Реферат по предмету "Астрономия"


Телескоп астронома

Содержание:

Содержание Вступление Кто и когда изобрел телескоп Принцип действия телескопа Телескоп Хаббла:
ПРОЕКТ КОСМИЧЕСКОГО ТЕЛЕСКОПА ИМЕНИ ХАББЛА ИНСТИТУТ КОСМИЧЕСКИХ ИССЛЕДОВАНИЙ С ПОМОЩЬЮ ТЕЛЕСКОПОВ КТО ИСПОЛЬЗУЕТ ТЕЛЕСКОП КОМПЬЮТЕРИЗИРОВАННЫЕ НАБЛЮДЕНИЯ В КОСМИЧЕСКИЙ ВЕК ВОЗМОНЖНОСТИ ТЕЛЕСКОПА ПРИБОРЫ И ОПТИЧЕСКИЕ СИСТЕМЫ ЧЕГО НЕ МОЖЕТ КОСМИЧЕСКИЙ ТЕЛЕСКОП ИМЕНИ ХАББЛА Приложение Список используемой литературы
Вступление Астрономия – наука о Вселенной. Слово «астрономия» происходит от двух греческих слов: астрон – звезда и номос – закон. Астрономия изучает движение небесных тел, их природу, происхождение и развитие. Наблюдения – основной источник информации о небесных телах, процессах и явлениях, происходящих во Вселенной. Звезды, видимые невооруженным глазом, составляют ничтожную долю звезд, входящих в нашу Галактику. Человечество с древних времен влекло небо, им было интересно все то, что они видели в темное время суток, поднимая головы вверх. С развитием науки ученые создавали приспособления, помогающие им лучше наблюдать небесные тела и связанные с ними процессы. В наши дни существуют многочисленные научно-исследовательские учреждения для изучения и наблюдения за небесными телами – астрономические обсерватории. Невольно возникают вопросы: как давно и кем был изобретен первый телескоп? Как он был устроен? Какие виды телескопов изобрело человечество, дожив до наших дней? На эти и многие другие вопросы я попытаюсь дать ответ в данной работе.
Кто же изобрел телескоп Более ста лет назад, раскапывая холм Гиссарлык, под которым оказались руины древней Трои, Г. Шлиман наряду с другими находками, к немалому своему удивлению, обнаружил . великолепно выделанные линзы из хрусталя. Кто же их изготовил? И главное, зачем? Давно уже многих исследователей волнует вопрос: какими научными знаниями обладали древние? При чтении литературы по истории науки нередко создается впечатление, что представления античных ученых по оптике и, соответственно, астрономии были, мягко выражаясь весьма примитивными. Но вряд ли это соответствует действительности. В.А. Гуриков в статье «История создания телескопа» пишет, что первая зрительная труба появилась в Нидерландах в начале XVII века, «несмотря на то, что линзы были известны еще 2500 лет до н.э. ». Стеклянные линзы с разным увеличением, датируемые 600-400 г.г. до н.э. , найдены и в Месопотамии. Зажигательное действие линз и зеркал известно с глубокой древности; очки вошли в употребление в конце XIII века. А зрительная труба - лишь в XVIII веке! В. Гуриков объясняет это так: «Взаимосвязи между наукой и практикой в области оптики у древних греков и римлян, по сути дела, не существовало» и, стало быть, «оптики античности . оптических приборов как таковых не создали». Можно ли согласиться с таким выводом? Общеизвестны два крайне важных для данной проблемы факта. Во-первых, в древнейшие исторические времена некоторые научные знания были «профессиональным секретом» узкого круга посвященных лиц (жрецов или, скажем, мастеров): те передавали их из поколения в поколение и, как правило, в устной форме. Во-вторых, достоверных сведений о древних знаниях до нашего времени дошло слишком мало. Так, П.А. Старцев в «Очерках истории астрономии в Китае» ссылаясь на книгу «Шуньдянь», отмечает, что уже во времена легендарного императора Шуня (2257-2208 г.г. до н.э.) для наблюдения небесных светил применялись армиллярные сферы и другие инструменты, сведения о которых не дошли до наших дней. Ф. Даннеман в «Истории естествознания » подчеркивает, что Галилео Галилей в своей научной деятельности опирался на труды Евклида, Аполлония, Архимеда. Он приводит слова Галилея: «Руководясь законами диоптрики, мне удалось изготовить подзорную трубу». С.И. Вавилов добавляет, что Галилею была известна книга Кеплера, двумя важными теоремами из которой он воспользовался. В первой речь идет о дальности видимости, зависящей от свойств объектива и окуляра. Во второй - о длине труб телескопа и микроскопа. Ю.