Реферат по предмету "Математика"


Элементы аналитической геометрии

--PAGE_BREAK--3. Вычисление определителей.


Решение:

Используя  алгебраические преобразования, получим в первом столбце в четвертой и пятой строке нули. Для этого от элементов четвертой строки отнимем элементы первой строки и полученный результат запишем на место элементов четвертой строки матрицы. От элементов пятой строки отнимем  элементы первой строки и полученный результат запишем на место элементов пятой строки матрицы. Получим:



Разложим определитель матрицы по элементам первого столбца, имеем:



Такой прием называется сведением определителя более высокого порядка к определителю более низкого порядка.

Во второй строке последнего определителя все элементы строки, кроме элемента первого столбца, равны нулю. Поэтому удобно разложить определитель матрицы по элементам второй строки. В результате получим следующий результат.



В новом определителе третьего порядка во второй строке только один элемент не равен нулю, поэтому разложим этот определитель по элементам второй строки. Получим следующий результат:



Определитель матрицы равен 4.

4. Метод Гаусса.
Найти решение системы линейных уравнений методом Гаусса.



Решение:

Система уравнений– это условие, состоящее в одновременном выполнении нескольких уравнений относительно нескольких переменных. Решением системы уравнений называется упорядоченный набор чисел (значений переменных), при подстановке которых вместо переменных каждое из уравнений системы обращается в верное равенство.

Метод Гаусса– классический метод решения системы линейных алгебраических уравнений (СЛАУ). Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которого последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные.

Сформируем исходную матрицу:

Разделим все элементы первой строки матрицы на 7, получим:

Умножим все элементы первой строки матрицы на 4 и просуммируем с элементами второй строки, результат вычислений запишем во вторую строку:



Умножим все элементы первой строки матрицы на 9 и просуммируем с элементами третьей строки, результат вычислений запишем в третью строку:

Все элементы второй строки разделим на 9 6/7:

Все элементы второй строки умножим на -16 3/7 и складываем с элементами третьей строки:

Ранг матрицы системы равен: r(A) = 2; ранг расширенной матрицы (вместе со столбцом свободных членов) r(A1)=3, т. е. r(A)≠r(A1); следовательно система уравнений несовместна, т. е. не имеет решений.



    продолжение
--PAGE_BREAK--5. Метод Крамера.
Решить систему линейных уравнений методом Крамера.



Решение:

Рассмотрим систему 3-х линейных уравнений с тремя неизвестными:



Определитель третьего порядка, соответствующий матрице системы, т.е. составленный из коэффициентов при неизвестных,



называется определителем системы.

Составим ещё три определителя следующим образом: заменим в определителе  последовательно 1, 2 и 3 столбцы столбцом свободных членов



Тогда можно доказать следующий результат.


Теорема (правило Крамера).Если определитель системы Δ ≠ 0, то рассматриваемая система имеет одно и только одно решение, причём

Таким образом, заметим, что если определитель системы Δ ≠ 0, то система имеет единственное решение и обратно. Если же определитель системы равен нулю, то система либо имеет бесконечное множество решений, либо не имеет решений, т.е. несовместна.



  — 331

Определитель системы не равен нулю, следовательно, система уравнений имеет единственное решение.











 

Найдем решениесистемы уравнений:









6. Матричные уравнения
Решить матричное уравнение, вычисляя обратную матрицу, сделать проверку.




Решение:

Матрицы дают возможность кратко записать систему линейных уравнений. Пусть дана система из 3-х уравнений с тремя неизвестными:




Матрицы дают возможность кратко записать систему линейных уравнений. Пусть дана система из 3-х уравнений с тремя неизвестными:


Рассмотрим матрицу системы

и матрицы столбцы неизвестных и свободных членов

/>.

Найдем произведение

/>

т.е. в результате произведения мы получаем левые части уравнений данной системы. Тогда пользуясь определением равенства матриц данную систему можно записать в виде

/> или короче A∙X=B.

Здесь матрицы A и B известны, а матрица X неизвестна. Её и нужно найти, т.к. её элементы являются решением данной системы. Это уравнение называют матричным уравнением.

Пусть определитель матрицы отличен от нуля |A| ≠ 0. Тогда матричное уравнение решается следующим образом. Умножим обе части уравнения слева на матрицу A-1, обратную матрице A:

/>.

Поскольку A-1A = E и E∙X = X, то получаем решение матричного уравнения в виде X = A-1B.

Заметим, что поскольку обратную матрицу можно найти только для квадратных матриц, то матричным методом можно решать только те системы, в которых число уравнений совпадает с числом неизвестных. Однако, матричная запись системы возможна и в случае, когда число уравнений не равно числу неизвестных, тогда матрица A не будет квадратной и поэтому нельзя найти решение системы в виде X = A-1B.

В нашем случае матричная запись системы уравнений будет выглядеть следующим образом: X∙A=B, а  решение матричного уравненияполучаем в виде X = B∙ A-1.

