Реферат по предмету "Производство"


Холодильные установки

--PAGE_BREAK--
1.4 Конструкция бытовых холодильников

Основными структурными блоками холодильников (рис. 1.2) и морозиль­ников являются теплоизолированный шкаф и холодильный аг­регат (машина). Шкаф состоит из наружного 7 и внутреннего корпусов, разделенных теплоизоляционным слоем 9. Наружный корпус является несущим и представляет собой сварную конструк­цию из низкоуглеродистого стального листа толщиной 0,6-1,0 мм. Снаружи корпус шкафа покрыт синтетической эмалью. Внутрен­ний корпус образует холодильную камеру 2. Он может быть ме­таллический (сталь, алюминий) или пластмассовый (ударопроч­ный полистирол). Внутренняя поверхность холодильной камеры, выполненная из низкоуглеродистой стали, покрыта синтетичес­кой эмалью.

Низкотемпературные камеры многокамерных холодильников и камеры морозильников  выполняют  из  сплава  алюминия  или  коррозионно-стойкой стали. Металлические камеры более долговечны и гигиеничны, но увеличивают массу холодильника и морозильни­ка. Пластмассовые камеры более технологичны в изготовлении и сборке, имеют меньшую теплопроводность и массу. Однако они быстрее теряют товарный вид, менее прочны и долговечны по срав­нению с металлическими. Шкаф закрывается дверью 8, которая удерживается в закрытом положении при помощи затвора. Герме­тичность соединения корпуса шкафа с дверью обеспечивается уп­лотнителем 6, закрепленным на внутренней панели двери.В верхней зоне холодильной камеры размещается испаритель 14. Внутренний объем испарителя образует низкотемпературное отделение 5. Под испарителем находится поддон 4, имеющий окна для циркуляции воздуха. Нижняя часть наружного корпу­са обычно отводится для размещения компрессора 11 или части аппаратов абсорбционной машины. Для размещения аппаратов также используется задняя поверхность холодильного шкафа; на рис.1.4. на ней находится конденсатор 10.



Рис.1.2. Устройство бытового холодильника:

1 — сосуд для хранения продуктов; 2 — холодильная камера; 3 — полка; 4 — поддон; 5 — низкотемпературное отделение; 6 — уплотнитель; 7 — наружный корпус; 8 — дверь; 9 — теплоизоляция; 10 — конденсатор; 11 — герметичный компрессор; 12 — регулятор температуры; /3 — ручка; 14 — испаритель
Холодильная камера закрывается дверью 8 с ручкой 13; плот­ность прилегания двери обеспечивается резиновой окантовкой, которая при закрывании двери прижимается к передней плоско­сти шкафа. Внутри камеры находится регу­лятор температуры 12.

Корпус является несущей конструкцией, поэтому должен быть достаточно жестким. Его изготовляют из листовой стали тол­щиной 0,6...1,0 мм. Герметичность наружного шкафа обеспечива­ется пастой ПВ-3 на основе хлорвиниловой смолы. Поверхность шкафа фосфотируют, затем грунтуют и дважды покрывают белой эмалью ПЛ-12-01, ЭП-148, МЛ-242, МЛ-283 или др. Выполняют это с помощью краскопультов или в электростатическом поле.

В последнее время для изготовления корпусов холодиль­ников все чаще применяют ударопрочные пластики. Благодаря этому сокращается расход металла и уменьшается масса холо­дильного прибора.

Внутренние шкафы холодильников, или как их еще назы­вают, холодильные (морозильные) камеры изготовляют из сталь­ного листа толщиной 0,7...0,9 мм методом штамповки и сварки и эмалируют горячим способом силикатно-титановой эмалью.

Пластмассовые камеры изготовляют из АБС-пластика или ударопрочного полистирола методом вакуум-формирования. АБС-пластик (акрилбутадиеновый стирол) обладает высокими механическими свойствами и стойкостью по отношению к хладону (фреону).

Камеры у морозильников и камеры низкотемпературных отделений холодильников металлические — из алюминия или нержавеющей стали. Стальные камеры более долговечны, гигиеничны, но они увеличивают массу холодильника.

К преимуществам пластмассовых камер относятся технологичность изготовления, малый коэффициент теплопроводности, меньшая масса. Однако такие камеры быстрее стареют, со временем теряют товарный вид, менее долговечны и менее прочны по сравнению с металлическими.