А. Белый в книге «Иоганн Кеплер» сообщает, что Кеплер был знаком с работами Евклида, Аполлония, Аристотеля, Альхазена, и Вителло. Уже в «Дополнениях в Вителлию», опубликованных в 1604 г., Кеплер рассмотрел ход лучей в оптической системе, состоящей из двояковыпуклой и двояковогнутой линз. С.Л. Соболь констатирует, что в 1647 году вышла из печати книга И. Гевелия «Селенография», в которой впервые описаны подзорные трубы, гелиоскоп, полемоскоп и микроскопы. (Полемоскоп - это предшественник перископа; он представлял собой коленчатую трубу с объективом и окуляром.) Говоря о преломлении света в линзах, Гевелий ссылался на Альхазена и Вителло как на своих предшественников. С.И. Вавилов отмечает, что Ньютон хорошо знал работы Евклида, Декарта и Барроу. Таким образом, Галилей, Кеплер, Гевелий, Ньютон и Гюйгенс в своих исследованиях и открытиях в области оптики опирались на знания древних ученых. Л.В. Жигалова (Вопросы истории естествознания и техники) пишет, что в компилятивной работе «Премудрости Соломона» говорилось о четырех спутниках Юпитера и кольцах Сатурна, открытых Галилеем в 1610 году. Однако в примечаниях к статье Жигаловой приведено утверждение А. И. Соболевского, что названная компиляция составлена «не позднее конца XVI в. на основании источников греческого происхождения ». Непосредственные предшественники «официальных» изобретателей телескопа также широко пользовались античными источниками. Ф. Даннеман сообщает, что Порта в своей «Естественной магии» дает описание улучшенной камеры - обскуры. (Он вставил в отверстие прозрачную чечевицу, от чего резкость изображениязначительно повысилась.) Но Порта написал также «Пневматику», которая восходит к «Пневматике» Герона; это позволяет предположить, что и улучшение камеры-обскуры Порта мог позаимствовать у того же Герона или какого-нибудь другого древнего автора. В комментариях В. П. Зубова к книге Леонардо да Винчи «Избранные естественнонаучные произведения» говорится, что оптика Леонардо возникла не на пустом месте: он хорошо знал произведения Евклида, Аристарха, Альхазе-на, Вителло, Д. Пекхема и Р. Бэкона . Характеризуя астрономию, возрожденную Николаем Кузанским и Тосканелли, Ф. Даннеман замечает, что Г. Пурбах (1423—1461) вновь поднял ее на такую высоту, на какой она стояла в александрийскую эпоху. Европейские ученые до Пурбаха знакомились с «Альмагестом» исключительно через арабов; астрономические сочинения Птолемея и многие другие работы были доставлены в Италию из Константинополя лишь в XV веке. Пурбах обратил внимание на греческую рукопись, которую затем перевел Региомонтан (1436-1476). Для астрономических измерений Пурбах применял «геометрический квадрат», в углу которого была прикреплена одним концом линейка с диоптрами, а стороны разделены на 120 частей каждая; поэтому можно было довольно точно отсчитывать тангенсы наблюдаемого угла. (Диоптра — визир с двумя отверстиями либо зрительная труба.)
Откуда взялся у Пурбаха «геометрический квадрат» с диоптрами? Скорее всего, из греческой рукописи, переведенной Региомонтаном . С. И. Вавилов указывает на оживление оптики в XIII веке. Об этом, по его мнению, свидетельствуют трактаты англичан Р. Бэкона и Д. Пекхема, а также тюрингенского поляка Вителло. Но во всем, что касается оптики, эти авторы в основном попросту пересказывают Евклида, Птолемея и Альхазена. Ф. Даннеман констатирует, что при написании своей «Естественной истории» Бэкон пользовался работами греков (Аристотель, Евклид, Птолемей), римлян (Плиний, Боэций, Кассиодор) и арабов. Бэкон, конечно, хорошо знал оптику и, по-видимому, был знаком с устройством телескопа. Откуда пришло к нему это знание? Вспоминаются его слова (приводимые А. Берри) о том, что телескоп был известен уже Юлию Цезарю (100—44 гг. до и. э.), который перед набегом на Британию обозревал новые земли из Галлии (с противоположного берега Ла-Манша) с помощью телескопа.
