столь раннем возрасте, продолжают оказывать влияние на интеллект человека и на более поздних этапах развития.
Методы психогенетики развития позволяют оценить возрастную динамику средовых эффектов. В детском возрасте средовая вариативность IQ определяется в основном действием факторов систематической семейной среды, т.е. общих для всех членов семьи. По мере взросления влияние систематической среды на IQ существенно снижается, но весьма ощутимо возрастает влияние уникальной, индивидуальной среды.
Возрастные аспекты генетической психофизиологии
При анализе роли генотипа в формировании биоэлектрической активности мозга отмечалось, что в целом ряде случаев в исследованиях принимали участие близнецы разного возраста, причем возрастной разброс иногда оказывался весьма значительным. На первых поpax возрастным различиям не придавалось особого значения. Априори 1 подразумевалось, что «генетическое» значит стабильное, неизменяющееся, поэтому возраст не является переменной, которую надо учитывать при оценке генетической детерминации психофизиологических признаков.
В настоящее время эта позиция уступила место другой: поскольку генетическая программа развития реализуется непрерывно, постольку признак, изменяясь в ходе развития, испытывает на себе влияния генотипа и среды, соотношения которых могут существенно меняться при переходе с одной стадии развития на другую. Такая логика хорошо согласуется с существующими в настоящее время представлениями о возрастной динамике созревания ЭЭГ и ВП. Основные тенденции в формировании электроэнцефалограммы (ЭЭГ) и вызванных потенциалов (ВП)
Возрастные изменения ЭЭГ и ВП
Возрастные изменения биоэлектрической активности мозга охватывают значительный период онтогенеза от рождения до юношеского возраста. На основании многих наблюдений выделены признаки, по которым можно судить о зрелости биоэлектрической активности головного мозга. В их число входят: 1) особенности частотно-амплитудного спектра ЭЭГ; 2) наличие устойчивой ритмической активности; 3) средняя частота доминирующих волн; 4) особенности ЭЭГ в разных областях мозга; 5) особенности генерализованной и локальной вызванной активности мозга; 6) особенности пространственно-временной организации биопотенциалов мозга [173].
Наиболее изучены в этом плане возрастные изменения частотно-амплитудного спектра ЭЭГ в разных областях коры мозга. Для новорожденных характерна неритмичная активность с амплитудой около 20 мкВ и частотой 1—6 Гц. Первые признаки ритмической упорядоченности появляются в центральных зонах начиная с третьего месяца жизни. В течение первого года жизни наблюдается нарастание частоты и стабилизации основного ритма ЭЭГ ребенка. Тенденция к нарастанию доминирующей частоты сохраняется и на дальнейших стадиях развития. К 3 годам это уже ритм с частотой 7—8 Гц, к 6 годам — 9-10 Гц и т.д. [143]. Одно время считалось, что каждая частотная полоса ЭЭГ доминирует в онтогенезе последовательно одна за другой. По этой логике в формировании биоэлектрической активности мозга выделялись 4 периода: 1-й период (до 18 мес.) — доминирование дельта-активности, преимущественно в центрально-теменных отведениях; 2-й период (1,5 года — 5 лет) — доминирование тэта-активности; 3-й период (6—10 лет) — доминирование альфа-активности (лабильная фаза); 4-й период (после 10 лет жизни) — доминирование альфа-активности (стабильная фаза). В двух последних периодах максимум активности приходится на затылочные области. Исходя из этого, было предложено рассматривать соотношение альфа и тэта-активности как показатель (индекс) зрелости мозга [430].
Однако проблема соотношения тэтаи альфа-ритмов в онтогенезе является предметом дискуссий. По одним представлениям, тэта-ритм рассматривается как функциональный предшественник альфа-ритма, и таким образом признается, что в ЭЭГ детей младшего возраста альфа-ритм фактически отсутствует. Придерживающиеся такой позиции исследователи считают недопустимым рассматривать доминирующую в ЭЭГ детей раннего возраста ритмическую активность как альфа-ритм [173]; с точки зрения других, ритмическая активность младенцев в диапазоне 6—8 Гц по своим функциональным свойствам является аналогом альфа-ритма [419]. В последние годы установлено, что альфа-диапазон неоднороден, и в нем, в зависимости от частоты, можно выделить ряд субкомпонентов, имеющих, по-видимому, разное функциональное значение. Существенным аргументом в пользу выделения узкополосных поддиапазонов альфа служит онтогенетическая динамика их созревания. Три поддиапазона включают: альфа-1 — 7,7-8,9 Гц; альфа-2 — 9,3-10,5 Гц; альфа-3 — 10,9-12,5 Гц. От 4 до 8 лет доминирует альфа-1, после 10 лет — альфа-2, и к 16-17 годам в спектре преобладает альфа-3 [143].    продолжение
--PAGE_BREAK--
Исследования возрастной динамики ЭЭГ проводятся в состоянии покоя, в других функциональных состояниях (сон, активное бодрствование и др.), а также при действии разных стимулов (зрительных, слуховых, тактильных).
Изучение сенсорно-специфических реакций мозга на стимулы разных модальностей, т.е. ВП, показывает, что локальные ответы мозга в проекционных зонах коры регистрируются с момента рождения ребенка. Однако их конфигурация и параметры говорят о разной степени зрелости и несоответствия таковым у взрослого в разных модальностях [143]. Например, в проекционной зоне функционально более значимого и морфологически более зрелого к моменту рождения соматосенсорного анализатора ВП содержат такие же компоненты, как и у взрослых, и их параметры достигают зрелости уже в первые недели жизни. В то же время значительно менее зрелы у новорожденных и младенцев зрительные и слуховые ВП.
Зрительный ВП новорожденных представляет собой позитивно-негативное колебание, регистрируемое в проекционной затылочной области. Наиболее значительные изменения конфигурации и параметров таких ВП происходят в первые два года жизни. За этот период ВП на вспышку преобразуются из позитивно-негативного колебания с латентностью 150-190 мс в многокомпонентную реакцию, которая в общих чертах сохраняется в дальнейшем онтогенезе. Окончательная стабилизация компонентного состава таких ВП происходит к 5-6 годам, когда основные параметры всех компонентов зрительных ВП на вспышку находятся в тех же пределах, что и у взрослых. Возрастная динамика ВП на пространственно-структурированные стимулы (шахматные поля, решетки) отличается от ответов на вспышку. Окончательное оформление компонентного состава этих ВП происходит вплоть до 11-12 лет. Эндогенные, или «когнитивные», компоненты ВП, отражающие обеспечение более сложных сторон познавательной деятельности, могут быть зарегистрированы у детей всех возрастов, начиная с младенчества [311], но в каждом возрасте они имеют свою специфику. Наиболее систематические факты получены при исследовании возрастных изменений компонента Р3 в ситуациях принятия решения. Установлено, что в возрастном диапазоне от 5—6 лет до взрослости происходит сокращение латентного периода и уменьшение амплитуды этого компонента. Как предполагается, непрерывный характер изменений указанных параметров обусловлен тем, что во всех возрастах действуют общие генераторы электрической активности.
Таким образом, исследование онтогенеза ВП открывает возможности для изучения природы возрастных изменений и преемственности в работе мозговых механизмов перцептивной деятельности.
Онтогенетическая стабильность параметров ЭЭГ и ВП
Вариативность биоэлектрической активности мозга, как и другие индивидуальные черты, имеет две составляющих: внутрииндивидуальную и межиндивидуальную. Внутрииндивидуальная вариативность характеризует воспроизводимость (ретестовую надежность) параметров ЭЭГ и ВП в повторных исследованиях. При соблюдении постоянства условий воспроизводимость ЭЭГ и ВП у взрослых достаточно высока. У детей воспроизводимость тех же параметров ниже, т.е. они отличаются значительно большей внутрииндивидуальной вариативностью ЭЭГ и ВП.
Индивидуальные различия между взрослыми испытуемыми (межиндивидуальная вариативность) отражают работу устойчивых нервных образований и в значительной степени определяются факторами генотипа. У детей межиндивидуальная вариативность обусловлена не только индивидуальными различиями в работе уже сложившихся нервных образований, но и индивидуальными различиями в темпах созревания ЦНС. Поэтому у детей она тесно связана с понятием онтогенетической стабильности. Это понятие подразумевает не отсутствие изменений в абсолютных значениях показателей созревания, а относительное постоянство темпа возрастных преобразований. Оценить степень онтогенетической стабильности того или иного показателя можно только в лонгитюдных исследованиях, в ходе которых сравниваются одни и те же показатели у одних и тех же детей на разных этапах онтогенеза. Свидетельством онтогенетической стабильности признака может служить постоянство рангового места, которое занимает ребенок в группе при повторных обследованиях. Для оценки онтогенетической стабильности нередко используют коэффициент ранговой корреляции Спирмена, желательно с поправкой на возраст. Его величина говорит не о неизменности абсолютных значений того или иного признака, а о сохранении испытуемым своего рангового места в группе. Таким образом, индивидуальные различия параметров ЭЭГ и ВП детей и подростков по сравнению с индивидуальными различиями взрослых имеют, условно говоря, «двойную» природу. Они отражают, во-первых, индивидуально устойчивые особенности работы нервных образований и, во-вторых, различия в темпах созревания мозгового субстрата и психофизиологических функций.
Экспериментальных данных, свидетельствующих об онтогенетической стабильности ЭЭГ, мало. Однако некоторые сведения об этом можно получить из работ, посвященных исследованию возрастных изменений ЭЭГ. В широко известной работе Линдсли [цит. по: 33] исследовались дети от 3 месяцев до 16 лет, причем ЭЭГ каждого ребенка прослеживалась в течение трех лет. Хотя стабильность индивидуальных особенностей специально не оценивалась, анализ данных позволяет заключить, что, несмотря на естественные возрастные изменения, ранговое место испытуемого примерно сохраняется.
Показано [33], что некоторые характеристики ЭЭГ оказываются устойчивыми в течение длительных периодов времени, невзирая на процесс созревания ЭЭГ. У одной и той же группы детей (13 чел.) дважды, с интервалом в 8 лет, регистрировалась ЭЭГ и ее изменения при ориентировочной и условно-рефлекторной реакциях в виде депрессии альфа-ритма. Во время первой регистрации средний возраст испытуемых в группе составлял 8,5 лет; во время второй — 16,5 лет. Коэффициенты ранговой корреляции для суммарных энергий составили: в полосах дельтаи тэта-ритмов — 0,59 и 0,56; в полосе альфа-ритма — 0,36, в полосе бета-ритма — 0,78. Аналогичные корреляции для частот оказались не ниже, однако наиболее высокая стабильность была выявлена для частоты альфа-ритма (Я = 0,84).
У другой группы детей оценка онтогенетической стабильности таких же показателей фоновой ЭЭГ проводилась с перерывом 6 лет — в 15 лет и 21 год. В этом случае наиболее стабильными оказались суммарные энергии медленных ритмов (дельтаи тэта-) и альфа-ритма (коэффициенты корреляции для всех — около 0,6). По частоте максимальную стабильность вновь продемонстрировал альфа-ритм (Я = 0,47).
Таким образом, судя по коэффициентам ранговой корреляции между двумя рядами данных (1-е и 2-е обследования), полученным в этих исследованиях, можно констатировать, что такие параметры, как частота альфа-ритма, суммарные энергии дельтаи тэта-ритмов и ряд других показателей, ЭЭГ оказываются индивидуально стабильными. Межиндивидуальная и внутрииндивидуальная вариативность ВП в онтогенезе изучена сравнительно мало. Однако один факт не вызывает сомнений: с возрастом вариабельность этих реакций уменьшается и нарастает индивидуальная специфичность конфигурации и параметров ВП [143]. Имеющиеся оценки ретестовой надежности амплитуд и латентных периодов зрительных ВП [107], эндогенного компонента Р3 [430], а также потенциалов мозга, связанных с движением [124], в общем говорят об относительно невысоком уровне воспроизводимости параметров этих реакций у детей по сравнению со взрослыми. Соответствующие коэффициенты корреляции варьируют в широком дипазоне, но не поднимаются выше 0,5-0,6. Данное обстоятельство существенно увеличивает ошибку измерения, которая, в свою очередь, может повлиять на результаты генетико-статистического анализа; как уже отмечалось, ошибка измерения включена в оценку индивидуальной среды. Тем не менее использование некоторых статистических приемов позволяет в таких случаях ввести необходимые поправки и повысить надежность результатов.
