Реферат по предмету "Коммуникации и связь"


Цифровые системы передачи телефонных сигналов

Задание №1
Рассмотрите вопросы, связанные с принципом построения цифровых систем передачи ЦСП с ВРК ИКМ-ВД.
Составьте структурную схему, поясняющую принцип построения ЦСП с ИКМ-ВД для заданного числа телефонных каналов. Кратко укажите назначение всех узлов и этапы аналого-цифрового преобразования АЦП в тракте передачи и цифро-аналогового преобразования ЦАП в тракте приема.
Рассчитайте тактовую частоту fт, длительность канального интервала Тки, длительность цикла Ти, длительность сверхцикла Тсц.
Постройте диаграмму временного цикла, сверхцикла, канального интервала, разрядного интервала.
Заполните рисунок 1 по мере выполнения заданий 2, 3, 4, 5 данной домашней работы.
Исходные данные:
Число ТЛФ каналов
Fg, кГц
m
Передача СУВ
18
8
8
За один цикл передаются СУВ для двух ТЛФ каналов
3 этапа аналого-цифрового преобразования АЦП на передаче:
Дискретизация по времени;
Квантование по уровню;
Кодирование.
Назначение узлов схемы:
ФНЧ передачи – фильтр нижних частот – выделение ограниченного спектра частот из сигнала;
М – канальный амплитудно-импульсный модулятор – осуществляет дискретизацию передаваемых сигналов во времени;
ГОпр и ГОпер – генераторное оборудование – посылает канальные импульсы для управления модуляторами, на передаче и приеме СУВ для дискретизации сигналов управления и взаимодействия, обеспечивает правильный порядок следования циклов в сверхцикле и кодовых групп в цикле передачи и приема;
ЗГ – задающий генератор – формирует гармоничный высокостабильный сигнал с частотой равной или кратной fт;
ВТЧ – выделитель тактовой частоты – для синхронной и синфазной работы ГО;
Пер СУВ – передатчик сигналов управления и взаимодействия – дискретизация СУВ, передаваемых по телефонным каналам для управления приборами АТС,
Пер СС – передатчик синхросигнала – для передачи синхросигнала цикловой синхронизации;
Кодер – преобразование амплитуды АИМ сигнала в 8-ми разрядную кодовую комбинацию, квантование по уровню и кодирование;
УО – устройство объединения – объединение кодовых групп каналов выхода кодера, кодирование сигналов СУВ и кодовой группы синхросигнала в циклы и сверхциклы;
ПК пер – преобразователь кода передачи – преобразование однополярного ИКМ сигнала в биполярный сигнал, удобный для передачи по линейному тракту;
РЛ – линейный регенератор – для периодического восстановления ИКМ сигнала в процессе передачи по линии связи;
РС – станционный регенератор – восстановление ИКМ сигнала на приемной станции;
ПК пр – преобразователь кода – преобразует биполярный сигнал в однополярный;
Пр СС – приемник синхросигналов – правильное декодирование и распределение сигналов по своим телефонным каналам и каналам передачи СУВ;
УР– устройство разделения – разделяет кодовые группы ТЛФ каналов и СУВ;
Пр СУВ – приемник групповых сигналов управления и взаимодействия – распределяет СУВ по своим каналам;
Декодер – преобразует групповой ИКМ сигнал в групповой АИМ сигнал; для преобразования 8-ми разрядной кодовой комбинации в амплитуду КАИМ сигнала;
ВС – временной селектор – обеспечивает выделение отсчетов своего канал из группового АИМ сигнала;
ФНЧ приема – восстановление непрерывного исходного сигнала из последовательности его АИМ отсчетов.
Тактовая частота рассчитывается по формуле:
Fт=Fд×m×Nки, (кГц),/>где Fд =8 кГц – частота дискретизации ТЛФ сигнала; m=8 – разрядность кодовой комбинации; Nки – число канальных интервалов в цикле системы; складывается из числа ТЛФ каналов, одного канального интервала для системы синхронизации и одного КИ для передачи сигналов управления и взаимодействия между АТС СУВ.
FТ=8×(18+2) ×8×103=1280 (кГц).
Длительность тактового (разрядного) интервала рассчитывается по формуле:
Тт=/>, мкс
Тт=/>=0,781 (мкс).
Длительность импульса рассчитывается по формуле:
τ=/>, мкс
τ=/>=0,39 (мкс).
Длительность канального интервала рассчитывается по формуле:
Тки= Тт×m, мкс
Тки=0,781×8=6,248 (мкс).
Длительность цикла рассчитывается по формуле:
Тц=Тки×Nки, мкс
Тц=6,248 ×20=124,96 (мкс).