Ф. Даннеман пишет, что Вителло в сочинении «Перспектива» излагал учение Альхазена, который, в свою очередь, был знаком с работами Евклида и Птолемея. В сочинении «О зажигательном зеркале по коническим сечениям» Альхазен упоминает о наблюдении древних: зеркала, имеющие форму параболоида вращения, соединяют все лучи в. одной точке и производят более сильное действие, чем другие зеркала. Открытие это приписывается Диоклу (350 г. до и. э.). Таким образом, все предшественники «официальных» изобретателей подзорной трубы — Порта, Леонардо да Винчи, Пурбах, Вителло, Бэкон и Альхазен — в своих работах по оптике основывались на трудах античных ученых. Д. Д. Максутов в «Астрономической оптике» отмечает, что современникам Галилея была известна конструкция простого телескопа, состоящего из одного вогнутого зеркала, которая спустя полтора столетия получила название «система Гершеля» Но, скорее всего, она восходит к временам античности. Ф. Даннеман указывает, что Региомонтан построил из металла параболическое зажигательное зеркало диаметром в пять футов (1,52м). Ф. Араго в «Общепонятной астрономии» свидетельствует, что Птолемей Эвергет (146—116 гг. до н. э.) установил на вершине Александрийского маяка вогнутое зеркало, с помощью которого можно было обнаруживать корабли на весьма далеком расстоянии. Каков был научный багаж астрономов античности? Основные труды Птолемея — это знаменитый «Альмагест» и трактат «Оптика». И. А. Гейберг (Естествознание и математика в классической древности) сообщает, что в «Оптике» автор исследует перспективу, физические основы зрения и обусловленные ими оптические обманы. Эта работа охватывает также и катоптрику: рассматриваются разнообразные зеркала. По мнению А. Берри «Альмагест», несомненно, основан на трудах прежних астрономов, в особенности Гиппарха. Тот внес в астрономию поистине громадный вклад: изобрел (или значительно усовершенствовал) тригонометрию, произвел многие точные наблюдения, использовал старые (вавилонские) наблюдения для сравнения с более поздними . По утверждению Ф. Даннемана, Герону (100 г. до н. э.) принадлежит сочинение «О диоптре». Герон написал также «Катоптрику». Плиний в своей «Естественной истории» неоднократно ссылается на сочинение Цезаря под заглавием «О звездах». И. А. Гейберг сообщает, что работа Аполлония по катоптрике, в которой разбирается вопрос о зажигательных зеркалах, была предпринята под влиянием исследований Архимеда. Б. И. Спасский в «Истории физики» подчеркивает, что зеркала входили в жреческую аппаратуру древних, а в «Катоптрике» Архимеда объясняется, почему изображения предметов в вогнутых зеркалах представляются увеличенными. Оптический трактат Евклида, по мнению С. И. Вавилова, основан на вполне сложившихся традициях и, кроме того, на практике и каждодневном опыте. Ф. Розенбергер считает, что Евклида можно считать основоположником оптики и катоптрики. Ф. Даннеман пишет, что работа Евклида по оптике является первой попыткой применить геометрию для объяснения видимой величины фигуры, для трактовки отражения света и других оптических явлений. (Евклид, в частности, был уже знаком с преломлением света.) Работы Евклида оставались основным пособием по оптике вплоть до времен Кеплера, значительно продвинувшего эту область науки. М. Борн и Э. Вольф в «Основах оптики» отмечают, что первые систематические описания оптических явлений принадлежат греческим философам и математикам Эмпедоклу (490—430 гг. до н. э.) и Евклиду. С. Толанский подчеркивает, что методика прослеживания луча для нахождения изображения, впервые серьезно изученная во времена Пифагора, широко используется и в наши дни. По мнению Ф. Даннемана, двояковыпуклое стекло, найденное Лейардом в развалинах Ниневии (VII в. до н. э.), доказывает, что мастерство шлифовки достигло у древних высокого уровня. Толщина чечевицы составляла 6 мм, фокусное расстояние — 107 мм. Надо полагать, линза эта была изготовлена не в единственном экземпляре. В первую очередь, конечно, линзы применялись для добывания огня, но могли использоваться и в оптических инструментах. По словам Ф. Араго, Цицерон упоминал об экземпляре «Илиады», написанном на пергаменте, который заключался в ореховой скорлупе. Мирмекид из Милета сделал колесницу из слоновой кости, помещавшуюся . под крыльями мухи. Араго не без основания считает, что без помощи