Психогенетические исследования психического дизонтогенеза
На всем протяжении существования психогенетики как науки исследователи проявляли особый интерес к природе так называемых неадаптивных форм развития (дизонтогенеза*). Спектр исследуемых фенотипов простирался от тяжелых, редко встречающихся расстройств (например, аутизм и детская шизофрения) до часто встречающихся типов поведения, незначительно отклоняющихся от нормы (например, специфическая неспособность к математике).
Современная статистика, собранная Всемирной Организацией Здоровья (ВОЗ), свидетельствует о том, что каждый десятый ребенок, проживающий в развитых странах, подвержен риску девиантного модуса развития по крайней мере в какой-то одной из его форм (криминогенное поведение, эпизоды депрессии или тревожности, неадекватность умственного, интеллектуального или эмоционального развития). Эта цифра выглядит достаточно серьезно: около 10% детей, проживающих в развитых странах, страдают или будут страдать какой-то патологией психического развития. Очевидно, что понимание этиологии этих отклонений от нормальной линии развития является одной из важнейших научных задач, имеющих огромное значение для практики [см., напр.: 48, 49].
За последние 10—15 лет было проведено достаточно большое количество исследований, в ходе которых изучалась генетика разных форм отклонений от нормального развития в детском возрасте. Повышенный интерес к вопросам дизонтогенеза возник не случайно. Он объясняется следующими обстоятельствами. Во-первых, к этому времени было накоплено большое количество информации о том, что генетические факторы влияют — по крайней мере в некоторой степени — на развитие психических заболеваний как во взрослом, так и в детском возрасте. Это позволило предположить, что генотип играет существенную роль и в формировании более мягких отклонений от нормальной траектории развития. Во-вторых, в течение этих лет произошел настоящий прорыв в разработке методов описания и оценки детских фенотипов, развивающихся в результате различных форм дизонтогенеза [см., напр.: ПО]. Наличие надежных и валидных методик диагностики таких фенотипов впервые сделало возможным проведение генетических исследований, основным требованием которых является точная оценка фенотипа. В-третьих, последние годы развития молекулярной генетики полностью изменили схемы, прежде рутинно использовавшиеся в психогенетических исследованиях. Возможность использования генетических маркёров, их доступность и простота в обращении дали исследователям реальный шанс детально изучать механизмы генетических влияний. И наконец, рост интереса к исследованию генетических аспектов разных форм дизонтогенеза есть закономерный результат общего повышения внимания к проблемам детства. Данная глава состоит из трех частей. Каждая из них посвящена анализу определенного фенотипа, являющегося одной из форм детского девиантного развития, которые в американском психиатрическом диагностическом руководстве DSM-IV (Diagnostic and Statistic Manual of Mental Disorders) объединены в раздел, озаглавленный
Психические расстройства, первая манифестация которых наблюдается в младенчестве, детском или подростковом возрасте». Это руководство мы используем здесь в связи с тем, что в подавляющем большинстве работ, посвященных этиологии детских психических расстройств, диагноз поставлен в соответствии именно с ним. Кроме того, это позволяет сохранить единые основания и для классификации анализируемых расстройств. Следует заметить, однако, что DSM-IV — не единственное руководство для установления диагнозов и, более того, в отечественной литературе оно используется редко.
Мы проанализируем чрезвычайно разные варианты отклонений, которые, тем не менее, имеют нечто общее: все три фенотипа представляют собой отклонения от нормальной траектории развития, и, согласно результатам многих психогенетических исследований, в этиологии каждого из них существенная роль принадлежит генотипу. В остальном (в сложности клинической картины, частоте встречаемости и т.п.) эти фенотипы различны. Основным критерием в выборе для анализа именно их было то, что в совокупности они покрывают спектр от крайне серьезной и редкой формы дизонтогенеза — аутизма до часто встречающегося отклонения, которое можно найти в каждой школе — специфической неспособности к обучению. Между ними помещается состояние, пограничное между клиникой и нормой, — синдром дефицита внимания и гиперактивности. Аутизм
Аутизм (его называют по-разному: синдром инфантильного аутизма, детское заболевание аутизма, синдром Каннэра, ранний инфантильный аутизм, ранний детский аутизм [см.: 122]). Как клиническое состояние был впервые описан Л. Каннэром в 1943 г. на примере 11 детей, отличавшихся, по его характеристике, врожденным недостатком интереса к людям и повышенным интересом к необычным неодушевленным предметам. Тот факт, что при описании этих детей Каннэр использовал термин аутизм (прежде употреблявшийся при описании крайней эгоцентричности и отчужденности мышления шизофреников), привел к формированию ошибочных представлений о связанности шизофрении и аутизма (А): считалось, что последствиями детского А являются тяжелые формы психиатрических заболеваний во взрослом возрасте, чаще всего — шизофрения. Однако за последние два десятилетия накоплено большое количество экспериментального материала, свидетельствующего об этиологической самостоятельности детского А, в развитии которого особо значимая роль принадлежит нейробиологическим факторам. Согласно современным международным нозологическим классификациям (МКБ-10 и DSM-IV), А относится к устойчивым синдромам нарушения психического развития.
Первые проявления А наблюдаются вскоре после рождения или в течение первых 5 лет жизни. Его основными признаками являются:
О нарушение социального развития (отсутствие интереса к социальным контактам с родителями или другими взрослыми, отсутствие или недоразвитие комплекса оживления, первых улыбок, эмоциональной привязанности);
О отсутствие или недоразвитие речи (неспособность ребенка употреблять язык как средство общения, развитие эхолалий, неэмоциональность речи и недоразвитие интенциональности речи);    продолжение
--PAGE_BREAK--
О необычные реакции на среду (выраженное стремление к одиночеству, бесцельность поведения, повторяющийся характер движений, неспособность к ролевым играм, фиксация на одном аспекте предмета);
О стереотипность в поведении (стремление сохранить постоянные, привычные условия жизни и сопротивление малейшим изменениям в окружающей обстановке или жизненном порядке).
Очень небольшое количество больных А способно к проявлению: отдельных исключительных способностей (например, к рисованию и математическим вычислениям). Однако спектр таких способностей Достаточно узок, и они не компенсируют общий низкий уровень разрития интеллекта и адаптации к среде. Частота встречаемости А составляет примерно 0,02%, причем среди мужчин А встречается в 4—5 раз чаще, чем среди женщин. А встречается в разных культурах, среди представителей разных социальных классов и разного уровня IQ. Около 80% больных А обнаруживают также умственную отсталость разной степени. Примерно 2% взрослых, больных А, способны к независимому существованию, 33% — к элементарным формам самообслуживания, 65% нуждаются в постоянной помощи и поддержке. Коррекция синдрома А возможна, но для благоприятного прогноза решающими являются ранняя диагностика и систематическое, целенаправленное вмешательство.
Этиология А неизвестна. Ранние теории патогенеза А ссылались на возможные влияния средовых факторов (например, неблагоприятные родительско-детские отношения, дисфункциональные семьи), но современные лонгитюдные исследования не подтверждают эти гипотезы, а указывают на часто встречающиеся нарушения функционирования ЦНС (устойчивость примитивных рефлексов, задержку в установлении полушарной доминантности, отклонения в ЭЭГ и компьютерных оценках мозговой активности). Однако специфические дефекты, ассоциирующиеся с А, еще не выделены. Как группа больные А отличаются высоким уровнем серотонина (нейротрансмиттера) в периферических отделах мозга. Генетические исследования А свидетельствуют о высокой конкордантности сиблингов, особенно — близнецов.
Конкордантность. При работе с дихотомическими признаками оценкой сходства является конкордантность — статистический показатель, говорящий о том, какой процент членов семьи пробанда страдает исследуемым расстройством. Существует два типа конкордантности — парная и пробандная. Парная конкордантность должна подсчитываться в том случае, если только один член изучаемой пары родственников может рассматриваться как пробанд. Если же оба члена родственной пары (например, оба близнеца) могут считаться пробандами, то должна подсчитываться пробандная конкордантность.
Приведем пример. Представим, что мы работаем с выборкой из 100 пар МЗ близнецов, причем в каждой из них по крайней мере один близнец страдает анализируемым заболеванием. Для того чтобы подсчитать парную конкордантность, нужно оценить сходство близнецов по исследуемому признаку в каждой паре, считая пробандом только одного близнеца пары, т.е. мы имеем дело со 100 пробандами. Если, например, выяснилось, что в 20 парах оба близнеца страдают исследуемым заболеванием, а в 80 парах — только один пробанд, то парная конкордантность равняется 20/100, т.е. 20%. Если же пробандом может считаться как первый, так и второй близнец в каждой паре, то значит мы работаем с выборкой пробандов, которая включает всех близнецов (как первых, так и вторых), страдающих исследуемым заболеванием. Тогда мы имеем дело со 120 пробандами (40 из конкордантных пар и 80 из дискордантных). Пробандная конкордантность в таком случае будет равна 40/120, т.е. 33%. Иначе говоря, вероятность того, что близнецы людей, страдающих данным заболеванием, тоже заболеют, составляет 33%. Изучение генетических механизмов, влияющих на формирование аутизма, представляло и представляет собой одну из сложных задач психогенетики детского девиантного развития. Трудность ее определяется, во-первых, тем фактом, что А — редко встречающееся заболевание и, во-вторых, среди родителей аутичных детей наблюдается тенденция сознательного ограничения деторождения после появления в семье аутичного ребенка.
Несмотря на эти сложности, к 1967 г. были опубликованы результаты нескольких близнецовых исследований, проанализировав которые М. Раттер [385] пришел к выводу, что на их основании никаких надежных заключений о генетической природе А сделать нельзя. В течение последующих 10 лет было проведено еще несколько исследований, однако полной ясности в картину этиологии А эти работы не внесли.
Новая волна психогенетических исследований А началась в 1985 г. с публикации близнецового исследования Е. Ритво с коллегами [377] или, точнее, с критического обсуждения этой работы. В их исследовании выборка состояла из 40 пар близнецов, отобранных через картотеку, созданную для выявления близнецовых пар и семей с высокой плотностью А. Она собиралась при помощи публикаций в средствах массовой информации объявления-обращения Американского национального общества аутичных детей (АНОАД). Поскольку, как всегда в таких случаях, в картотеку вошли только добровольно обратившиеся в АНОАД пары, эта группа не представляет собой рандомизированную выборку близнецов, построенную на популяционной основе. Выборка включала 23 пары МЗ и 17 пар ДЗ близнецов. Конкордантность составила 95,7% для МЗ и только 23,5% для ДЗ. Эти оценки конкордантности статистически надежно различаются и, казалось бы, поддерживают гипотезу о наличии генетических влияний в формировании и развитии А. Однако, как уже отмечалось, выборка была построена на основе добровольного участия близнецовых пар, что теоретически могло привести к искажениям в ее формировании и, следовательно, к искажениям результатов.
