Реферат по предмету "Английский язык"


Why the crystal structure of the element is such lattice but not another?

Why the crystal structure of the element is such
lattice but not another?

Реферат
Геннадия Филипенко

Гродно

1996

“Why the crystal structure of the element is such
lattice but not another?How much electrons are placed in zone conductivity from
one the atom of lattice?”
Abstract

The literature generally describes a metallic bond as
the one formed by means of mutual bonds between atoms' exterior electrons and
not possessing the directional properties. However, attempts have been made to
explain directional metallic bonds, as a specific crystal metallic lattice.Why
the crystal structure of the element is such lattice but not another?How much
electrons are placed in zone conductivity from one the atom of lattice?

This paper demonstrates that the metallic bond in the
densest packings (volume-centered and face-centered) between the centrally
selected atom and its neighbours in general is, probably, effected by 9 (nine)
directional bonds, as opposed to the number of neighbours which equals 12
(twelve) (coordination number).

Probably, 3 (three) "foreign" atoms are
present in the coordination number 12 stereometrically, and not for the reason
of bond. This problem is to be solved experimentally.
Introduction

At present, it is impossible, as a general case, to
derive by means of quantum-mechanical calculations the crystalline structure of
metal in relation to electronic structure of the atom. However, Hanzhorn and
Dellinger indicated a possible relation between the presence of a cubical
volume-centered lattice in subgroups of titanium, vanadium, chrome and
availability in these metals of valent d-orbitals. It is easy to notice that the
four hybrid orbitals are directed along the four physical diagonals of the cube
and are well adjusted to binding each atom to its eight neighbours in the
cubical volume-centered lattice, the remaining orbitals being directed towards
the edge centers of the element cell and, possibly, participating in binding
the atom to its six second neighbours /3/p. 99.

Let us try to consider relations between exterior
electrons of the atom of a given element and structure of its crystal lattice,
accounting for the necessity of directional bonds (chemistry) and availability
of combined electrons (physics) responsible for galvanic and magnetic
properties.

According to /1/p. 20, the number of Z-electrons in
the conductivitiy zone has been obtained by the authors, allegedly, on the
basis of metal's valency towards oxygen, hydrogen and is to be subject to
doubt, as the experimental data of Hall and the uniform compression modulus are
close to the theoretical values only for alkaline metals. The volume-centered
lattice, Z=1 casts no doubt. The coordination number equals 8.

The exterior electrons of the final shell or subcoats
in metal atoms form  conductivity zone.
The number of electrons in the conductivity zone effects Hall's constant,
uniform compression ratio, etc.

Let us construct the model of
metal - element so that external electrons of last layer or sublayers of atomic
kernel, left after filling the conduction band, influenced somehow pattern of
crystalline structure (for example: for the body-centred lattice - 8 ‘valency’
electrons, and for volume-centered and face-centred lattices - 12 or 9).

ROUGH, QUALITATIVE MEASUREMENT OF NUMBER OF ELECTRONS
IN CONDUCTION BAND OF METAL - ELEMENT. EXPLANATION OF FACTORS, INFLUENCING
FORMATION OF TYPE OF MONOCRYSTAL MATRIX AND SIGN OF HALL CONSTANT.

(Algorithm of construction of model)

The measurements of the Hall field allow us to
determine the sign of charge carriers in the conduction band. One of the
remarkable features of the Hall effect is, however, that in some metals the
Hall coefficient is positive, and thus carriers in them should, probably, have
the charge, opposite to the electron charge /1/. At room temperature this holds
true for the following: vanadium, chromium, manganese, iron, cobalt, zinc,
circonium, niobium, molybdenum, ruthenium, rhodium, cadmium, cerium,
praseodymium, neodymium, ytterbium, hafnium, tantalum, wolfram, rhenium,
iridium, thallium, plumbum /2/. Solution to this enigma must be given by
complete quantum - mechanical theory of solid body.

Roughly speaking, using the base cases of Born-
Karman, let us consider a highly simplified case of one-dimensional conduction
band. The first variant: a thin closed tube is completely filled with electrons
but one. The diameter of the electron roughly equals the diameter of the tube.
With such filling of the area at local movement of the electron an opposite
movement of the ‘site’ of the electron, absent in the tube, is observed, i.e.
movement of non-negative sighting. The second variant: there is one electron in
the tube - movement of only one charge is possible - that of the electron with
a negative charge. These two opposite variants show, that the sighting of
carriers, determined according to the Hall coefficient, to some extent, must
depend on the filling of the conduction band with electrons. Figure 1.





















+q











-q













 













                        а)                                                               б)

Figure 1. Schematic representation of the conduction
band of two different metals. (scale is not observed).

a) - the first variant;

b) - the second variant.

The order of electron movement will also be affected
by the structure of the conductivity zone, as well as by the temperature,
admixtures and defects. Magnetic quasi-particles, magnons, will have an impact
on magnetic materials.

Since our reasoning is rough, we will further take
into account only filling with electrons of the conductivity zone. Let us fill
the conductivity zone with electrons in such a way that the external electrons of
the atomic kernel affect the formation of a crystal lattice. Let us assume that
after filling the conductivity zone, the number of the external electrons on
the last shell of the atomic kernel is equal to the number of the neighbouring
atoms (the coordination number) (5).