увеличительных стекол изготовить подобные вещи невозможно. Древние китайское астрономы во время солнечных затмений наблюдали и описывали протуберанцы. Знали они и о пятнах на Солнце. Древнегреческий философ Теофраст из Афин также упоминал о наблюдении солнечных пятен. В «Метаморфозах» Овидия описываются солнечные пятна, которые были видны на диске Солнца в год смерти Юлия Цезаря. А. Паннекук в «Истории астрономии» напоминает, что у Плутарха есть диалог «О лице, видимом на диске Луны», в котором Луна описывается подобной Земле - с горами, отбрасывающими глубокие тени. Дж. Хокинс и Дж. Уайт в книге «Разгадка Стоунхенджа», ссылаясь на описание Диодором Сицилийским храма Аполлона в «земле гиперборейской», пишут: «С этого острова Луна видна так, будто бы она близка к Земле, и глаз различает на ней такие же возвышенности, как на Земле». Ссылаясь на Сенеку, И. Д. Рожанский в «Развитии естествознания в эпоху античности» отмечает, что Демокрит по примеру Анаксагора утверждал, что «Луна имеет горы, равнины и пропасти». Поскольку Галилей смог увидеть пятна на Солнце и детально рассмотреть поверхность Луны лишь через трубу с 30-кратным увеличением, вряд ли могут быть сомнения в том, что древние ученые проводили астрономические наблюдения с помощью оптических инструментов. Согласно С. И. Вавилову, бесспорным достижением XIII века явилось изобретение очков в Италии. Бэкон, Пекхем и Вителло, по его, мнению, не знали о существовании очков. Однако С. Толанский, наоборот, утверждает, что Р. Бэкон в своих сочинениях впервые обратил внимание на действие вогнутой линзы, помогавшей лучше видеть дальнозорким. Исправление зрения столь простым способом было сочтено церковью «дьявольским наваждением» .
Любопытно и утверждение Плиния, что «Нерон смотрел бои гладиаторов через изумруды». Ф. Араго, а затем и С. Толанский считают, что-то были своеобразные очки от близорукости. «Римские ювелиры того времени, – пишет С. Толанский, – часто придавали драгоценным камням как выпуклую, так и вогнутую форму». Так что отнюдь не беспочвенно предположение, что и очки были известны в древности.
Общепринято считать, что микроскоп появился лишь в начале XVII века. Однако А. Г. Титов в книге «Микроскопы, их принадлежности и применение» высказывает обоснованное предположение, что схема микроскопа была известна задолго до этого. В одном из трудов итальянского врача Фракасторо, появившемся в 1538 году, довольно определенно говорится о комбинации двух линз, позволяющей рассматривать различные мелкие предметы. А древние греки и римляне упоминают о невидимых «живых пылинках» как о первоисточнике некоторых болезней . В данной статье приведен далеко не полный перечень косвенных доказательств того, что древние неплохо разбирались, в оптике, изготовляли оптические приборы и применяли их в повседневной практике. Почему же в распоряжении историков отсутствуют более прямые свидетельства? Почему знания древних об оптических инструментах были затем утеряны или хранились в глубокой тайне? Впрочем, если вспомнить, каким образом церковь расправлялась с носителями «еретических», с ее точки зрения, взглядов (а усиление «данного богом» зрения ­–это, несомненно, «происки дьявола»), то в этом, пожалуй, нет ничего удивительного .
Принцип действия телескопа. Современные обсерватории оснащены крупными оптическими телескопами, представляющими собой очень большие, сложные и в значительной степени автоматизированные инструменты. Телескоп увеличивает угол зрения, под которым видны небесные тела, и собирает во много раз больше света, приходящего от небесного светила, чем глаз наблюдателя. Благодаря этому в телескоп можно рассматривать не видимые невооруженным глазом детали поверхности ближайших к Земле небесных тел и увидеть множество слабых звезд. В астрономии расстояние между объектами на небе измеряют углом, образованным лучами, идущими из точки наблюдения к объектам. Такое расстояние называется угловым, и выражается оно в градусах и долях и долях градуса. Невооруженным глазом две звезды видны раздельно, если они отстоят друг от друга на угловом расстоянии не менее 1 – 2’. В крупные телескопы удается наблюдать раздельно звезды, угловое расстояние между которыми составляет сотые и даже тысячные доли секунды ( под углом 1” «видна» спичечная коробка примерно с расстояния 10 км).
Виды телескопов.