Незадолго до опубликования работы Ритво с соавторами анализ результатов предыдущих генетических исследований А [260] позволил обнаружить, что большинство работ, выполненных до 1977 г., изначально представляли собой описания отдельных случаев, а родственники пробандов вовлекались в исследования лишь постфактум. Кроме того, обобщенная выборка, составленная на основе всех опубликованных исследований и содержавшая всего 32 близнецовых пары, включала примерно в два раза больше МЗ близнецов, чем ДЗ (22 и 10 соответственно). В генеральной же популяции количество ДЗ примерно вдвое больше, чем МЗ, поэтому выборка, в которой соотношение МЗ и ДЗ обратное (первых вдвое больше, чем вторых), не является репрезентативной. К тому же во многих исследованиях близнецы ДЗ пар были разнополыми. Поскольку же в формировании А пол играет весьма существенную роль, это — серьезная проблема для интерпретации результатов, так как включение разнополых близнецов в анализ ведет к снижению конкордантности ДЗ. Изучая последствия неадекватных процедур формирования выборки для психогенетических исследований, Раттер и его коллеги поставили перед собой задачу создания репрезентативной и неискаженной выборки, состоящей из пар однополых близнецов, каждая из которых содержала бы по крайней мере одного аутичного ребенка. В результате тщательных поисков была составлена выборка из 71 пары однополых близнецов, отобранных через школы, больницы и близнецовые картотеки. 11 из них были МЗ близнецами. Диагностика А основывалась на критериях Каннэра [305] и Раттер [386]. В исследованной выборке 4 из 11 МЗ соблизнецам был поставлен диагноз А, в то время как ни один из ДЗ соблизнецов не соответствовал диагностическим критериям заболевания. Найденная разница была статистически значима (р
Недавно были опубликованы результаты еще одного близнецового исследования, в котором использовалась подобная схема формирования выборки [412]. Группа исследователей проанализировала все случаи А, зарегистрированные в Дании, Финляндии, Исландии, Норвегии и Швейцарии, с целью отобрать всех больных А в парах однополых близнецов не старше 25 лет. Была найдена 21 пара (11 МЗ и 10 ДЗ) близнецов и одна тройня. Парная конкордантность составила 91% для МЗ близнецов и 0% для ДЗ.
Близнецовые исследования, таким образом, подтверждают гипотезу о генетических влияниях на проявление и развитие А. Однако, как мы видели, ни в одном из исследований конкордантность МЗ близнецов не составила 100%. Для объяснения этого феномена были предложены две гипотезы. Первая касалась этиологической важности средовых влияний (она подробно обсуждается в разделе о гетерогенности А). Согласно второй гипотезе, близнецовая дискордантность по А может быть результатом того, что этот фенотип представляет собой крайнюю форму выражения какого-то другого психического заболевания. Возможно, несколько взаимодействующих факторов ведут к формированию наиболее отклоняющегося фенотипа, коим и является аутизм, а генетическая предрасположенность существует и для менее выраженных, менее тяжелых форм аутизмоподобного дизонтогенеза. Генетические модели наследуемости аутизма
К сожалению, несмотря на то что результаты большинства приведенных здесь исследований подтверждают гипотезу о генетических влияниях на формирование А, большая часть собранной информации (либо в силу маленьких размеров выборок, либо в результате неучета различных искажающих влияний в процессе их формирования) не позволяет проверить предположения, касающиеся способов передачи А по наследству. Тем не менее некоторые специфические генетические гипотезы были протестированы. Ритво с коллегами [377] отобрали для анализа только те семьи, в которых по крайней мере два ребенка соответствовали критериям А. Эти семьи были найдены посредством использования нескольких источников (больничные карты, регистратуры психиатрических клиник и добровольные ответы на объявления с просьбой позвонить, обращенной к семьям с аутичными больными). После введения поправок на искажения, вызванные применением такого способа формирования выборки, исследователи тестировали различные гипотезы о типе генетической трансмиссии. В результате были отвергнуты многофакторная полигенная гипотеза и гипотеза о передаче А как доминантного признака, проверенная с помощью метода классического сегрегационного анализа. Гипотеза же передачи А по наследству как рецессивного признака статистически отвергнута не была [379].
Сегрегационный анализ. Основная задача этого анализа — выявить генетические модусы передачи по наследству того или иного заболевания, т.е. установить, передается ли данное заболевание по наследству согласно доминантной, рецессивной, аддитивной или полигенной модели. В основе статистических методов, используемых для оценки параметров моделей и проверки различных гипотез наследственной передачи, лежит принцип максимального правдоподобия. Для того чтобы сравнить достоверность некоторого набора гипотез (т.е. оценить, какая из гипотез соответствует собранным данным наилучшим образом), сначала создается так называемая нулевая модель отсутствия генетической передачи. Иными словами, модель предполагает полное отсутствие генетических влияний, и наблюдаемый в семьях паттерн заболевания объясняется влиянием лишь некоторых средовых факторов. Очевидно, что если эта модель адекватна собранным данным, то в тестировании последующих генетических моделей нет никакой необходимости. Если же нулевая модель не соответствует данным, то осуществляется последовательное тестирование всех перечисленных генетических моделей, чтобы найти ту, которая описывает полученный материал наилучшим образом. Интерпретация этих результатов требует определенной осторожности. Во-первых, они не могут быть распространены на семьи всех больных, страдающих А, поскольку семьи, принимавшие участие в описанном исследовании, составляют крайне специфичную группу. Во-вторых, как подчеркивают сами авторы, оценки сегрегационных отношений надежны только при правильных оценках искажений, вызванных способами формирования выборок. Однако до сих пор остается неясным, каким образом неадекватно заданные (в рамках сегрегационного анализа) поправки на искажение влияют на оценки сегрегационных отношений в исследуемых семьях.
Исследователи [187, 428] протестировали также многофакторную генетическую модель с зависимым от пола порогом, однако результаты этих работ не были однозначны. Некоторые психогенетики [385, 406] утверждают, что тип наследования А в наибольшей степени соответствует смешанной генетической модели, включающей как влияние главного гена, так и наличие полигенного фона.
Анализ сцепления. Методы анализа сцепления включают набор различных методических приемов, позволяющих статистически определять вероятность того, что ген анализируемого заболевания сцеплен с одним или несколькими из изученных генных маркёров. Основной задачей анализа сцепления является локализация гена, ответственного за развитие и проявление анализируемого признака. Иными словами, анализ сцепления проводится для того, чтобы выяснить, где, на какой из 23 пар хромосом расположен искомый ген, т.е. ген, мутации которого приводят к проявлению и развитию изучаемого признака.
Результаты первых молекулярно-генетических исследований А не обнаружили сцепления между 30 маркёрами ДНК и анализируемым признаком. Позже были высказаны предположения о возможной связи А с генетическими маркёрами на хромосомах 6 и 15 [220]. Кроме того, высказывались гипотезы относительно связи А с различными отдельно взятыми участками генома [234, 445]. Однако в 1997 г. международная группа по исследованию А, возглавляемая профессором Раттером, заявила, что располагает данными о наличии сцепления фенотипа А с генетическими маркёрами на хромосомах 7 и 16. Однако эти результаты еще не были воспроизведены в других лабораториях.
Особенности функциональных асимметрий у близнецов
По признакам асимметрии близнецы существенно отличаются от стальных представителей популяции. Например, среди близнецов НеРедко встречаются зеркальные пары, в которых один близнец являйся правшой, а другой — левшой.
Широко распространено мнение, что леворукость среди близнецов встречается чаще, чем в общей популяции, однако специальное сравнение частоты леворукости среди близнецов и одиночнорожденных обнаружило лишь незначительную тенденцию к преобладанию леворукости в популяции близнецов [196].
Различия между близнецами отмечаются также по асимметрии глаз, ног и по ряду морфологических признаков (например, направлению завитка волос на затылке, дерматоглифическим узорам на пальцах и ладонях рук).    продолжение
--PAGE_BREAK--
Исследования асимметрии рук у близнецов довольно многочисленны, при этом отмечается, как правило, приблизительно одинаковое сходстве МЗ и ДЗ близнецов по показателям мануальной асимметрии. По данным разных исследований, 22,5-24,6% МЗ близнецов и 19,3-30,7% ДЗ обнаруживают дискордантность (несовпадение) пору-кости [обзор 196, 334]. Работ по асимметрии других психофизиологических функций единицы: это исследования слуховой асимметрии по данным дихотического прослушивания и асимметрии некоторых зрительных функций. Причем в обоих содержатся указания на несходство МЗ близнецов по изучаемым явлениям [132].
Не исключено, что отсутствие достоверных различий между МЗ и ДЗ близнецами при изучении асимметрий организма обусловлено методическими особенностями оценки асимметрий, как таковых. Как правило, в группах ДЗ и МЗ близнецов оценивают сходство по стороне доминирования признака или функции. Количественная выраженность асимметрии далеко не всегда принимается во внимание. Между тем, как отмечалось, направление асимметрии и ее интенсивность являются скорее всего относительно независимыми признаками, которые могут иметь разные источники генетической детерминации.
Применение близнецового метода для изучения наследственных и средовых влияний на формирование функциональных асимметрий может оказаться более продуктивным, если сравнивать близнецов не только по стороне предпочтения или направлению асимметрии, но и по количественной выраженности признака на обеих сторонах (при условии, что изучаемый признак может быть измерен), а также по степени интенсивности асимметрии, не зависящей от стороны предпочтения. По некоторым представлениям, генотип контролирует не только и не столько направление асимметрии, как таковое, а степень ее выраженности. Предпринимались разные попытки объяснить появление дискор-дантных по асимметрии близнецовых пар. Так, например, была высказана гипотеза, что инверсия асимметрии в парах МЗ близнецов, названная зеркальностью, связана с особенностями их эмбрионального развития, а именно со стадией, на которой произошло разделение зародыша на два самостоятельных организма [345].
Если деление происходит на ранних стадиях развития, когда отсутствует дифференцировка на правую и левую половины эмбриона, то никаких признаков зеркальности не будет. В случае же если разделение происходит позднее, на стадии, когда такая дифференцировка уже возникла, можно ожидать появления зеркальных МЗ пар. В пользу данной гипотезы говорит тот факт, что у соединенных близнецов, которых считают сформировавшимися на сравнительно поздних стадиях эмбрионального развития, зеркальность встречается гораздо чаще, причем возможны случаи крайнего выражения зеркальности (инверсия расположения внутренних органов). Однако эта гипотеза не объясняет, почему среди МЗ близнецов встречаются пары, зеркальные по одним признакам и совпадающие по другим. Кроме того, гипотеза Ньюмана не может объяснить существования дискордантных пар среди ДЗ близнецов. Да и среди МЗ близнецов зеркальные пары встречаются довольно редко: по данным близнецовой статистики, число МЗ близнецов, разделившихся после формирования первой околоплодной оболочки (8-9-й день эмбрионального развития), когда уже возможна латерализация признаков, составляет всего 34% от общего количества пар МЗ близнецов.
Другая возможная причина появления дискордантных по асимметрии пар — большая подверженность близнецов действию патогенетических средовых факторов, которые могут по-разному влиять на каждого из партнеров. Такие факторы, вероятно, в равной мере увеличивают число дискордантных пар как среди ДЗ, так и среди МЗ близнецов. Возможность появления дискордантных по асимметрии пар за счет неравномерности внутриутробных условий и родового стресса признается многими авторами.
Среди патогенных внутриутробных факторов, влияющих на общее развитие близнецов, называется также задержка созревания. У одиночного плода внутриутробное положение лучше, близнецы, как МЗ, так и ДЗ, испытывают большие ограничения и во внутриутробном пространстве, и в ресурсах. На поздних сроках беременности эти ограничения могут привести к существенной задержке созревания. Действительно, есть данные, что в период от 19 до 32 недель развитие некоторых борозд и извилин на поверхности коры больших полушарий у близнецов задерживается на 2—3 недели по сравнению с оди-ночнорожденными [185, 196]. Эта задержка созревания коры больших полушарий создает неблагоприятные условия, которые отчасти могут объяснить задержку речевого развития и появление леворукости среди близнецов обоего типа. Таким образом, возникновение дискордантных по асимметрии пар близнецов может быть вызвано различными причинами. Помимо He-Равноценности условий внутриутробного развития и родов, равно возможных в парах близнецов обоего типа, в парах МЗ близнецов встречаются случаи собственно зеркальности за счет специфики их образо-вания из одного эмбриона.