Двери изготовляют из стального листа толщиной 0,8 ммметодом штамповки и сварки. В некоторых моделях холодильников двери изготовлены из ударопрочного полистирола.

Дверь холодильника состоит из наружной и внутренней панелей, теплоизоляции между ними и уплотнителя. В большинстве моделей холодильников предусмотрена возможность пере­навески двери, т. е. открывание двери слева направо и справа налево.

Дверь холодильника должна плотно прилегать к дверному проему, иначе теплый воздух будет проникать в камеру. Для обеспечения герметичности внутреннюю сторону двери по всему периметру окантовывают магнитным уплотнителем раз­ного профиля.

Магнитные затворы представляют собой эластичную магнитную вставку, помещен­ную в уплотнительный профиль. При закреплении двери она плотно притягивается к металлическому корпусу. Изготовленные ленты эластичного магнита намагничивают в магнитном поле.

Теплоизоляцию применяют для защиты холодильной ка­меры от проникновения тепла окружающей среды и прокладыва­ют по стенкам, верху и дну холодильного шкафа и холодильной камеры, а также под внутренней панелью двери. От теплоизоля­ционных материалов требуется, чтобы они обладали низким ко­эффициентом теплопроводности, небольшой объемной массой, малой гигроскопичностью, влагостойкостью, были огнестойки­ми, долговечными, дешевыми, биостойкими, не издавали запа­ха, а также были механически прочными Для теплоизоляции шкафа и двери холодильников применяют штапельное стеклово­локно МТ-35, МТХ-5, МТХ-8, минеральный войлок, пенополистирол ПСВ и ПСВ-С и пенополиуретан ППУ-309М.

Минеральный войлок изготовляют из минеральной ваты путем обработки ее растворами синтетических смол. Исходным сырьем для получения минеральной ваты служат минеральные породы (доломит, доломитоглинистый мергель), а также метал­лургические шлаки.

Стеклянный войлок — разновидность искусственного ми­нерального войлока. Он состоит из тонких (толщина 10… 12 мкм) коротких стеклянных нитей, связанных синтетическими смола­ми. Теплоизоляция из стеклянного войлока и супертонкого во­локна биостойка, не имеет запаха, обладает водоотталкивающим свойством, удобно укладывается и поэтому часто применяется.

Пенополистирол — синтетический теплоизоляционный ма­териал. Он представляет собой легкую твердую пористую газона­полненную пластмассу с равномерно распределенными замкну­тыми порами. Теплоизоляцию из пенополистирола получают вспениванием жидкого полистирола непосредственно в простен­ках холодильной камеры и корпуса шкафа холодильника.

Пенополиуретан — пенопласты мелкопористой жесткой структуры, полученные путем вспучивания полиуретановых смол с применением соответствующих катализаторов и эмульгато­ров. Для повышения теплозащитных свойств в качестве вспучи­вающего газа применяют хладон-11 и др. Процесс пенообразования и затвердевания пены происходит в течение 10… 15 мин при температуре до 5°С.

Пенополиуретан обладает малой объемной массой, низким коэффициентом теплопроводности, влагостоек. Его можно вспенивать непосредственно в холодильном шкафу. При этом он равномерно и без воздушных полостей заполняет все пространство в простенках, хорошо склеивается со стенками, повышая прочность шкафа.

В зависимости от качества теплоизоляционных материалов толщина изоляции в стенках шкафа холодильника может быть от 30 до 70 мм, в двери — от 35 до 50 мм. Замена теплоизоляции из стекловолокна изоляцией из пенополиуретана позволяет при одних и тех же габаритах корпуса увеличить объем холодильника на 25%.

К электрическому оборудованию бытовых холодильников относятся следующие приборы:

электрические нагреватели: для предохранения дверного проёма низкотемпературной (морозильной) камеры от выпадения конденсата (запотевания) на стенках; для обогрева испарителя при полуавтоматическом и автоматическом удалении снежного покрова;

электродвигатель компрессора;

проходные герметичные контакты для соединения обмоток электродвигателя с внешней электропроводкой холодильника через стенку кожуха мотор-компрессора;

осветительная аппаратура, предназначенная для освещения холодильной камеры;

вентиляторы: для обдува конденсатора холодильного аг­регата воздухом (при использовании в холодильниках конденса­торов с принудительным охлаждением) и для принудительной циркуляции воздуха в камерах холодильников.