Существует несколько типов оптических телескопов. В телескопах – рефракторах (см. приложение рис. 1), где используется преломление света, лучи от небесных светил собирает линза (или система линз). В телескопах – рефлекторах (см. приложение рис. 2) – вогнутое зеркало, способное фокусировать отраженные лучи. В зеркально – линзовых телескопах (см. приложение рис. 3) – комбинация зеркал и линз. С помощью телескопов производятся не только визуальные и фотографические наблюдения, но и преимущественно высокоточные фотоэлектрические и спектральные наблюдения. Телескопы, приспособленные для фотографирования небесных объектов, называются астрографами. Фотографические наблюдения имеют ряд преимуществ перед визуальными. К основным преимуществам относятся: · Документальность – способность фиксировать происходящие явления и процессы и долгое время сохранять полученную информацию; · Моментальность – способность регистрировать кратковременные явления, происходящие в данный момент; · Панорамность – способность запечатлевать на фотографии одновременно несколько объектов и их взаимное расположение; · Интегральность – способность накапливать свет от слабых источников; · Детальность получаемого изображения. Теперь подробнее о других разновидностях телескопов от старинных до более современных. Телескоп Галилея (1609) (см. приложение рис. 4) Простая конструкция телескопа, аналогичная использованной Галилеем в первых астрономических двухлинзовых телескопах. Длиннофокусная собирательная (выпуклая) линза играет роль объектива, а другая (вогнутая) линза - окуляра; в результате получается прямое изображение. Такая система все еще используется в театральных биноклях. Телескоп Кеплера (1611) Простая система устройства телескопа, в которой в качестве как объектива, так и окуляра используются выпуклые линзы. Это дает большее поле зрения и более высокую степень увеличения, чем можно получить в галилеевском телескопе, но изображение в кеплеровском телескопе перевернуто. Телескоп системы Грегори (1663) Тип отражательного телескопа, предложенный Джеймсом Грегори в 1663 г. Первичное зеркало - параболоид с центральным отверстием, а вторичное - эллипсоид. Грегори не удалось получить зеркала нужной конфигурации, поэтому он не смог построить свой телескоп до того, как Ньютон создал свой первый рефлектор более простой конструкции с плоским вторичным зеркалом. Впоследствии система Грегори была вытеснена кассегреновским телескопом Телескоп Ньютона (1668) (см. приложение рис. 5) Простой тип отражательного телескопа, разработанный Исааком Ньютоном (1642- 1727), который продемонстрировал его в Королевском Обществе в Лондоне в 1671 г. Первичное зеркало телескопа представляет собой параболоид (для небольших апертур можно использовать сферическое зеркало), а вторичное зеркало - плоское, помещенное на пути отраженного луча под углом 45° к оптической оси, так что изображение образуется вне главной трубы. Конструкция широко используется для небольших любительских инструментов, но для больших телескопов не подходит. Схема Кассегрена (1672) Телескоп-рефлектор, в котором фокус изображения находится непосредственно за центральным отверстием в первичном зеркале. Такая конструкция была предложена Жаком Кассегреном (1652-1712), профессором физики в городе Шартре во Франции около 1672 г., т.е. через четыре года после того, как Иссак Ньютон создал первый рефлектор. В этом телескопе вторичное зеркало выпуклое, а не плоское (как в ньютоновской конструкции). Сам Кассегрен телескопа не построил, так что прошло несколько лет до того, как его идея была осуществлена. Сегодня кассегреновский фокус популярен и широко используется как в скромных любительских приборах, так и в больших профессиональных телескопах. Телескоп Гершеля (1772) Тип телескопа-рефлектора, сконструированного Уильямом Гершелем (1738- 1822), в котором параболическое первичное зеркало наклонено так, что фокус лежит вне главной трубы телескопа и доступ к нему можно получить, не заслоняя поступающий свет. Эта идея была на 10 лет раньше воплощена в жизнь Ломоносовым. Недостатком системы является наличие искажений, почему этот тип телескопа и был впоследствии заменен другими системами рефлекторов. Телескоп Ричи-Кретьена (1922) Телескоп, оптическая система которого подобна системе кассегреновского телескопа за исключением того, что как первичное, так и вторичное зеркала имеют форму гиперболоида. В результате телескоп Ричи-Кретьена обеспечивает широкое поле зрения при отсутствии комы. Система Серюрье (1930) Конструкция открытой трубы большого отражательного телескопа, обеспечивающая равномерность прогиба при изменении ориентации телескопа. Сделать трубу самых больших телескопов полностью недеформируемой невозможно. Предложенная Марком Серюрье конструкция 200-дюймовой трубы Телескопа Хейла не устраняет деформацию, но обеспечивает сохранение оптической оси телескопа Камера Шмидта (1930) Тип астрономического телескопа с широким полем зрения, предназначенный исключительно для фотографического использования. Он был изобретен Бернардом Шмидтом в 