 

Вычислим обратную матрицу А-1.

Определитель матрицы





Система совместна и имеет единственное решение.

Вычислим союзную матрицу, состоящую из алгебраических дополнений элементов матрицы А.























Союзная матрица .

Транспонируя союзную матрицу, находим к матрице А присоединенную матрицу.

Присоединенная матрица  .


Вычислим обратную матрицу по формуле: . Получим следующий результат:

.

Найдем  X
=
B

A
-1, выполнив умножение матриц B∙ A-1.

Матрица— математический объект, записываемый в виде прямоугольной таблицы чисел и допускающий алгебраические операции (сложение, вычитание, умножение) между ним и другими подобными объектами.

Умножение матриц— одна из основных операций над матрицами. Матрица, получаемая в результате операции умножения называется произведением матриц. Операция умножения двух матриц выполнима только в том случае, если число столбцов в первом сомножителе равно числу строк во втором, в этом случае говорят, что форма матриц согласована.



Вычислимэлементыматрицы|Х|:

x1,1 = b1,1 ∙ a1,1 + b2,1 ∙ a1,2 + b3,1 ∙ a1,3

x1,2 = b1,2 ∙ a1,1 + b2,2 ∙ a1,2 + b3,2 ∙ a1,3

x1,3 = b1,3 ∙ a1,1 + b2,3 ∙ a1,2 + b3,3 ∙ a1,3
x2,1 = b1,1 ∙ a2,1 + b2,1 ∙ a2,2 + b3,1 ∙ a2,3

x2,2 = b1,2 ∙ a2,1 + b2,2 ∙ a2,2 + b3,2 ∙ a2,3

x2,3 = b1,3 ∙ a2,1 + b2,3 ∙ a2,2 + b3,3 ∙ a2,3
x3,1 = b1,1 ∙ a3,1 + b2,1 ∙ a3,2 + b3,1 ∙ a3,3

x3,2 =  b1,2 ∙ a3,1 + b2,2 ∙ a3,2 + b3,2 ∙ a3,3

x3,3 =  b1,3 ∙ a3,1 + b2,3 ∙ a3,2 + b3,3 ∙ a3,3



x1,1 = 

1



3

+

2



(-3)

+

3



1

=

3

+

(-6)

+

3

=



x1,2 = 

1



(-2.5)

+

2



4

+

3



(-1.5)

=

-2.5

+

8

+

(-4.5)

=

1



x1,3 = 

1



0.5

+

2

∙  (

-1)

+

3



0.5

=

0.5

+

(-2)

+

1.5

=





x2,1 = 

2



3

+

4



(-3)

+

6



1

=

6

+

(-12)

+

6

=





x2,2 = 

2



(-2.5)

+

4



4

+

6



(-1.5)

=

-5

+

16

+

(-9)

=

2



x2,3 = 

2



0.5

+

4



(-1)

+

6



0.5

=

1

+

(-4)

+

3

=





x3,1 = 

3



3

+

6



(-3)

+

9



1

=

9

+

(-18)

+

9

=





x3,2 = 

3



(-2.5)

+

6



4

+

9



(-1.5)

=

-7.5

+

24

+

(-13.5)

=

3



x3,3 = 

3



0.5

+

6



(-1)

+

9



0.5

=

1.5

+

(-6)

+

4.5

=



Результирующая матрица:.

Выполним проверку, подставив в формулу X∙A=B значения │Х│ и │А│. В результате выполненного умножения матриц должна получится матрица │В│.




Вычислимэлементыматрицы|B|:

b1,1 = x1,1 ∙ a1,1 + x1,2 ∙ a2,1 + x1,3 ∙ a3,1

b1,2 = x1,1 ∙ a1,2 + x1,2 ∙ a2,2 + x1,3 ∙ a3,2

b1,3 = x1,1 ∙ a1,3 + x1,2 ∙ a2,3     продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Оборотные средства предприятия формирование организация и политика управления оборотным капиталом
Реферат Проявление девиации в поведении преподавателя ВУЗа
Реферат Основные типы организационных конфликтов, их причины и функции
Реферат Признаки определяющие тип торговой организации
Реферат Судебная реформа Органы суда по судебным уставам
Реферат Технология и оборудование литейного производства
Реферат Hamlet The Role Of Women In Essay
Реферат Государственный строй Древнего Египта Эволюция общественного строя средневековой Германии
Реферат "...На троне вечный был работник"
Реферат Мир дискретных объектов - физика частиц. Модель частицы корпускула. От физики Аристотеля до физики Ньютона
Реферат Тайна Нострадамуса
Реферат Інвестиційне право, Вінник
Реферат Некоторые из причин возникновения профессиональных заболеваний у домристов и способы их устранения
Реферат Стилистические функции коллективной речи во французском эпосе
Реферат Издержки производства и прибыль предприятия