Признанным методом изучения функциональной асимметрии мозга Человека служит изучение проявлений асимметрии в биоэлектрической активности коры больших полушарий ЭЭГ и ВП. Систематическое исследование показателей межполушарной асимметрии фоновой ЭЭГ проводилось ТА. Мешковой [см. гл. XIII]. Она приводит следующие наблюдения, касающиеся асимметричных проявлений в ЭЭГ взрослых близнецов.
1) Партнеры характеризуются различной степенью асимметричности ЭЭГ. Если один близнец имеет выраженную асимметрию, то ЭЭГ второго, как правило, симметрична. Отсутствуют собственно зеркальные пары, т.е. партнеры с выраженной асимметрией противоположного знака. Существуют пары ДЗ близнецов, дискордантные по доминированию руки, в которых правша характеризуется выраженной и даже повышенной асимметрией ЭЭГ височных отведений, ЭЭГ левши при этом симметрична.
2) Зафиксирована значительная асимметрия ЭЭГ височных отведений при повышенной активированности слева.
3) Генетические факторы сильнее проявляются в правом полушарии, а средовые — в левом.
4) Интенсивность асимметрии ЭЭГ определяется средовыми факторами.
Характерно, что все перечисленные особенности наиболее четко обнаруживаются при анализе ЭЭГ височных областей или частично справедливы для ЭЭГ других симметрично расположенных зон.
В исследовании, проведенном ТА. Мешковой с коллегами [114], у близнецов 7-8 лет (28 пар МЗ и 22 пары ДЗ) параллельно изучалась наследуемость мануальной асимметрии и степени асимметричности фоновой ЭЭГ. У детей, как и у взрослых близнецов, по показателям мануальной асимметрии (ее оценка проводилась по нескольким количественным тестам) и показателям асимметричности ЭЭГ достоверных различий в парах МЗ и ДЗ близнецов выявлено не было. Авторы приходят к выводу, что наследственные факторы не влияют на интенсивность латерализации ни в моторике, ни в биоэлектрической активности мозга. Таким образом, изучение асимметрий в парах МЗ и ДЗ близнецов не дает возможности решить вопрос о том, какой вклад вносят факторы генотипа в формирование межиндивидуальной вариативности по показателям асимметрии.
Одновременно проводилось сравнительное изучение природы межиндивидуальной изменчивости показателей ЭЭГ левого и правого полушарий, взятых независимо друг от друга [132; гл. III]. Полученные данные свидетельствуют о том, что индивидуальные особенности ЭЭГ левого и правого полушарий в разной степени зависят от факторов генотипа. Причем это справедливо как для относительно элементарных показателей ЭЭГ (амплитуда и индекс альфа-ритма), так и ДО13 более сложных, таких, как коэффициент периодичности ЭЭГ (отношение мощности периодической к случайной составляющей), дисперсия мгновенных значений амплитуды, коэффициент локальной нестационарности. По совокупности всех данных ТА. Мешкова пришла к заключению, что существуют значительные межполушарные различия в степени генетических влияний на перечисленные показатели, причем отмечается большая подверженность действию средовых факторов некоторых параметров ЭЭГ левого полушария по сравнению с правым, особенно по показателям ЭЭГ височных зон.
При изучении генетической обусловленности зрительных вызванных потенциалов на стимулы разной формы и содержания были установлены достоверные межполушарные различия: в височной зоне левого полушария изменчивость ответов на большинство стимулов определялась в основном средовыми влияниями, в височной зоне правого, напротив, изменчивость аналогичных ответов определялась влияниями генотипа [132; гл. IV].
ТА.Мешкова с коллегами [114] установили и некоторые другие факты, свидетельствующие о сравнительно большем вкладе правого полушария в межиндивидуальную дисперсию по показателям моторики и ЭЭГ. Другими словами, интенсивность асимметрии и в моторике (по показателям использования левой руки), и в ЭЭГ формируется главным образом за счет индивидуальных различий в функционировании правого полушария. Были установлены также некоторые половые различия, в частности, например, у девочек-правшей более выражена асимметрия ЭЭГ. Кроме того, оказалось, что дети с более высокими показателями интеллекта отличались более развитой моторикой левой руки. Привлекая данные о большем сходстве людей по анатомическим особенностям левого полушария, ТА. Мешкова с коллегами высказали следующее предположение. Левое полушарие, в силу локализации в нем центров речи и ведущей руки, больше подвержено унифицирующим влияниям среды и поэтому функционально более единообразно у всех людей. Правое полушарие больше, чем левое, определяет природную индивидуальность человека, связанную с его биологическими, в том числе наследственными, характеристиками. Функциональная асимметрия и специализация полушарий — уникальная особенность мозга человека, возникшая в антропогенезе в связи с появлением речи и праворукости. В онтогенезе специализация Полушарий формируется постепенно и достигает своей дефинитив-Ной формы лишь к периоду зрелости. По асимметриям парных органов существуют большие индивидуальные различия, позволяющие говорить о типах, или устойчивых профилях, латеральной организации индивида. Генетические исследования асимметрии посвящены изучению наследуемости мануальной асимметрии и, до некоторой степени, полушарного доминирования. Существует ряд генетических моделей, описывающих возможные варианты наследования ведущей руки, однако ни одна не является общепризнанной. Сформулированы критерии, которым должна удовлетворять генетическая модель, адекватно описывающая тип наследования ведущей руки.
МЗ и ДЗ близнецы, как правило, обнаруживают сходную степень конкордантности по показателям функциональной асимметрии. Для некоторых МЗ близнецов характерен феномен зеркальности по парным признакам. В то же время выполненные на близнецах исследования наследуемости электрофизиологических показателей левого и правого полушарий, дают основания предполагать больший вклад генотипа в изменчивость показателей функционирования правого полушария.
Генотип-средовые соотношения в индивидуальном развитии
Одним из достижений психогенетики по праву можно считать признание того факта, что генетическое отнюдь не означает неизменное. Активность генов меняется в ходе онтогенеза, наряду с этим изменяется и восприимчивость растущего человека к условиям окружающей среды. В результате преобразуется характер ге-нотип-средовых соотношений в межиндивидуальной изменчивости психологических особенностей.
1.Представления об онтогенезе в генетике развития
Согласно современным представлениям, каждая стадия развития в онтогенезе наступает в результате актуализации различных участков генотипа, причем различные стадии контролируются разными генами. В итоге взаимодействия генов и их продуктов на каждом новом этапе развития формируются структурные и функциональные особенности организма. В генетике сформулирован временной принцип организации генетических систем, контролирующих развитие, и выделена специальная область исследований «хроногенетика», ставящая своей целью изучение закономерностей развертывания генетической программы развития [80, 270].
Для понимания общих принципов развития важен также введенный в 40-х годах К. Уоддингтоном принцип «эпигенетического» ландшафта. Этот ландшафт представляется как местность, изрезанная долинами и оврагами, которые берут свое начало в наиболее высокой ее части и расходятся от вершины в разные стороны. В начале развития клетка (или любой развивающийся организм) находится на вершине. В ходе последовательных делений (стадий развития) клетка или организм как будто «спускаются» с вершины, попадая в то или иное углубление. В точках пересечения ущелий и оврагов клетка (организм) делает выбор, куда двигаться дальше. Самое главное, что после этого выбора (решения) дальнейшие потенции к развитию ограничиваются. Постепенное ограничение потенций клетки (организма) к развитию Уод-дингтон назвал канализацией.
Схематично взаимодействие развивающегося организма (его генотипа) и условий среды, в которой осуществляется развитие, наиболее полно представлено в концепции эпигенеза Дж. Брауна [214].
На следующей стадии развития фенотип Р3 будет определяться особенностями уже сложившегося фенотипа Рг, продуктами генов, активируемых на этой стадии развития (
Таким образом, реализация каждой стадии онтогенеза обеспечивается наличием:
О фенотипа, сформировавшегося к этой стадии;    продолжение
--PAGE_BREAK--
П продуктов экспрессии генов, соответствующих этой стадии развития; О условий внешней среды, специфических для данной стадии.
Следовательно, по мере перехода с одной стадии онтогенеза на другую в индивидуальном фенотипе происходит кумуляция (накопление) и генетических, и средовых эффектов, и результатов их взаимодействия.
Биолог-эволюционист Э.Майер связал развитие поведения с концепцией генетической программы, выделив две ее части. Одна часть программы, не претерпевающая значительных изменений в процессе ее трансформации в фенотип, называется закрытой. Другая часть генетической программы в процессе становления фенотипа под влиянием внешних воздействий претерпевает модификации; таким образом, она содержит приобретенный компонент и ее можно назвать открытой программой [177].
ЦНС выступает как звено, опосредующее взаимовлияния генотипа и среды, поэтому в ее морфофункциональной организации должны существовать структурные образования, комплексы или каналы, реализующие две генетические программы: одну — обеспечивающую видоспецифические закономерности развития и функционирования ЦНС, и другую — ответственную за индивидуальные варианты этих закономерностей.
Так, широкое распространение получили представления о существовании в ЦНС жестких стабильных и гибких лабильных звеньев. Стабильная структура представляет собой жесткий скелет системы, который обеспечивает ее инвариантность и устойчивость к различным колебаниям окружающей среды. Именно такие жесткие звенья лежат в основе врожденных функциональных систем и безусловных рефлексов, присущих разным классам животных и обеспечивающих их приспособленность в процессе эволюции. Напротив, гибкие звенья приобретают функциональную специализацию под влиянием непрерывно варьирующих условий внешней среды. Главным фактором, детерминирующим направление специализации, является индивидуальный опыт.
В нейробиологии получило также распространение представление о существовании в развивающейся нервной системе структур и процессов двух типов: «ожидающих опыта» и «зависящих от опыта» [279]. Для первых, определяемых как «ожидающие опыта», внешние воздействия выступают в качестве триггера — сигнала, запускающего развитие, которое жестко канализировано, т.е. происходит по генетической программе и почти не зависит от характера средовых влияний (в пределах физиологически допустимой нормы). «Ожидающие опыта» — это структуры и процессы консервативной наследственности, определяющие видовые признаки и не обладающие межиндивидуальной изменчивостью, т.е. сходные у всех представителей данного вида. Их можно считать носителями филогенетической памяти. Примером здесь может служить хорошо известный феномен импринтинга — реакции следования вылупившихся утят и некоторых других птиц и животных за первым увиденным движущимся объектом. В период своего созревания молодые животные нуждаются в средовом опыте, специфическом для данного вида. Опыт (внешние воздействия) может колебаться в пределах, допускамых филогенетической «памятью», и не должен выходить за границы диапазона нормативной среды. Периоды созревания таких структур можно считать критическими. Искажение ожидаемого опыта (внутреннего и внешнего) может оказаться роковым для последующего развития. Во внешнем мире нормативная среда подразумевает адекватные экологические условия: температуру, атмосферное давление, необходимое содержание кислорода в воздухе, воду, пищу и т.д. Норма включает и социальные аспекты: наличие взрослого представителя вида осуществляющего уход, возможности зоосоциальных контактов и т.д.
Наряду с этим в ЦНС существуют гибкие динамические системы связи в которых образуются за счет селективной стабилизации синапсов под влиянием особенностей среды. К числу таких динамических систем относятся структуры и процессы, «зависящие от опыта». Они различаются выраженным диапазоном изменчивости, возникающей под влиянием внешних воздействий, и допускают интенсивное овладение индивидуальным опытом в широком диапазоне возможностей. Именно эти структуры и процессы формируют широкий спектр индивидуальных различий, столь характерный для популяций не только человека, но и животных. Они обеспечивают формирование приобретаемых в онтогенезе функциональных систем, условных рефлексов и других возможностей обучения. В конечном счете именно они формируют онтогенетическую память индивида.