1930 г. Роль коллектора света выполняет сферическое зеркало. Коррекция сферической аберрации осуществляется с помощью тонкой стеклянной пластины сложного профиля, установленной у входного конца телескопической трубы (за фокусом). Фотопластинка помещается в первичном фокусе. Поскольку фокальная поверхность изогнута, фотопластинке придается та же форма при помощи специального держателя. В результате получаются резкие неискаженные изображения очень широкого поля зрения - до десятков градусов в поперечнике. Телескоп Дэлла-Киркхэма Разновидность кассегреновского телескопа, в котором первичное зеркало имеет эллипсоидный профиль, а не более обычный параболоидный. Вторичное зеркало - сферическое. В результате поле зрения оказывается значительно меньшим, чем у стандартного кассегреновского телескопа того же размера. Телескоп Максутова (1940) Отражательный телескоп, в котором оптические искажения сферического первичного зеркала исправляются вогнутой линзой (мениском), что обеспечивает высококачественное изображение при широком поле зрения. Телескоп был изобретен Д.Д. Максутовым (1896-1964). Основная конструкция телескопа - типичная кассегреновская система. Небольшое вторичное зеркало установлено сзади корректирующей линзы, а изображение формируется непосредственно позади первичного зеркала, которое имеет небольшое центральное отверстие. Трудность создания больших корректирующих линз ограничивает профессиональное применение такого телескопа, но телескопы Максутова, имеющие компактную трубу и широкое поле зрения при низком фокусном отношении, популярны у астрономов-любителей. В зависимости от направления выходного пучка различаются модификации этой системы: Максутова-Кассегрена и Максутова-Ньютона. Телескоп Шмидта-Кассегрена (1940, 1942) Конструкция оптического телескопа, сочетающая черты камеры Шмидта и кассегреновского рефлектора. Предложена Д.Д. Бейкером (1940) и Ч.Р. Бёрч (1942). В этом телескопе используется сферическое первичное зеркало и корректирующая пластина для компенсации сферической аберрации, как и в камере Шмидта. Однако держатель фотопластинки в первичном фокусе заменен небольшим выпуклым вторичным зеркалом, которое отражает свет назад в трубу через отверстие в первичном зеркале. В результате можно либо рассматривать изображение визуально или установить камеру в главной трубе за первичным зеркалом. Телескоп такой конструкции оказывается очень компактным, что особенно важно для портативных телескопов и телескопов любительского и общеобразовательного назначения. Система Пола-Бейкера (1935, 1945) Оптическая конструкция отражательного телескопа, имеющего исключительно широкое поле зрения с хорошим разрешением. В ней используется параболическое первичное зеркало с фокусным отношением f/4 или меньше, выпуклое сферическое вторичное зеркало и вогнутое сферическое третье зеркало, кривизна которого равна, но по знаку противоположна кривизне вторичного. Конструкция была предложена французским оптиком Морисом Полом в 1935 г. и независимо от него Джеймсом Бейкером около 1945 г. Камера Бейкера-Нанна (1957) Разновидность камеры Шмидта, разработанная для фотографирования искусственных спутников Земли. Система Бейкера-Шмидта Модификация камеры Шмидта, в которой использованы предложенные Дж.Г.Бейкером технические средства, устраняющие аберрацию и дисторсию. Телескоп Уиллстропа Конструкция отражательных оптических телескопов, обеспечивающих хорошие изображения при поле зрения в 5° или больше. Конструкция представляет собой модифицированный вариант системы Пола- Бейкера. Отверстие в первичном зеркале имеет диаметр, составляющий 60% от диаметра всего зеркала, и в этом отверстии лежит фокус. Форма всех трех зеркал существенно отличается от параболической или сферической. Преимущество конструкции Уиллстропа состоят в том, что телескоп намного более компактен, чем камера Шмидта. Кроме того, в нем не возникают мнимые изображения, вызванные внутренними отражениями, как в корректирующей линзе камеры Шмидта. Эта конструкция позволяет построить телескоп, который был бы мощнее любой из существующих камер Шмидта. Телескоп Добсона (1960-1970-е гг.) Недорогой телескоп-рефлектор с большой апертурой и простой неуправляемой альтазимутальной установкой. Его конструкция удобна для астрономов-любителей, причем особенно важна его портативность. Телескоп носит имя автора концепции и первых разработок, проводившихся в 1960-1970-х гг., Джона Добсона из Сан-Францисского общества астрономов-любителей. Клееная деревянная труба телескопа крепится в коробке, которая установлена на опорной плите и может вращаться вокруг вертикальной оси. Полукруглая скоба с упорами в верхней части коробки имеет цапфы, присоединенные к противоположным сторонам трубы. Чтобы движение вокруг обеих осей было ровным, используется тефлон. Добсону удалось показать также, что из листового стекла (которое тоньше обычно используемого зеркального) можно сделать недорогое большое зеркало хорошего качества. Чтобы избежать искажений, тонкое зеркало должно свободно лежать на ковровой или резиновой подкладке.