К приборам автоматики бытовых холодильников относят­ся:

датчики-реле температуры (терморегуляторы) для под­держания заданной температуры в холодильной или низкотем­пературной камере бытовых холодильников;

пусковое реле для автоматического включения пусковой обмотки электродвигателя при запуске;

защитное реле для предохранения обмоток электродви­гателя от токов перегрузки;

приборы автоматики для удаления снежного покрова со
стенок испарителя.

Электродвигатели для привода герметичных компрессо­ров и работы в среде хладагента и масла применяются однофаз­ные асинхронные встраиваемые электродвигатели с короткозамкнутым ротором, без подшипниковых щитов и вала. Они выпускаются на номинальное напряжение 127 или 220 В (допус­тимое отклонение напряжения от -15 до +10%) мощностью 60, 90, 120 Вт. Частота вращения 1500 и 3000 мин -1.

Электродвигатели предназначены для работы в среде хла­дагента — хладона (фреона)-12 или хладона (фреона)-22 — и ре­фрижераторного масла. В бытовых холодильниках применяются следующие электродвигатели: ЭД, ЭД-21, ЭД-23, ЭДП-24, ЭДП-125, ДМХ-2-120, ДХМ-5 и др., а также электродвигатели, работающие в среде озонобезопасного хладагента.

Коэффициент полезного действия электродвигателя приноминальной мощности:

60 Вт — 0,6 (частота вращения 3000 и 1500 мин -1);

90 Вт — 0,67 (частота вращения 3000 мин -1) и 0,62 (часто­та вращения 1500 мин -1);

120 Вт — 0,68 (частота вращения 3000 мин -1) и 0,64 (часто­та вращения 1500 мин -1).

Для пуска электродвигателей и защиты их в аварийных режи­мах предусматривается применение пускозащитной аппаратуры.

Электродвигатель холодильника в нормальных условиях работает циклично, т. е. через определенные промежутки време­ни включается и выключается. Отношение части цикла, в продол­жение которой электродвигатель работает, к общей продолжи­тельности цикла называют коэффициентом рабочего времени. Чем он больше (при постоянной температуре в помещении), тем ниже температура в холодильной камере и тем больше будет среднечасовой расход электроэнергии. Определенную циклич­ность в работе холодильника (коэффициент рабочего времени) обеспечивает датчик-реле температуры — прибор, с помощью которого регулируется температура в шкафу холодильника.

Озонобезопасные хладагенты. На Международном со­вещании в Копенгагене (ноябрь 1992 г.) было принято решение о прекращении производства с 1 января 1996 года озоноопасных хладагентов R11, R12 и R502.

В переходный период допускалось применение хладагента R134a(C2H2F4), который не воспламеняется во всем диапазоне температур эксплуатации.

Хладагент R134aимеет эксплуатационные характеристи­ки, близкие к R12. Его рекомендовалось применять в бытовых хо­лодильниках и он может быть использован при переводе холо­дильных систем бытовых холодильников с R12 на R134a.

Холодильный агрегат бытового холодильника состоит из мотор-компрессора, испарителя, конденсатора, системы трубопроводов и фильтра-осушителя.

В наиболее распространенных бытовых холодильниках компрессор установлен внизу, под шкафом, конденсатор — на задней стенке, а испаритель образует небольшое морозильное отделение в верхней части камеры. Иногда применяется иная компоновка: компрессор устанавливают на шкафу, горизонтальный и частично наклонный конденсатор — над ним, а испаритель, как и в предыдущем случае, — в верхней части камеры, т. е. под компрессором (рис. 1.3).

В напольных холодильниках различают три типа агрегатов: агрегаты с испарителем, который устанавливают через люк зад­ней стенки шкафа; агрегаты с испарителем, который монтируют через дверной проем; несъемные холодильные агрегаты, уста­новленные в шкаф и залитые пенополиуретаном.

Компрессоры по конструкции подразделяют на исполне­ния:

ХКВ — с кривошипно-кулисным механизмом;

ХШВ — с шатунным механизмом.

Компрессоры выпускаются без устройства дополнитель­ного охлаждения и с ним (М).

Структура условного обозначения компрессора выглядит так:

XXX
МТ ГОСТ 17008—85

1 2 3 4  5                       6       

где

— компрессор хладоновый герметичный;

— описанный объем (см3/1 ход);

— напряжение и частота тока;

— устройство для дополнительного охлаждения имеется;

— климатическое исполнение (только для исполнения Т);

— обозначение стандарта.