В своем созревании гибкие динамические системы также переживают периоды повышенной чувствительности к внешним воздействиям, но эти периоды по своей сути являются скорее сензитивными, чем критическими. Многообразие индивидуальных различий, которые возникают на основе созревания структур, «зависящих от опыта», позволяет ставить вопрос о том, какую роль в этих процессах играют индивидуальные особенности опыта, а какую — генетический полиморфизм.
Понятия, методы и модели возрастной пспхогенетики
Главным понятием психогенетики развития является «генетическое изменение». Оно характеризует изменения в эффекте действия генов на разных стадиях онтогенеза. При этом выделяются два аспекта. Первый связан с оценкой в разных возрастах относительной доли генетической вариативности в общей вариативности признака, что позволяет оценить, как меняется наследуемость признака в ходе онтогенеза, второй — насколько связаны между собой генетические компоненты дисперсии признака в разных возрастах [355].
В первом случае проводится сопоставление показателей наследуемости у аналогичных групп родственников в разных возрастах, т.е. используется вариант метода возрастных срезов, что обеспечивает выделение возрастных различий в наследуемости признаков. В силу того, что гены в развитии «включаются» и «выключаются», высокая наследуемость признака в разных возрастах ничего не говорит о том, разные или одни и те же гены обеспечивают этот эффект. Вот почему второй аспект предполагает лонгитюдное исследование, в котором определяется корреляция между генетическими компонентами дисперсии изучаемой характеристики, полученными в разных возрастах одной и той же группе испытуемых. Этот способ дает возможность оценить вклад генетических факторов в изменчивость возрастных преобразований, а также установить, насколько связаны между собой генетические и средовые компоненты межиндивидуальной вариативности признака в разные периоды. Иначе говоря, для того чтобы судить о преемственности или стабильности генетических и средовых влияний, необходимо лонгитюдное исследование близнецов или сибсов, которое позволит установить степень связи между генетическими компонентами (межвозрастная генетическая корреляция) и средовыми компонентами (межвозрастная средовая корреляция) фенотипической дисперсии признака.
Таким образом, полная схема исследования в психогенетике развития с необходимостью включает эмпирическое исследование и наследуемости, и генетических корреляций. Сама по себе высокая наследуемость признака, полученная в разных возрастах, ни в коей мере не свидетельствует о стабильности генетических влияний.
По представлениям Р. Пломина, эти две переменные — наследуемость и степень генетической общности, определяемая величиной генетической корреляции, — относительно независимы и могут образовывать разные варианты сочетаний (рис. 17.2). Модель А, например, предполагает, что наследуемость признака с возрастом может оставаться без изменений (левый столбик) или возрастать (правый), но независимо от этого генетической преемственности при этом не обнаруживается, т.е. генетические эффекты в раннем возрасте и зрелости абсолютно не связаны между собой. В моделях В и С, напротив, допускаются варианты частичной (В) или (С) полной генетически опосредованной преемственности в формировании признака. Последний вариант (с точки зрения Р. Пломина, наиболее вероятный) получил название амплификационной модели. Амплификационная модель реализации генетических влияний в онтогенезе предполагает, что с возрастом, по мере созревания ЦНС и формирования индивидуально устойчивых способов переработки информации, возрастает наследуемость признака, при этом сохраняется высокая межвозрастная генетическая корреляция, т.е. генетические эффекты, действовавшие в младенчестве, высоко коррелируют с генетическими эффектами в зрелости. Более детализованную модель предлагает Л. Иве с соавторами [245]. В зависимости от времени начала экспрессии генов они выделяют две альтернативы в генотипической детерминации развития. Первая предполагает, что все гены находятся в действенном состоянии с момента рождения и развитие есть модификация фенотипа средовыми влияниями. В этом случае наследуемость признака в онтогенезе будет уменьшаться, приближаясь к некой асимптотической величине, которая есть функция исходной наследуемости и «условной памяти», ответственной за фиксацию средового опыта. Вторая исходит из того, что гены постоянно синтезируют продукты, требуемые для информационной обработки. В таком случае наследуемость будет возрастать от небольшой величины в момент рождения до высокой асимптотической величины, которая является функцией исходной или первоначальной наследуемости и постоянства экспрессии генов во время развития.
При анализе данных лонгитюдного исследования близнецов модель Ивса предполагает, что фенотип каждого индивида во времени О, 1, 1… Л выступает как функция аддитивных генетических эффектов и уникального средового опыта. В каждый момент времени имеются новые генетические эффекты и новые специфические средовые влияния. Если принять, что все средовые эффекты являются случайно-специфическими, а генетические эффекты действуют через интервенцию генного продукта, который может сохраняться в течение времени, то генетические эффекты на фенотип в данный момент времени есть результат генов, экспрессирующихся вновь вместе с эффектами генов, которые экспрессировались на всех предшествующих стадиях развития в той степени, в какой они сохраняются во времени. По мере развития признака генетические эффекты будут накапливаться, приводя к увеличению генотипической и фенотипической вариативности.
Таким образом, модель Ивса в простейшем случае (когда генетические эффекты постоянны во времени, средовые — случайно специфичны, а пути распространения влияний постоянны), как и амплификационная модель Пломина, предсказывает увеличение генотипического компонента фенотипической вариативности в онтогенезе. Однако, анализируя межвозрастные связи между генетическими составляющими вариативности, Иве прогнозирует уменьшение генетического компонента ковариации между двумя фенотипами одного и того же индивида в разные моменты времени и и /, причем генетический компонент ковариации будет уменьшаться как экспоненциальная функция интервала времени и—t. В моделях Пломина и Ивса в центре анализа находится структура фенотипической дисперсии и рассматривается онтогенетическая динамика в формировании индивидуальных особенностей, при этом генетический анализ динамики средних значений изучаемых характеристик, как таковых, остается за пределами внимания авторов.
Однако существует модель, в которой органически сочетается генетический анализ лонгитюдных средних и ковариационной структуры. Она базируется на использовании авторегрессионной симплексной модели [202, 258]. Не вдаваясь в детали математического аппарата, отметим, что эта модель позволяет экспериментально выяснить, одни и те же или разные генетические и средовые факторы объясняют фенотипическую вариативность и фенотипические средние. Фактически данная модель впервые на экспериментальном уровне ставит проблему взаимосвязи генотип-средовой детерминации нормативных характеристик и их индивидуальных различий.
Возрастная динамика генетических и средовых детерминант в изменчивости когнитивных характеристик
Представления о том, что в онтогенезе меняется соотношение генетических и средовых влияний, определяющих индивидуально-психологические особенности, родились в контексте самой психогенетики, тем не менее они хорошо согласуются с представлениями возрастной психологии, касающимися изменения механизмов реализации психических функций в онтогенезе.
Выдающийся отечественный психолог А.Р.Лурия писал: «Мы имеем все основания думать, что природа каждой психической функции (иначе говоря, ее отношение к генотипу) так же меняется в процессе психического развития человека, как и ее структура, и что поэтому ошибочными являются попытки раз и навсегда решить вопрос «о степени наследственной обусловленности» той или иной психической «функции», не принимая в расчет тех изменений, которые она претерпевает в своем развитии» [99].
На основе теоретических представлений, существующих в отечественной возрастной психологии, делались попытки определить направление этих изменений. Так, А.Р. Лурия, исходя из фактов качественной перестройки всей психической деятельности человека и замены элементарных форм деятельности сложноорганизованными функциональными системами, которые происходят в процессе психического развития, предположил, что по мере изменения структуры высших психических функций, возрастания степени их опосредования зависимость той или иной деятельности от генотипа будет закономерно уменьшаться. Действительно, исследования некоторых особенностей памяти и внимания выявили именно такой характер изменений. Было установлено, что от дошкольного к подростковому возрасту сохраняется преимущественно генотипическая обусловленность образной зрительной памяти и устойчивости внимания. В то же время наблюдается фактическая смена детерминации, т.е. переход от генотипической к средовой обусловленности у опосредованных форм памяти и у более сложных форм внимания, таких, как его распределение [2, 97]. Наряду с этим исследования генотип-средовых отношений в показателях интеллекта в ходе развития дают другую картину.
Возрастная стабильность и изменчивость генетических и средовых влияний, лежащих в основе межиндивидульных различий по интеллекту, в последнее время являются предметом многих исследований [25, 56, 106, 355]. В большинстве исследований делается вывод о том, что в младенчестве наследственная обусловленность показателей интеллекта относительно низка, а влияние систематической семейной среды сравнительно велико. Начиная с шести лет и далее, а также у подростков и взрослых оценка наследуемости показателей интеллекта возрастает до 50—70%, влияние же общей семейной среды существенно снижается (подробнее об этом см. гл. VI).    продолжение
--PAGE_BREAK--
Эти выводы представляют обобщение результатов целого ряда исследований, выполненных на близнецах и приемных детях. Рассмотрим сначала результаты некоторых близнецовых исследований.
Наиболее известным из них является Луисвиллское близнецовое исследование, посвященное изучению природы межиндивидуальной изменчивости показателей интеллекта. Оно было начато в 1957 г. Ф. Фолкнером и к середине 80-х годов охватывало около 500 пар близнецов, чье развитие было прослежено от рождения до 15-летнего возраста. Близнецы, участвовавшие в этом исследовании, тестировались по интеллекту, начиная с первого года жизни до 15 лет (каждые три месяца на протяжении первого года жизни, дважды в год — до 3 лет, ежегодно до 9 лет и последний раз — в 15 лет). При этом использовалась шкала психического развития Бейли в младенческом периоде, шкалы Векслера — WPPSI в возрасте 4,5 и 6 лет и WISC в более старшем возрасте.
Анализ полученных оценок IQ в парах МЗ и ДЗ близнецов отчетливо демонстрирует увеличение показателя наследуемости с возрастом. Показатели наследуемости у детей в возрасте 1,2,3 лет составляют 10, 17, 18% соответственно. С 3 лет внутрипарное сходство МЗ близнецов сохраняется на очень высоком уровне, коэффициенты корреляции не ниже 0,83. У ДЗ близнецов внутрипарное сходство по показателю интеллекта уменьшается с 0,79 в 3 года до 0,54 в 15 лет. Показатели наследуемости у детей в 4 года составляют 26% и далее Увеличиваются до 55%.
Интересно, что значимые различия в сходстве МЗ и ДЗ близнецов начали обнаруживаться до того, как была установлена их зиготность. Тип близнецовых пар, т.е. отнесенение их к МЗ или ДЗ близнецам, был определен только в 3 года. По мнению исследователей, полученные данные показывают, что процессы развития инициируются и в значительной степени управляются генотипом. Это предположение было подтверждено при изучении внутрипарного сходства индивидуальных траекторий, или профилей, развития МЗ и ДЗ близнецов. Профиль индивидуального развития характеризует не только направление развития психологических характеристик, но и индивидуальные особенности движения в этом направлении, которые могут включать периоды ускорения и замедления, спада и подъема. В Луисвиллском близнецовом исследовании по результатам многолетнего прослеживания изменений в уровне интелекта МЗ и ДЗ близнецов оказалось возможным провести внутрипарное сравнение профилей индивидуального развития по показателям интеллекта [452, 453].
Внутрипарное сравнение профилей показало, что в парах МЗ близнецов наблюдается значительно большее совпадение значений интеллекта по каждому году, т.е. наблюдается больше сходства по ходу развития в целом. В парах ДЗ близнецов совпадения были выражены значительно меньше. Мерой количественной оценки внутрипарного сходства профилей показателей IQ служат коэффициенты корреляции, которые составляют 0,87 для МЗ близнецов и 0,65 для ДЗ в возрастном диапазоне от 3 до 6 лет и 0,81 и 0,66 соответственно в диапазоне от 6 до 8 лет. Коэффициенты наследуемости равны соответственно 0,44 для первого возрастного отрезка и 0,30 — для второго. Таким образом, индивидуальные особенности профилей развития по показателям интеллекта испытывают на себе существеннное влияние генотипа, однако вполне возможно, что степень этого влияния на разных отрезках онтогенеза также будет варьировать.