ПРОЕКТ КОСМИЧЕСКОГО ТЕЛЕСКОПА ИМЕНИ ХАББЛА В двадцатом веке астрономы сделали много шагов в изучении вселенной. Эти шаги были бы невозможны без использования больших и сложных телескопов, расположенных на высокогорных лабораториях и управляемых большим количеством квалифицированных специалистов.
С выводом на орбиту ТЕЛЕСКОПА ИМЕНИ ХАББЛА (HUBBLE SPACE TELESCOPE - HST), астрономия сделала гигантский рывок вперед. Будучи расположенным за пределами земной атмосферы, HST может фиксировать такие объекты и явления, которые не могут быть зафиксированы приборами на земле. Проект HST был разработан в НАСА при участии Европейского Космического Агенства (ESA). Этот телескоп-рефлектор, диаметром 2,4 м (94,5 дюйма), выводится на низкую (610 километров или 330 морских миль) орбиту с помощью американского корабля СПЕЙС ШАТТЛ (SPACE SHUTTLE). Проект предусматривает периодическое техническое обслуживание и замену оборудования на борту телескопа. Проектный срок эксплуатации телескопа - 15 и более лет. ИНСТИТУТ КОСМИЧЕСКИХ ИССЛЕДОВАНИЙ С ПОМОЩЬЮ ТЕЛЕСКОПОВ. НАСА основало институт космических исследований с помощью телескопов (Space Telescope Science Institute - STScI) для проведения широкого спектра глобальных научных исследований с помощью телескопа имени Хаббла. STScI - большой исследовательский центр, где опытные специалисты постоянно наблюдают за работой телескопа. Эти специалисты также помогают астрономам в составлении планов наблюдений. В задачу STScI также входит предоставление астрономам необходимого программного обеспечения и технических средств для наблюдений. Чтобы сделать наблюдения с помощью телескопа имени Эдвина П. Хаббла как можно более эффективными, STSiC модернизировал наземные системы обслуживния наблюдений. Большая часть процесса планирования наблюдений была автоматизирована с использованием "интеллектуального" оборудования и программного обеспечения. STSiC составил каталог более 20 миллионов звезд для облегчения поиска объектов наблюдения, а также разработал пакет прикладных программ, предназначенный помочь астроному в обработке данных, получаемых с борта HST. Каждый день STSiC получает расшифровывает, обрабатывает и накапливает огромное количество информации, поступающей с борта HST, а также рассылает ее своим клиентам. STSiC подчиняется Ассоциации Университетов по Исследованиям в Области Астрономии (the Association of Universities for Research in Astronomy, Inc - AURA). Сам институт расположен в университетском городке Хомвуд (университет имени Джона Хопкинса) в Балтиморе. КТО ИСПОЛЬЗУЕТ ТЕЛЕСКОП? В отличие от других научных проектов, HST не используется исключительно отдельной группой специалистов, разработавших данный телескоп, или группой астрономов из одной лаборатории или института; в принципе, любой человек может провести свое наблюдение при помощи HST. Для проведения наблюдений с помощью HST, астроном должен прислать в STSiC запрос с изложением научного обоснования невозможности проведения данного наблюдения в земных условиях и описание предполагаемой программы наблюдений. Запрос передается в одну из комиссий при STSiC по разным разделам астрономии. Каждый год эти комиссии предоставляют ранжированные списки с предложениями по проведению наблюдений в Комитет Распределения Времени исследований с помощью телескопа (Telescope Allocation Committee - TAC). Задача комитета - составить проект сбалансированной программы наблюдений для HST. Последнее слово в утверждении этой программы принадлежит главе STScI. На каждом этапе рассмотрения проект оценивается по разным критериям. Какова научная ценность знаний, которые будут получены в результате исследований, и сколько средств и времени для этого необходимо истратить? Достигнуты ли пределы в исследовании данного объекта наземными приборами? Насколько вероятен успех исследований? Кроме чисто научных вопросов, проверяется также физическая возможность HST наблюдать данный объект/явление, временные и другие требования к телескопу и его ресурсам. КОМПЬЮТЕРИЗИРОВАННЫЕ НАБЛЮДЕНИЯ В КОСМИЧЕСКИЙ ВЕК. Вся наблюдения с использованием HST должны быть предварительно тщательно и точно спланированы, так как все наблюдения проводятся автоматически с помощью компьютеров на борту телескопа. После поступления всех команд на борт HST, телескоп работает в автоматическом режиме, без вязи с Землей. Поиск объекта, подстройка