Пример условного обозначения компрессора хладонового, герметичного, кулисного, с вертикальной осью вращения, описанного объема 5 см3/1 ход, для сети с напряжением 220 В и частотой 50 Гц, без устройства дополнительного охлаж­дения, климатического исполнения УХЛ:

ХКВ 5—1 ГОСТ 17008—85.

Примечания: 1. Описанный объем — объем, который вы­тесняется поршнем за единицу времени или за один ход при но­минальной частоте вращения.

2. УХЛ — для условий эксплуатации в районе с тропичес­ким климатом.
Рис.1.3. Компоновка холодильных агрегатов бытовых холодильников с нижним (а) и верхним (б) расположением компрессора
Кривошипно-кулисный мотор-компрессор (рис. 1.4.) с вертикальным расположением вала подвешен на пружинах 23 (рис. 1.5.) внутри герметичного кожуха 1. В зависимости от кон­струкции подвески пружины работают на сжатие или растяжение и служат для гашения колебаний, возникающих при работе ком­прессора.

Электродвигатель однофазный, асинхронный, с пусковой обмоткой. Для пуска двигателя и защиты его от перегрузок при­меняют пускозащитное реле, соединенное с двигателем при помощи клеммной колодки, закрепленной на проходных контак­тах пластинчатой скобой. Реле установлено на раме.

Ротор 2 электродвигателя помещен непосредственно на валу 21 компрессора. Статор 3 электродвигателя прикреплен к корпусу 6 компрессора четырьмя винтами 4. Обмотка статора двухполюсная, четырехкатушечная. Корпус компрессора чугунный, одновременно служащий опорой вала. Цилиндр 16 отлит вместе с глушителями. Он установлен на корпусе мотор-ком­прессора по четырем контрольным штифтам 8 и прикреплен к корпусу двумя винтами. Для уменьшения инерционных масс поршень 18 изготовлен полым из листовой стали. Ползун 20 кулисы чугунный. На торце цилиндра установлена прокладка 15 всасывающего клапана и сам клапан 14 по двум установоч­ным цилиндрическим штифтам 8. Нагнетательный клапан 12 вместе с ограничителем прикреплен к седлу заклепками. Кла­паны установлены на штифты 8. На тех же штифтах имеются ско­бы, которые ограничивают подъем клапана. Высота подъема всасывающего клапана 0,5 мм, нагнетательного — 1,18 мм. Диа­метр всасывающего отверстия 5 мм, нагнетательного — 3,4 мм. Подъем клапана ограничен, чтобы не было чрезмерных переги­бов и стуков.

Седло 13 клапанов и головка 10 цилиндра отлиты из чугуна. Вал ротора вращается в подшипнике корпуса компрессора. Ко­жух изготовлен из листовой стали.

Рис. 1.4 Общий видкривошипно-кулисного мотор-компрессора:

1-нагнетательный патрубок; 2-операционный патрубок, 3-всасывающий патрубок, 4-патрубки устройства для дополнительного охлаждения
Рис. 1.5. Конструкция кривошипно-кулисного мотор-компрессора (в сборе):

1 — герметичный кожух в сборе; 2 — ротор электродвигателя; 3 — ста­тор электродвигателя; 4, 5 — винты; 6 —корпус компрессора; 7 — крышка кожуха; 8 — штифты; 9 — винт; 10 — головка цилиндра; 11 — прокладка клапана нагнетания; 12 — нагнетательный клапан; 13 — сед­ло клапанов; 14 — клапан всасывающий; 15 — прокладка всасывающе­го клапана; 16, 17 — цилиндры; 18 — поршень; 19 — обойма; 20 — ползун; 21 — вал; 22 — трубка нагнетательная; 23 — пружина буферная; 24 — шпилька.
Трущиеся части компрессора смазываются под действием центробежной силы через косое отверстие в нижнем торце коренной шейки вала. При вращении вала 21 масло, попадая в на­клонный канал, поднимается вверх и поступает к трущейся парс вал 21 — корпус 6 компрессора. Пара поршень 18 — цилиндр 16 смазывается разбрызгиванием. Пары хладона всасываются из кожуха в цилиндр 16 через глушитель всасывания и нагнетаются в трубку 22. Змеевик нагнетательной трубки 22 способствует гашению колебаний мотор-компрессор, корпус которого опирается на три буферные пружины 23. Пружины предохраняет oт выпадения шпилька 24.

Кожух 1 закрыт сверху крышкой 7, приваренной по фланцу и ограничивающей перемещение мотор-компрессора вверх.