Как уже отмечалось, основным достоинством лонгитюдного исследования близнецов является то, что только оно может ответить на вопрос: обусловлено ли увеличение наследуемости проявлением новых дополнительных генетических факторов, начинающих функционировать по мере взросления ребенка, или происходит усиление уже действующих генетических факторов?
Л. Иве с коллегами [245] подошел к анализу генотип-средовых соотношений в развитии интеллекта именно с этих позиций, используя для анализа материалы лонгитюдного Луисвиллского близнецового исследования. Анализ полученных у близнецов в разные годы оценок IQ выявил изначально небольшое, но устойчивое и возрастающее влияние одних и тех же генетических факторов. Было установлено и существенное влияние систематической семейной среды, причем эффекты систематической среды также сохраняли преемственность, хотя по мере взросления к стабильным присоединялись и новые. He-систематические средовые влияния были менее устойчивы по сравнению с генетическими и систематическими средовыми эффектами. В целом эти данные свидетельствуют в пользу амплификационной модели наследуемости показателей IQ. Сходные проблемы решались и в ряде других подобных исследований. Так, голландские исследователи Д. Бумсма и К. Ван Баал [25] приводят результаты лонгитюдного генетического исследования IQ у близнецов 5-7 лет. Они ставили задачу проанализировать изменения соотношения средовых и генетических факторов, влияющих на IQ, и выделить компоненты фенотипической стабильности в указанном возрастном диапазоне. Для оценки интеллекта близнецов использовался один и тот же тест RAKIT (обновленный амстердамский тест детского интеллекта). Выборка испытуемых включала: в 5 лет 209 пар близнецов, в 7 лет повторно 192 пары. Генетико-статистический анализ проводился с привлечением генетической модели, которая в качестве источников вариативности рассматривала генетические эффекты, систематическую среду, несистематическую среду.
Сопоставление оценок наследуемости и их доверительных интервалов в 5 и 7 лет показало, что относительное влияние генетических факторов действительно различается в двух возрастах. Несмотря на то что в 5 лет верхняя граница наследственной обусловленности — 42 %, а в 7 лет ее нижняя граница — 50%, непересекающийся доверительный интервал свидетельствует о значительно более высокой наследуемости в 7 лет. Соответственно относительное влияние систематической среды ниже в 7 лет, чем в 5 лет. Корреляция между оценками интеллекта в 5 и 7 лет составила 0,65. В генетической модели ковариация показателей IQ между 5 и 7 годами разлагалась на генетическую и средовую составляющие, при этом большая часть ее — 64% объясняется стабильностью генетических факторов, а меньшая — 36% — стабильностью систематической среды.
Таким образом, исследование Д. Бумсмы и К. Ван Баал показало, что, во-первых, наследуемость показателей IQ в возрастном интервале с 5 до 7 лет возрастает и, во-вторых, в основе межиндивидуальной изменчивости показателей IQ в обоих возрастах лежат преимущественно одни и те же генетические факторы. Следует указать, что данное близнецовое исследование в некотором роде уникально, так как наряду с оценкой когнитивных функций в нем проводился анализ межиндивидуальной изменчивости большого числа психофизиологических показателей, характеризующих особенности созревания ЦНС (описание этих данных см. в гл. XVIII). Перспективы подобного параллельного изучения представляются очень интересными, поскольку можно будет, фактически впервые, проанализировать природу межуровневых и межвозрастных связей в структуре развивающейся индивидуальности. Изменения генотип-средовых соотношений в показателях интеллекта приблизительно в том же возрастном диапазоне изучались в близнецовом лонгитюдном исследовании, проводившемся М.С. Егоровой и ее коллегами [56]. Ставилась задача проследить динамику генотип-средовых соотношений в показателях интеллекта при переходе от дошкольного возраста к школьному. В исследовании приняли участие около 100 пар близнецов. Диагностика интеллекта проводилась по тесту Векслера (WISC), адаптированному А. Панаскжом. Показатели наследуемости для общего интеллекта (ОИ) составили 28, 34 и 52% в 6, 7 и 10 лет соответственно; для вербального интеллекта (ВИ) — 22, 16 и 26%, для невербального (НИ) — 16, 84 и 70%. Эти данные интересны тем, что, с одной стороны, подтверждают тенденцию к возрастанию наследуемости общего интеллекта с возрастом, а с другой — свидетельствуют о возможности иных вариантов возрастных изменений наследуемости отдельных сторон интеллекта.
В этом же исследовании анализировались межвозрастные генетические корреляции, позволявшие оценить генетический вклад в фенотипическую стабильность показателей интеллекта.
Генетические корреляции между показателями вербального, невербального и общего интеллекта в 6 и 7 лет, а также генетические корреляции между этими показателями в 6 и 10 лет за небольшим исключением достаточно высоки. В то же время генетические корреляции между всеми показателями интеллекта в 7 и 10 лет намного ниже. Таким образом, генетические факторы в изменчивости интеллекта в 6 лет достаточно тесно связаны с генетическими факторами, обусловливающими индивидуальные различия в 7 и 10 лет. Авторы обращают внимание на то, что «выпадение» из общей картины корреляций между показателями в 7 и 10 лет может быть обусловлено резкими изменениями средовых условий, связанных с началом обучения в школе.
В целом описанные близнецовые исследования убедительно свидетельствуют о весьма существенных возрастных изменениях в картине генотип-средовых соотношений в изменчивости показателей IQ. Более того, очевидны и дальнейшие перспективы близнецовых лонгитюдных исследований, связанные с более дробным дифференцированным анализом генетических и средовых влияний в показателях когнитивных характеристик разного уровня и содержания, оценкой их стабильности и преемственности в онтогенезе. Наряду с близнецовыми проводятся лонгитюдные исследования приемных детей. Среди них наиболее известным является Колорадское исследование приемных детей, которое было начато по инициативе Р. Пломина и Дж. Дефриза в 1975 г. [361]. В исследовании принимали участие 246 семей с детьми первого года жизни. По мере ежегодного тестирования число семей уменьшалось, и к девятилетнему возрасту детей оно составило 173. Предполагается продолжать исследование до того времени, когда детям исполнится 16 лет.
У детей, начиная с первого года жизни, ежегодно диагносцировали показатели физического и умственного развития по шкалам Н. Бейли. На основании наблюдений и оценок родителей делались выводы об особенностях темперамента ребенка. (О возрастной динамике генотип-средовых соотношений в индивидуальных различиях темперамента см. в гл. X.) В дальнейших обследованиях ежегодно тестировались особенности умственного развития ребенка, некоторые показатели темперамента и личности, условия развития ребенка.
Масштабы этого исследования весьма внушительны, результаты еще полностью не опубликованы. Мы остановимся на некоторых наиболее важных в данном контексте фрагментах. Речь в первую очередь идет об изучении генетически опосредуемой стабильности когнитивного развития. С целью определения роли генотипа в межвозрастной преемственности когнитивных характеристик анализировались межвозрастные кросскорреляции сиблингов, т.е. подсчитывались корреляции между показателями одного сиблинга — младшего возраста и второго — более старшего возраста. Сравнение корреляций у биологических сиблингов, т.е. имеющих и общие гены и общую среду, а также приемных сиблингов, т.е. имеющих только общие средовые условия, позволили авторам определить вклад генотипа в межвозрастую стабильность и изменчивость когнитивных показателей (табл. 17.3). Анализ позволил выявить увеличение год от года роли генетических влияний в межвозрастной стабильности таких признаков, как общий интеллект и вербальные способности. Что же касается другого признака — пространственных способностей, то генетические влияния определяют его межвозрастную преемственность в более младших возрастах, но в 3—4 года решающую роль начинают играть средовые условия. Сравнение IQ родителей и детей проводилось по трем вариантам: дети и их биологические родители, с которыми они были разлучены очень рано; дети и родители-усыновители; дети и биологические родители, с которыми они живут вместе. Результаты сравнения подтвердили значительную роль генетических факторов в опосредовании возрастной стабильности IQ.
В итоге можно констатировать, что вклад генотипа в индивидуальные различия интеллекта с возрастом увеличивается, причем генетические влияния в детском и взрослом возрасте преемственно связаны.
Соотношение генотипических и средовых влияний в формировании индивидуальных различий (в отличие от нормативного развития) является предметом многочисленных экспериментальных исследований в русле возрастной психогенетики (или психогенетики развития) — науки, изучающей природу межиндивидуальной изменчивости психологических особенностей человека в процессе онтогенеза. Генетические изменения в онтогенезе имеют два аспекта: изменения в сравнительной величине генетических и средовых компонентов межиндивидуальной изменчивости признака, т.е. изменения наследуемости; изменение генетической ковариации в ходе онтогенеза. В первом случае используется вариант метода возрастных срезов; во втором — лонгитюдное исследование, в котором определяется корреляция между генетическими компонентами дисперсии изучаемой характеристики, полученными в разных возрастах на одной и той же группе испытуемых. Этот способ дает возможность оценить вклад генетических факторов в изменчивость возрастных преобразований.
Лонгитюдные исследования близнецов и приемных детей свидетельствуют о том, что вклад генотипа в индивидуальные различия IQ с возрастом увеличивается, причем генетические составляющие дисперсии интеллекта в младенчестве и в старших возрастах высоко коррелируют между собой. Это значит, что, несмотря на сравнительно низкий уровень наследуемости интеллекта в младенчестве, генетические эффекты, проявившиеся в столь раннем возрасте, продолжают оказывать влияние на интеллект человека и на более поздних этапах развития.
Методы психогенетики развития позволяют оценить возрастную динамику средовых эффектов. В детском возрасте средовая вариативность IQ определяется в основном действием факторов систематической семейной среды, т.е. общих для всех членов семьи. По мере взросления влияние систематической среды на IQ существенно снижается, но весьма ощутимо возрастает влияние уникальной, индивидуальной среды.
Возрастная динамика генетических и средовых детерминант в изменчивости когнитивных характеристик
Представления о том, что в онтогенезе меняется соотношение генетических и средовых влияний, определяющих индивидуально-психологические особенности, родились в контексте самой психогенетики, тем не менее они хорошо согласуются с представлениями возрастной психологии, касающимися изменения механизмов реализации психических функций в онтогенезе.    продолжение
--PAGE_BREAK--
Выдающийся отечественный психолог А.Р.Лурия писал: «Мы имеем все основания думать, что природа каждой психической функции (иначе говоря, ее отношение к генотипу) так же меняется в процессе психического развития человека, как и ее структура, и что поэтому ошибочными являются попытки раз и навсегда решить вопрос «о степени наследственной обусловленности» той или иной психической «функции», не принимая в расчет тех изменений, которые она претерпевает в своем развитии» [99].
На основе теоретических представлений, существующих в отечественной возрастной психологии, делались попытки определить направление этих изменений. Так, А.Р. Лурия, исходя из фактов качественной перестройки всей психической деятельности человека и замены элементарных форм деятельности сложноорганизованными функциональными системами, которые происходят в процессе психического развития, предположил, что по мере изменения структуры высших психических функций, возрастания степени их опосредования зависимость той или иной деятельности от генотипа будет закономерно уменьшаться. Действительно, исследования некоторых особенностей памяти и внимания выявили именно такой характер изменений. Было установлено, что от дошкольного к подростковому возрасту сохраняется преимущественно генотипическая обусловленность образной зрительной памяти и устойчивости внимания. В то же время наблюдается фактическая смена детерминации, т.е. переход от генотипической к средовой обусловленности у опосредованных форм памяти и у более сложных форм внимания, таких, как его распределение [2, 97]. Наряду с этим исследования генотип-средовых отношений в показателях интеллекта в ходе развития дают другую картину.