приборов, собственно наблюдения и др. осуществляются исключительно бортовыми компьютерами. Так как HST делает один виток вокруг Земли за 95 минут, объекты наблюдения слишком быстро появляются и исчезают, чтобы можно было применить дистанционное управление с Земли без потери скорости и эффективности наблюдений. Для увеличения эффективности сеансы наблюдений из разных программ чередуются между собой. Таким образом подавляющее большинство программ требуют не один виток для своего полного завершения. ВОЗМОНЖНОСТИ ТЕЛЕСКОПА На борту HST находятся: две камеры, два спeктрографа, фотометр, астродатчики. Вследствие того, что телескоп находится за пределами атмосферы эти приборы позволяют: 1) Фиксировать изображения объектов с очень высоким разрешением. Наземные телескопы редко дают разрешение, больше одной угловой секунды. В любых условиях HST дает разрешение в одну десятую угловой секунды. 2) Обнаруживать объекты малой светимости. Самые большие наземные телескопы редко обнаруживают объекты слабее 25 звездной величины. HST может обнаруживать объекты 28 звездной величины, что почти в 20 раз меньше. 3) Наблюдать объекты в ультрафиолетовой части спектра. Ультрафиолетовый диапазон составляют важнейшую часть спектра горячих звезд, туманностей и других мощных источников излучения. Атмосфера Земли поглощает большую часть ультрафиолетового излучения и поэтому оно не доступно для наблюдения ( HST может также наблюдать объекты в инфракрасной части спектра, однако чувствительность в этой части спектра пока мала. После установки новых приборов через несколько лет после запуска, она резко возрастет). 4) Фиксировать быстрые изменения интенсивности света, что невозможно в земных условиях из-за изменения прозрачности атмосферы в момент наблюдений. ПРИБОРЫ И ОПТИЧЕСКИЕ СИСТЕМЫ HST имеет на борту зеркало Ричи-Кретиена диаметром 94,5 дюйма (2,4 м). Оптические датчики регистрируют излучение в диапазоне от 1160 A (ультрафиолетовое излучение) до 11000 A (инфракрасное излучение). Все наблюдательные приборы телескопа могут регистрировать излучение в ультрафиолетовом диапазоне. Все приборы, кроме спектрографа высокого разрешения, могут регистрировать излучение в видимой части спектра. Первичные инструменты, установленные на борту телескопа, не могут регистрировать излучение в инфракрасном диапазоне (хотя планетарная камера регистрирует излучение в диапазоне, близком к инфракрасному). Все бортовое оборудование телескопа получает энергию от двух панелей солнечных батарей или от аккумуляторов (только во время нахождения в тени Земли).
ЧЕГО НЕ МОЖЕТ КОСМИЧЕСКИЙ ТЕЛЕСКОП ИМЕНИ ХАББЛА 1) HST не может наблюдать объекты и явления на Земле, так как его система поиска объектов и чувствительность приборов рассчитаны только для наблюдений за космическими объектами. 2) HST не может наблюдать за Солнцем и освещенной частью Луны,
так как они слишком яркие. Специалисты, следящие за выполнением научной программы исследований, не должны допускать таких наблюдений, которые могут "ослепить" телескоп. В случае ошибки компьютера или человека, когда возникает такая угроза, HST автоматически закрывает отверстие наблюдения специальной дверкой и выключает все наблюдательные приборы. Чтобы не повредить приборы на борту телескопа, угловое расстояние до Солнца во время наблюдений должно быть больше 50°, а до Луны (в полной фазе) - 20°. Оборудование отключается также тогда, когда угловое расстояние до освещенной части диска Земли меньше 20° или 5° до неосвещенной части. С помощью HST можно наблюдать лунные затмения, соблюдая необходимые меры предосторожности. Затмения Солнца Землей позволяют наблюдать Венеру, Меркурий и другие объекты с малым угловым расстоянием до Солнца, в течение нескольких минут. Вышеперечисленные ограничения могут не учитываться заказчиком при составлении своего проекта программы наблюдений, т.к. все они учитываются автоматически компьютером при составлении общего расписания наблюдений для HST.
Приложение.


Рис. 1 Ход лучей в телескопах-рефракторах.


Рис. 2 Ход лучей в телескопах-рефлекторах.


Рис. 3 Ход лучей в зеркально-линзовых телескопах.





Рис. 4 Телескоп Галилея



Рис. 5 Телескоп Ньютона







Список используемой литературы.
Е. П. Левитан - Астрономия 11 класс. «Просвещение», 1994 год. Астрономический магазин http://www.telescope.su/


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.