Конденсатор холодильного агрегата является теплообменным аппаратом, в котором хладагент отдает тепло окружаю­щей его среде. Пары хладагента, охлаждаясь до температуры конденсации, переходят в жидкое состояние. Конденсатор пред­ставляет собой трубопровод, изогнутый в виде змеевика, внутрь которого поступают пары хладона. Змеевик охлаждается снару­жи окружающим воздухом. Наружная поверхность змеевика обычно недостаточна для отвода тепла воздухом, поэтому по­верхность змеевика увеличивают за счет большого количества ребер, креплением змеевика к металлическому листу и другими способами.

Широкое распространение получили конденсаторы кон­вективного охлаждения с проволочным оребрением (рис. 1.6, а). Конденсатор представляет собой змеевик из медной трубки с приваренными к ней с обеих сторон (друг против друга) ребра­ми из стальной проволоки диаметром 1,2...2 мм. Применяются также конденсаторы щитовые с завальцованной трубкой.

            В холодильниках старых моделей применялись листотрубчатые конденсаторы. Листотрубчатый щитовой конденсатор (рис. 1.6, б) состоит из змеевика, который приварен, припаян или плотно прижат к металлическому листу, выполняющему роль сплошного ребра. В листе иногда делают прорези с отбортовкой по типу жалюзи. Это увеличивает теплопередающие поверхнос­ти за счет торцов отогнутых металлических язычков и циркуля­ции воздуха. Диаметр труб 4,75...8 мм, шаг 35...60 мм, толщина листа 0,5...1 мм.

Трубы змеевика на листе обычно располагают горизон­тально в некоторых листотрубчатых конденсаторах их распола­гают вертикально, чтобы последние витки трубопровода не на­гревались от кожуха компрессора. Длина трубопровода конденсатора составляет 6500...14 000 мм.

Листотрубчатый прокатно-сварной конденсатор (рис. 1.6, в) изготовлен из алюминиевого листа толщиной 1,5 мм с разду­тыми в нем каналами змеевика. Конденсатор имеет форму сплюснутой трубы и закреплен на задней стенке шкафа холо­дильника. При сравнительно небольших размерах конденсатор работает эффективно благодаря высокой теплопроводностиалюминия и теплопередачи через однородную среду. Для более эффективной циркуляции воздуха в щите сделаны сквозные про­сечки. Конденсатор с одной стороны соединен трубопроводами с нагнетательной линией компрессора, а с другой через фильтр и капиллярную трубку — с испарителем. Для защиты от коррозии конденсатор окрашивают черной эмалью.
Рис. 1.6. Конструкция конденсаторов холодильного агрегата: а — с про­волочным оребрением; б — листотрубчатый; в — прокатно-сварной
Испаритель.В испарителе происходит передача тепла от охлаждаемо­го объекта к испаряющемуся (кипящему) вследствие этого холо­дильному агенту. По принципу действия испарители аналогичны конденсаторам, но отличаются тем, что в конденсаторе холо­дильный агент отдает тепло окружающей среде, а в испарителях поглощает его из охлаждаемой среды.

Испарители имеют каналы различной конфигурации и от­личаются способом крепления в холодильной камере. В некото­рых холодильных агрегатах испарители отличаются тем, что сис­тема каналов у них имеет вместо двух выходных отверстии для присоединения капиллярной и всасывающей трубки лишь одно. У таких агрегатов капиллярная трубка проходит внутри всасыва­ющей. Конец всасывающей трубки приваривают в торце выход­ного канала испарителя, а капиллярная трубка проходит через выходной канал во входной, где ее обжимают, чтобы не было пе­ретекания хладона из входного канала в выходной.

Испарители выпускают различных конструкций. Широкое распространение в холодильниках ранних выпусков имели испарители, изготов­ленные в виде перевернутой буквы П (рис. 1.7, а), часто вытяну­той во всю ширину камеры, с полкой для продуктов. В современных холодильниках с морозильными отделениями во всю шири­ну камеры испарители делают в виде вытянутой буквы О (рис. 1.7, б) или повернутой вверх буквы С. Испаритель крепят к по­толку или боковым стенкам камеры.



Рис. 1.7. Конструкция испарителей: а — в виде перевернутой буквы П; б — 0-образной формы; в — листотрубчатый (вид снизу)
В настоящее время в некоторых моделях двухкамерных хо­лодильников применяют листотрубчатые (рис. 1.7, в) секцион­ные испарители, плоские, расположенные на задней стенке ка­меры холодильника или устанавливаемые горизонтально (в этом случае испаритель одновременно является полкой). Трубопро­вод испарителя диаметром 8 мм прикреплен к металлическому листу с внутренней стороны. Для крепления трубопровода и цир­куляции воздуха на листе сделаны просечки.