The coordination number for the volume-centered and
face-centered densest packings are 12 and 18, whereas those for the
body-centered lattice are 8 and 14 (3).

The below table is filled in compliance with the
above  judgements.




Element









RH .
1010


(cubic
metres /K)





Z


(number)





Z
kernel


(number)





Lattice
type







Natrium





Na





-2,30





1





8





body-centered







Magnesium





Mg





-0,90





1





9





volume-centered







Aluminium
Or





Al





-0,38





2





9





face-centered







Aluminium





Al





-0,38





1





12





face-centered







Potassium





K





-4,20





1





8





body-centered







Calcium





Ca





-1,78





1





9





face-centered







Calciom





Ca





T=737K





2





8





body-centered







Scandium
Or





Sc





-0,67





2





9





volume-centered







Scandium





Sc





-0,67





1





18





volume-centered







Titanium





Ti





-2,40





1





9





volume-centered







Titanium





Ti





-2,40





3





9





volume-centered







Titanium





Ti





T=1158K





4





8





body-centered







Vanadium





V





+0,76





5





8





body-centered







Chromium





Cr





+3,63





6





8





body-centered







Iron
or





Fe





+8,00





8





8





body-centered







Iron





Fe





+8,00





2





14





body-centered







Iron
or





Fe





Т=1189K





7





9





face-centered







Iron





Fe





Т=1189K





4





12





face-centered







Cobalt
or





Co





+3,60





8





9





volume-centered







Cobalt





Co





+3,60





5





12





volume-centered







Nickel





Ni





-0,60





1





9





face-centered







Copper
or





Cu





-0,52





1





18





face-centered







Copper





Cu





-0,52





2





9





face-centered







Zink
or





Zn





+0,90





2





18





volume-centered







Zink





Zn





+0,90





3





9





volume-centered







Rubidium





Rb





-5,90





1





8





body-centered







Itrium





Y





-1,25





2





9





volume-centered







Zirconium
or





Zr





+0,21





3





9





volume-centered







Zirconium





Zr





Т=1135К





4





8





body-centered







Niobium





Nb





+0,72





5





8





body-centered







Molybde-num





Mo





+1,91





6





8





body-centered







Ruthenium





Ru





+22





7





9





volume-centered







Rhodium
Or





Rh





+0,48





5





12





face-centered







Rhodium





Rh





+0,48





8





9





face-centered







Palladium





Pd





-6,80





1





9





face-centered







Silver
or





Ag





-0,90





1





18





face-centered







Silver





Ag





-0,90





2





9





face-centered







Cadmium
or





Cd





+0,67





2





18





volume-centered







Cadmium





Cd





+0,67





3





9





volume-centered







Caesium





Cs





-7,80





1





8





body-centered







Lanthanum





La





-0,80





2





9





volume-centered







Cerium
or





Ce





+1,92





3





9





face-centered







Cerium





Ce





+1,92





1





9





face-centered







Praseodymium
or





Pr





+0,71





4





9





volume-centered







Praseodymium





Pr





+0,71





1





9





volume-centered







Neodymium
or





Nd





+0,97





5





9





volume-centered







Neodymium





Nd





+0,97





1





9





volume-centered







Gadolinium
or





Gd





-0,95





2





9





volume-centered







Gadolinium





Gd





T=1533K





3





8





body-centered







Terbium
or





Tb





-4,30





1





9





volume-centered







Terbium





Tb





Т=1560К





2





8





body-centered







Dysprosium





Dy





-2,70





1





9





volume-centered







Dysprosium





Dy





Т=1657К





2





8





body-centered







Erbium





Er





-0,341





1





9





volume-centered







Thulium





Tu





-1,80





1





9





volume-centered







Ytterbium
or





Yb





+3,77





3





9





face-centered







Ytterbium





Yb





+3,77





1





9





face-centered







Lutecium





Lu





-0,535





2





9





volume-centered







Hafnium





Hf





+0,43





3





9





volume-centered







Hafnium





Hf





Т=2050К





4





8





body-centered







Tantalum





Ta





+0,98





5





8





body-centered







Wolfram





W





+0,856





6





8





body-centered







Rhenium





Re





+3,15





6





9





volume-centered







Osmium





Os


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Становление системы безналичных ценных бумаг в России
Реферат Уход за розами
Реферат Сбережения, как источник инвестиций. Факторы роста инвестиций
Реферат Толстой Алексей Николаевич
Реферат Уладзіслаў Галубок, Еўсцігней Міровіч i Уладзімір Дубоўка – беларускiя пiсьменнiкi першай паловы XX ст.
Реферат Моделирование экономической ситуации на примере охранной фирмы
Реферат Оценка загрязнения воздушного бассейна крупных городов
Реферат Присвоение и конструирование гендерных установок женщинами с гомосексуальной идентичностью
Реферат Зовнішньоекономічні зв’язки Японії та розвиток економічних відносин з Україною
Реферат Розробка методу формування зони безпечного руху судна
Реферат 11 клас. Контрольна робота з теми «Із літератури ХХ ст. (1900-1930 роки)»
Реферат Booze And Loose Essay Research Paper Booze
Реферат Черногория в международных отношениях конца XIX - начала XX в
Реферат Понятие признаки виды и состав правоотношений
Реферат How Did The Nazi Party Get So