Возрастная стабильность и изменчивость генетических и средовых влияний, лежащих в основе межиндивидульных различий по интеллекту, в последнее время являются предметом многих исследований [25, 56, 106, 355]. В большинстве исследований делается вывод о том, что в младенчестве наследственная обусловленность показателей интеллекта относительно низка, а влияние систематической семейной среды сравнительно велико. Начиная с шести лет и далее, а также у подростков и взрослых оценка наследуемости показателей интеллекта возрастает до 50—70%, влияние же общей семейной среды существенно снижается (подробнее об этом см. гл. VI).
Эти выводы представляют обобщение результатов целого ряда исследований, выполненных на близнецах и приемных детях. Рассмотрим сначала результаты некоторых близнецовых исследований.
Наиболее известным из них является Луисвиллское близнецовое исследование, посвященное изучению природы межиндивидуальной изменчивости показателей интеллекта. Оно было начато в 1957 г. Ф. Фолкнером и к середине 80-х годов охватывало около 500 пар близнецов, чье развитие было прослежено от рождения до 15-летнего возраста. Близнецы, участвовавшие в этом исследовании, тестировались по интеллекту, начиная с первого года жизни до 15 лет (каждые три месяца на протяжении первого года жизни, дважды в год — до 3 лет, ежегодно до 9 лет и последний раз — в 15 лет). При этом использовалась шкала психического развития Бейли в младенческом периоде, шкалы Векслера — WPPSI в возрасте 4,5 и 6 лет и WISC в более старшем возрасте.
Анализ полученных оценок IQ в парах МЗ и ДЗ близнецов отчетливо демонстрирует увеличение показателя наследуемости с возрастом. Показатели наследуемости у детей в возрасте 1,2,3 лет составляют 10, 17, 18% соответственно. С 3 лет внутрипарное сходство МЗ близнецов сохраняется на очень высоком уровне, коэффициенты корреляции не ниже 0,83. У ДЗ близнецов внутрипарное сходство по показателю интеллекта уменьшается с 0,79 в 3 года до 0,54 в 15 лет. Показатели наследуемости у детей в 4 года составляют 26% и далее Увеличиваются до 55%.
Интересно, что значимые различия в сходстве МЗ и ДЗ близнецов начали обнаруживаться до того, как была установлена их зиготность. Тип близнецовых пар, т.е. отнесенение их к МЗ или ДЗ близнецам, был определен только в 3 года. По мнению исследователей, полученные данные показывают, что процессы развития инициируются и в значительной степени управляются генотипом. Это предположение было подтверждено при изучении внутрипарного сходства индивидуальных траекторий, или профилей, развития МЗ и ДЗ близнецов. Профиль индивидуального развития характеризует не только направление развития психологических характеристик, но и индивидуальные особенности движения в этом направлении, которые могут включать периоды ускорения и замедления, спада и подъема. В Луисвиллском близнецовом исследовании по результатам многолетнего прослеживания изменений в уровне интелекта МЗ и ДЗ близнецов оказалось возможным провести внутрипарное сравнение профилей индивидуального развития по показателям интеллекта [452, 453].
Внутрипарное сравнение профилей показало, что в парах МЗ близнецов наблюдается значительно большее совпадение значений интеллекта по каждому году, т.е. наблюдается больше сходства по ходу развития в целом. В парах ДЗ близнецов совпадения были выражены значительно меньше. Мерой количественной оценки внутрипарного сходства профилей показателей IQ служат коэффициенты корреляции, которые составляют 0,87 для МЗ близнецов и 0,65 для ДЗ в возрастном диапазоне от 3 до 6 лет и 0,81 и 0,66 соответственно в диапазоне от 6 до 8 лет. Коэффициенты наследуемости равны соответственно 0,44 для первого возрастного отрезка и 0,30 — для второго. Таким образом, индивидуальные особенности профилей развития по показателям интеллекта испытывают на себе существеннное влияние генотипа, однако вполне возможно, что степень этого влияния на разных отрезках онтогенеза также будет варьировать.
Как уже отмечалось, основным достоинством лонгитюдного исследования близнецов является то, что только оно может ответить на вопрос: обусловлено ли увеличение наследуемости проявлением новых дополнительных генетических факторов, начинающих функционировать по мере взросления ребенка, или происходит усиление уже действующих генетических факторов?
Л. Иве с коллегами [245] подошел к анализу генотип-средовых соотношений в развитии интеллекта именно с этих позиций, используя для анализа материалы лонгитюдного Луисвиллского близнецового исследования. Анализ полученных у близнецов в разные годы оценок IQ выявил изначально небольшое, но устойчивое и возрастающее влияние одних и тех же генетических факторов. Было установлено и существенное влияние систематической семейной среды, причем эффекты систематической среды также сохраняли преемственность, хотя по мере взросления к стабильным присоединялись и новые. He-систематические средовые влияния были менее устойчивы по сравнению с генетическими и систематическими средовыми эффектами. В целом эти данные свидетельствуют в пользу амплификационной модели наследуемости показателей IQ. Сходные проблемы решались и в ряде других подобных исследований. Так, голландские исследователи Д. Бумсма и К. Ван Баал [25] приводят результаты лонгитюдного генетического исследования IQ у близнецов 5-7 лет. Они ставили задачу проанализировать изменения соотношения средовых и генетических факторов, влияющих на IQ, и выделить компоненты фенотипической стабильности в указанном возрастном диапазоне. Для оценки интеллекта близнецов использовался один и тот же тест RAKIT (обновленный амстердамский тест детского интеллекта). Выборка испытуемых включала: в 5 лет 209 пар близнецов, в 7 лет повторно 192 пары. Генетико-статистический анализ проводился с привлечением генетической модели, которая в качестве источников вариативности рассматривала генетические эффекты, систематическую среду, несистематическую среду.
Сопоставление оценок наследуемости и их доверительных интервалов в 5 и 7 лет показало, что относительное влияние генетических факторов действительно различается в двух возрастах. Несмотря на то что в 5 лет верхняя граница наследственной обусловленности — 42 %, а в 7 лет ее нижняя граница — 50%, непересекающийся доверительный интервал свидетельствует о значительно более высокой наследуемости в 7 лет. Соответственно относительное влияние систематической среды ниже в 7 лет, чем в 5 лет. Корреляция между оценками интеллекта в 5 и 7 лет составила 0,65. В генетической модели ковариация показателей IQ между 5 и 7 годами разлагалась на генетическую и средовую составляющие, при этом большая часть ее — 64% объясняется стабильностью генетических факторов, а меньшая — 36% — стабильностью систематической среды.
Таким образом, исследование Д. Бумсмы и К. Ван Баал показало, что, во-первых, наследуемость показателей IQ в возрастном интервале с 5 до 7 лет возрастает и, во-вторых, в основе межиндивидуальной изменчивости показателей IQ в обоих возрастах лежат преимущественно одни и те же генетические факторы. Следует указать, что данное близнецовое исследование в некотором роде уникально, так как наряду с оценкой когнитивных функций в нем проводился анализ межиндивидуальной изменчивости большого числа психофизиологических показателей, характеризующих особенности созревания ЦНС (описание этих данных см. в гл. XVIII). Перспективы подобного параллельного изучения представляются очень интересными, поскольку можно будет, фактически впервые, проанализировать природу межуровневых и межвозрастных связей в структуре развивающейся индивидуальности. Изменения генотип-средовых соотношений в показателях интеллекта приблизительно в том же возрастном диапазоне изучались в близнецовом лонгитюдном исследовании, проводившемся М.С. Егоровой и ее коллегами [56]. Ставилась задача проследить динамику генотип-средовых соотношений в показателях интеллекта при переходе от дошкольного возраста к школьному. В исследовании приняли участие около 100 пар близнецов. Диагностика интеллекта проводилась по тесту Векслера (WISC), адаптированному А. Панаскжом. Показатели наследуемости для общего интеллекта (ОИ) составили 28, 34 и 52% в 6, 7 и 10 лет соответственно; для вербального интеллекта (ВИ) — 22, 16 и 26%, для невербального (НИ) — 16, 84 и 70%. Эти данные интересны тем, что, с одной стороны, подтверждают тенденцию к возрастанию наследуемости общего интеллекта с возрастом, а с другой — свидетельствуют о возможности иных вариантов возрастных изменений наследуемости отдельных сторон интеллекта.
В этом же исследовании анализировались межвозрастные генетические корреляции, позволявшие оценить генетический вклад в фенотипическую стабильность показателей интеллекта.
Генетические корреляции между показателями вербального, невербального и общего интеллекта в 6 и 7 лет, а также генетические корреляции между этими показателями в 6 и 10 лет за небольшим исключением достаточно высоки. В то же время генетические корреляции между всеми показателями интеллекта в 7 и 10 лет намного ниже. Таким образом, генетические факторы в изменчивости интеллекта в 6 лет достаточно тесно связаны с генетическими факторами, обусловливающими индивидуальные различия в 7 и 10 лет. Авторы обращают внимание на то, что «выпадение» из общей картины корреляций между показателями в 7 и 10 лет может быть обусловлено резкими изменениями средовых условий, связанных с началом обучения в школе.
В целом описанные близнецовые исследования убедительно свидетельствуют о весьма существенных возрастных изменениях в картине генотип-средовых соотношений в изменчивости показателей IQ. Более того, очевидны и дальнейшие перспективы близнецовых лонгитюдных исследований, связанные с более дробным дифференцированным анализом генетических и средовых влияний в показателях когнитивных характеристик разного уровня и содержания, оценкой их стабильности и преемственности в онтогенезе. Наряду с близнецовыми проводятся лонгитюдные исследования приемных детей. Среди них наиболее известным является Колорадское исследование приемных детей, которое было начато по инициативе Р. Пломина и Дж. Дефриза в 1975 г. [361]. В исследовании принимали участие 246 семей с детьми первого года жизни. По мере ежегодного тестирования число семей уменьшалось, и к девятилетнему возрасту детей оно составило 173. Предполагается продолжать исследование до того времени, когда детям исполнится 16 лет.
У детей, начиная с первого года жизни, ежегодно диагносцировали показатели физического и умственного развития по шкалам Н. Бейли. На основании наблюдений и оценок родителей делались выводы об особенностях темперамента ребенка. (О возрастной динамике генотип-средовых соотношений в индивидуальных различиях темперамента см. в гл. X.) В дальнейших обследованиях ежегодно тестировались особенности умственного развития ребенка, некоторые показатели темперамента и личности, условия развития ребенка.
Масштабы этого исследования весьма внушительны, результаты еще полностью не опубликованы. Мы остановимся на некоторых наиболее важных в данном контексте фрагментах. Речь в первую очередь идет об изучении генетически опосредуемой стабильности когнитивного развития. С целью определения роли генотипа в межвозрастной преемственности когнитивных характеристик анализировались межвозрастные кросскорреляции сиблингов, т.е. подсчитывались корреляции между показателями одного сиблинга — младшего возраста и второго — более старшего возраста. Сравнение корреляций у биологических сиблингов, т.е. имеющих и общие гены и общую среду, а также приемных сиблингов, т.е. имеющих только общие средовые условия, позволили авторам определить вклад генотипа в межвозрастую стабильность и изменчивость когнитивных показателей (табл. 17.3). Анализ позволил выявить увеличение год от года роли генетических влияний в межвозрастной стабильности таких признаков, как общий интеллект и вербальные способности. Что же касается другого признака — пространственных способностей, то генетические влияния определяют его межвозрастную преемственность в более младших возрастах, но в 3—4 года решающую роль начинают играть средовые условия. Сравнение IQ родителей и детей проводилось по трем вариантам: дети и их биологические родители, с которыми они были разлучены очень рано; дети и родители-усыновители; дети и биологические родители, с которыми они живут вместе. Результаты сравнения подтвердили значительную роль генетических факторов в опосредовании возрастной стабильности IQ.