В холодильниках ранних выпусков («ЗИЛ-Москва», «Саратов-2» и др.) применялись стальные испарители из двух сварен­ных листов нержавеющей стали. Стальные испарители отлича­ются относительно небольшими размерами и большой прочностью.

Капиллярная
трубка в сборе с отсасывающей служит ре­гулирующим устройством для подачи жидкого хладагента в испаритель. Она представляет собой медный трубопровод с внут­ренним диаметром 0,5...0,8 и длиной 2800...3000 мм (в зависи­мости от модели холодильника), соединяющий стороны высоко­го и низкого давления в системе холодильного агрегата. Имея небольшую проходимость (5,6...8,5 л/мин), капиллярная трубка является дросселем и создает перепад давления между конден­сатором и испарителем и подает в испаритель определенное ко­личество жидкого хладона. К преимуществам капиллярных трубок по сравнению с другими дросселирующими устройствами (например, с терморегулирующими вентилями) следует отнести простоту конструк­ции, отсутствие движущихся частей и надежность в работе.

Недостатком капиллярной трубки является невозможность необходимого регулирования подачи хладона в испаритель при разных температурных условиях эксплуатации холодильника. Для улучшения теплообмена между отсасывающими хо­лодными парами и теплым жидким хладагентом, которые дви­жутся противотоком, капиллярную и отсасывающую трубки спа­ивают между собой на большом участке. В некоторых холодильниках капиллярную трубку наматывают на отсасывающую или помещают внутри нее.

Фильтр устанавливают у входа в капиллярную трубку для предохранения ее от засорения твердыми частицами. Фильтры изготовляют из мелких латунных сеток или металлокерамики Металлокерамический фильтр состоит из бронзовых шариком диаметром 0,3 мм, сплавленных в столбик конусообразной фор мы, заключенный в металлический корпус. Капиллярную трубку припаивают к металлокерамическому фильтру под углом 30 В большинстве холодильников фильтр смонтирован в одном корпусе с осушительным патроном. По краям корпуса расположены сетки, а между сетками — адсорбент (применяютдля очистки рабочей среды хладоновых холодильных машин от влаги и кислот).

Осушительный патрон служит для поглощения влаги из хладагента и предохранения регулирующего устройства (капил­лярной трубки) от замерзания в нем воды. Корпус 2 (рис. 1.8, а) осушительного патрона состоит из металлической трубки дли­ной 105… 135 мм и диаметром 12… 18 мм с вытянутыми концами, в отверстия которых впаивают соответствующие трубопроводы холодильного агрегата.

Внутри корпуса патрона помещают 10...18 г. адсорбента (синтетического цеолита). Адсорбенты имеют простую кристал­лическую структуру. Мельчайшие поры соединены узкими кана­лами. Благодаря такой структуре возникает избирательная ад­сорбция, т. е. свойство молекулярного щита, когда в полости пор проникают лишь те молекулы, размер которых меньше диаметра каналов. Поэтому вся активная поверхность и объем пор используются для удержания молекул воды и не засоряются прочими веществами с более крупными молекулами (в частности, хладоном и маслом).    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Анализ и диагностика фининсово хозяйственной деятельности предприя
Реферат © Аман Газиев, 1995. Все права защищены © Плоских В. М., 1995. Все права защищены Произведение публикуется с письменного разрешения В. М
Реферат Женщина в современном обществе к истории гендерной проблематики
Реферат A Time Of Turbulence Essay Research Paper
Реферат Hester Prynne Essay Research Paper Hester stands
Реферат Hellenism On The Silk Road Essay Research
Реферат Letter From The Trenches Essay Research Paper
Реферат Заседание российского оргкомитета по подготовке к встрече третьего тысячелетия и двухтысячелетия
Реферат История административного деления Белоруссии
Реферат Русская Атлантида
Реферат Системный анализ системы газотурбинного двигателя
Реферат Методология и методы экономической теории 2
Реферат Організація процесу обслуговування споживачів офіціантами в закладі ресторанного господарства
Реферат Социальная политика и социальная работа: место и роль социальной политики в теории социальной работе
Реферат The Road To Independence Essay Research Paper