В итоге можно констатировать, что вклад генотипа в индивидуальные различия интеллекта с возрастом увеличивается, причем генетические влияния в детском и взрослом возрасте преемственно связаны.    продолжение
--PAGE_BREAK--
Соотношение генотипических и средовых влияний в формировании индивидуальных различий (в отличие от нормативного развития) является предметом многочисленных экспериментальных исследований в русле возрастной психогенетики (или психогенетики развития) — науки, изучающей природу межиндивидуальной изменчивости психологических особенностей человека в процессе онтогенеза. Генетические изменения в онтогенезе имеют два аспекта: изменения в сравнительной величине генетических и средовых компонентов межиндивидуальной изменчивости признака, т.е. изменения наследуемости; изменение генетической ковариации в ходе онтогенеза. В первом случае используется вариант метода возрастных срезов; во втором — лонгитюдное исследование, в котором определяется корреляция между генетическими компонентами дисперсии изучаемой характеристики, полученными в разных возрастах на одной и той же группе испытуемых. Этот способ дает возможность оценить вклад генетических факторов в изменчивость возрастных преобразований.
Лонгитюдные исследования близнецов и приемных детей свидетельствуют о том, что вклад генотипа в индивидуальные различия IQ с возрастом увеличивается, причем генетические составляющие дисперсии интеллекта в младенчестве и в старших возрастах высоко коррелируют между собой. Это значит, что, несмотря на сравнительно низкий уровень наследуемости интеллекта в младенчестве, генетические эффекты, проявившиеся в столь раннем возрасте, продолжают оказывать влияние на интеллект человека и на более поздних этапах развития.
Методы психогенетики развития позволяют оценить возрастную динамику средовых эффектов. В детском возрасте средовая вариативность IQ определяется в основном действием факторов систематической семейной среды, т.е. общих для всех членов семьи. По мере взросления влияние систематической среды на IQ существенно снижается, но весьма ощутимо возрастает влияние уникальной, индивидуальной среды.
Генотип, ген, аллель
До сих пор мы использовали широкое определение генотипа, а теперь обратимся к его узкому определению. В узком смысле генотип есть совокупность аллелей гена или группа генов, контролирующих развитие и проявление анализируемого признака у данного организма.
Ген (греч. genos — род, происхождение) представляет собой единицу генетического материала. Гены выполняют несколько функций, одна из которых заключается в кодировании первичной структуры полипептида (белка) (гл. IV).
В основе формирования молекулы любого белка лежат всего четыре химических вещества, а именно четыре азотистых основания (аденин — А, гуанин — G, тимин — Т и цитозин — С). В организме эти азотистые основания — нуклеотиды — образуют дезоксирибонуклеиновую кислоту (ДНК), а гены представляют собой участки ДНК, различающиеся порядком расположения этих оснований.
У всех живых организмов сходные системы осуществляют сначала транскрипцию (переписывание), а затем трансляцию (перевод) генетической информации, хранящейся в генах. Результатом этих двух процессов является производство белков, состоящих из разных комбинаций 20 главных аминокислот. Изменение структуры даже одного-единственного гена (мутация) может привести к синтезу видоизмененного белка, который во многих случаях утрачивает или меняет свою биологическую функцию. Последствия подобных явлений обнаруживаются как определенный фенотип. Кроме того, часто бывает так, что изменение одного белка вызывает цепную реакцию в организме, приводя к изменению множества фенотипических признаков (так называемый феномен плейотропии).
Мутации (лат. mutatio — изменение) — это внезапные, естественные или вызванные искусственно наследуемые изменения генетического материала, приводящие к изменению тех или иных фенотипических признаков организма. Основы учения о мутациях были заложены голландским ботаником Де Фризом в 1901-1903 гг. Согласно его мутационной теории, мутация возникает внезапно, без всяких переходов; мутантные формы представляют собой вполне устойчивые качественные изменения; они действуют в разных направлениях и могут быть полезными или вредными; одни и те же мутации могут возникать повторно. Мутации присущи всем живым организмам. Модулярные механизмы мутаций (гл. IV) стали выясняться с развитием молекулярной биологии с середины XX в. Мутации называются прямыми, если их проявление приводит к отклонению признаков от дикого типа (см. далее), и обратными (реверсивными), если их проявление приводит к полному или частичному восстановлению дикого типа.
Существует несколько классификаций мутаций. Нередко мутации разделяют на генные (гл. IV и V), хромосомные (гл. I и III) и геномные (гл. Ill) в соответствии с уровнями носителей генетической информации. К генным относятся все мутации, происходящие на уровне нуклеотидов ДНК (или РНК). В такие мутации обычно вовлечен один ген. К хромосомным мутациям относятся хромосомные перестройки, вовлекающие участки хромосом (т.е. несколько генов). Наконец, к геномным мутациям относят изменение числа хромосом. В зависимости от природы мутаций, их разделяют на спонтанные и индуцированные (гл. III). Кроме того, мутации подразделяют на морфологические, биохимические, летальные и т.п. (в зависимости от фенотипического проявления мутаций); на доминантные и рецессивные (в зависимости от типа наследования мутантных признаков); на гаметные (генеративные, т.е. происходящие в половых клетках), соматические (происходящие в соматических, т.е. любых неполовых, клетках), ядерные (затрагивающие хромосомы ядра) и цитоплазматические (затрагивающие генетический материал митохондрий, пластид и других цитоплазматических органоидов клетки).
Ген может существовать в нескольких структурных состояниях (аллелях).
Аллели (греч. allenon — различные формы) — это альтернативные формы гена, определяющие альтернативные формы одного и того же признака. Они возникают в результате изменений структуры гена за счет таких генных процессов, как мутация и рекомбинация (гл. IV, V). Аллели, обусловливающие развитие признаков, типичных для вида, называют аллелями дикого типа, а происходящие от них аллели — мутантными. Качественное отличие аллелей друг от друга проявляется, в частности, на биохимическом уровне. Иными словами, если провести сравнительный биохимический анализ белков, формируемых разными аллелями одного гена, то они будут отличаться друг от друга по каким-нибудь признакам, например по составу нуклеотидов (гл. IV). Несколько неточной, но тем не менее иллюстративной аналогией соотношения понятий «ген» и «аллель» может служить аналогия из ботаники: понятие «ген» в этой аналогии соответствует понятию «семейство», а понятие «аллель» — понятию «конкретное растение, относящееся к этому семейству». Иначе говоря, ген — понятие собирательное, «родовое», а его конкретным воплощением является аллель, т.е. реально гены существуют только в форме аллелей. В норме у каждого человека имеется два аллеля каждого гена — по одному аллелю на каждой из хромосом. Но в популяциях (гл. V) каждый ген может встречаться в виде множества аллелей. Наличие нескольких аллелей каждого гена в популяциях обеспечивает определенный уровень генетического полиморфизма (например, три аллеля обусловливают существование четырех групп крови у человека) и комбинативной изменчивости (закон независимого наследования признаков; см.: гл. II).
Даже из одной пары аллелей (А, а) можно составить несколько комбинаций (АА, аа, Ad). Когда организм является носителем двух аллелей дикого типа АА или двух мутантных аллелей аа, то говорят, что этот организм гомозиготен по аллелю А или по аллелю а. Если же организм содержит один аллель А и один аллель а, то его называют гетерозиготным.
Существует несколько типов взаимодействия аллелей, ведущими среди которых являются доминантность и рецессивность.
Доминантностью называют участие только одного аллеля в определении фенотипического признака у гетерозиготной особи. Этот тип взаимодействия аллелей был открыт еще Г. Менделем в его первых классических опытах (гл. II). Доминантные аллели обозначаются заглавными буквами А, В и т.д. При отсутствии доминирования в строгом смысле этого слова (т.е. когда признак, исследуемый у гибрида, не повторяет признак, имеющийся у родителей, при любом сочетании аллелей) обычно различают проявление следующих вариантов фенотипа: неполное доминирование, сверхдоминирование и кодоминантность. Типы доминантности отличаются друг от друга по степени выраженности фенотипов гомозигот и гетерозигот. При доминантности фенотип гетерозиготы (Аа) повторяет фенотип гомозиготы по доминантному аллелю (АА); при неполном доминировании фенотип гетерозиготы Аа по своей выраженности занимает промежуточное положение между фенотипами АА и Аа; при сверхдоминировании наиболее сильно фенотипический признак выражается у Аа (сильнее, чем у любой из гомозигот АА и аа); наконец, при кодоминантности в детерминации признака у гетерозиготы Аа участвуют оба аллеля.
Рецессивностью называют отсутствие фенотипического проявления одного аллеля у гетерозиготной особи. Рецессивные аллели обозначаются малыми буквами а, в и т.д. Человек является носителем пары аллелей каждого гена, а по наследству своим потомкам он передает только один аллель, поскольку половые клетки (яйцеклетка или спермий) содержат по одной хромосоме каждой пары. Этот механизм обеспечивает случайное перекомбинирование аллелей в каждом последующем поколении, в результате чего ни один потомок не воспроизводит полностью генетическую индивидуальность своего родителя. Таким образом, разные аллели сочетаются у конкретного человека только на исторически короткий временной промежуток — на период существования этого человека как организма.
Для нормального развития и функционирования человеческого организма необходима координация усилий по крайней мере 100 000 генов. Упрощая ситуацию, представим, что каждый из этих генов имеет по крайней мере один вариант, встречающийся только у одного человека из тысячи (т.е. каждый ген имеет два аллеля, один из которых встречается часто, а другой редко). Вероятность того, что у случайно взятого человека не будет найдено редких вариантов ни одного из генов, составит (1 — 0,001)100 00° = 3,54е~44, т.е. бесконечно малую величину. Отсюда можно с определенной уверенностью сказать, что каждый из нас наверняка отличается от всех своих неродственников по крайней мере одним геном. Обратите внимание на то, что данные расчеты были проделаны при весьма консервативном предположении о том, что все гены представлены только двумя альтернативными формами (т.е. каждый ген имеет лишь два аллеля). Однако существует множество генов, для которых сегодня известно множество (иногда до 40) аллелей; большинство из 100 000 генов, необходимых для развития человеческого организма, отличаются удивительным богатством альтернативных форм. Если же мы проведем расчеты, подобные проведенным выше, для генов с большим количеством аллелей, то станет понятно, что вероятность появления двух генетически одинаковых людей, даже родственников, практически нулевая. Можно смело утверждать, что за исключением однояйцевых близнецов, развивающихся из одной оплодотворенной яйцеклетки и потому являющихся генетически идентичными индивидуумами, мы генетически неповторимы; генетическая индивидуальность каждого из нас уникальна.


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Защита прав и законных интересов беженце в международном праве
Реферат Комплекс неполноценности и личностное самоопределение в детстве
Реферат Блюдо "Запеканка овощная с соусом сметанным с томатом"
Реферат Анализ стихотворения С.А. Есенина Синий туман. Снеговое раздолье
Реферат Рынок маркетинговых исследований и консалтинга состояние проблемы и перспективы
Реферат Забезпечення національної спрямованості фізичного виховання молодших школярів засобами українських народних рухливих ігор
Реферат Odysseus And Circe
Реферат Моделирование как метод естествознания. Модель демографического взрыва
Реферат Разгибательные предлежания и вставления головки
Реферат Реструктуризация и санация (финансовое оздоровление) предприятия (организации)
Реферат Психология рекламы 4
Реферат Исследовательская деятельность студентов педагогического колледжа
Реферат БИЗНЕС – ПЛАН ПРОИЗВОДСТВЕННОЙ ДЕЯТЕЛЬНОСТИ ПРЕДПРИЯТИЯ ПО РЕМОНТУ И ТЕХНИЧЕСКОМУ ОБСЛУЖИВАНИЮ АВТОМОБИЛЕЙ
Реферат Октавиан Август
Реферат Ювелирные изделия