Длительность сверхцикла рассчитывается по формуле:
S=/>+1
S=/>+1=10.
Диаграмма временных цикла, сверхцикла, канального интервала и разрядного интервала:
/>
4. Упрощенная структурная схема ЦСП с ИКМ-ВД: см. приложение №1.
Задание №2
Составьте схему построения генераторного оборудования ГОпер или ГОпр для заданного числа ТЛФ каналов. Укажите назначение элементов схемы.
Укажите отличие ГОпер от ГОпр; с помощью чего обеспечивается синхронная и синфазная работа ГОпер и ГОпр; назначение сигналов «Установка по циклу» и «Установка по сверхциклу».
Рассчитайте частоты импульсных последовательностей, управляющих работой АИМ или временных селекторов ВС, кодера или декодера, передатчика или приемника СУВ.--PAGE_BREAK--
Рассчитанные значения Fт, Fк, Fр, Fц проставьте на упрощенной структурной схеме ЦСП с ИКМ-ВД.
Исходные данные:
ГО
Число ТЛФ каналов
Число канальных интервалов, Nки
Число циклов в сверхцикле, S
ГОпер
18
20
10
1. Структурная схема ГО передачи:
/>
Назначение элементов схемы:
ЗГ – задающий генератор – формирует гармоничный высокостабильный сигнал с частотой равной или кратной fт;
ФТП – формирователь тактовой последовательности – вырабатывает основную импульсную последовательность с частотой следования fт;
РР – распределитель разрядный – формирует m импульсных последовательностей. Число разрядных импульсов, формирующих РР, равно числу разрядов в кодовой комбинации;
РК – распределитель канальный – формирует управляющие канальные импульсные последовательности КИ0, КИ1, …, КИn, где n – число канальных интервалов в цикле;
РЦ – распределитель цикловой – формирует цикловые импульсные последовательности Ц0, Ц1, …, ЦS, где s – число циклов в сверхцикле.
В соответствии с рекомендациями МККТТ относительная нестабильность частоты ЗГ должна быть не хуже 10-5, поэтому в ЗГ используется кварцевая стабилизация частоты.
2. В отличие от ГОпер, в ГОпр используется выделитель тактовой частоты системы устройств тактовой синхронизации (для обеспечения синхронной и синфазной работы передающей и приемной станции).
Для подстройки генераторного оборудования по циклам и сверхциклам используются сигналы «Установка по циклу» и «Установка по сверхциклу». Это дает возможность подстраивать ГО одной станции в режим цикловой и сверхцикловой синхронизации с ГО другой станции.
Тактовая частота рассчитывается по формуле:
Fт=Fд×m×Nки, кГц
Fт=8×(18+2) ×8×103=1280 (кГц).
Частота следования разрядных импульсов рассчитывается по формуле:
Fр=/>, кГц, где m– число разрядов в кодовой комбинации
Fр=/>=160 (кГц).
Частота следования канальных импульсных последовательностей (частота дискретизации) рассчитывается по формуле:
Fк=Fд=/>, кГц, где Nku– число канальных интервалов в цикле передачи
Fк=Fд=/>=8 (кГц).
Частота следования цикловых импульсных последовательностей рассчитывается по формуле:
Fц=/>, Гц, где S– число циклов в сверхцикле
Fц=/>=800 (Гц).
Задание №3.
Начертите структурную схему нелинейного кодера. Кратко поясните: 3 этапа кодирования, назначение всех узлов кодера.
выполните операцию нелинейного кодирования. Рассчитайте ошибку квантования.
На упрощенной структурной схеме ЦСП с ИКМ-ВД на выходе кодера приведите полученную в результате кодирования кодовую 8-разрядную комбинацию.
Для кодирования используется нелинейный кодер взвешивающего типа с характеристикой компрессии А – 87,6/13.
Значение амплитуды отсчета АИМ-сигнала в у. е. – «+130».
1. Назначение кодера – для преобразования амплитуды отсчета АИМ-сигнала в соответствующую 8-разрядную кодовую комбинацию.
3 этапа кодирования:
Кодирование полярности (результат записывается в первом разряде);
Кодирование номера сегмента, выбор основного эталонного тока (результат записывается во 2, 3, 4 разрядах;
Кодирование уровня квантования внутри выбранного сегмента, выбор дополнительного эталонного тока (результат записывается в 5, 6, 7, 8 разрядах).
Назначение элементов схемы:
Компаратор определяет знак разности между амплитудами токов кодируемого отсчета и эталона (Ic и Iэт);
Цифровой регистр служит для записи решений компаратора после каждого такта кодирования и формирования структуры кодовой группы;
Генератор эталонов (ГЭТ(+) и ГЭТ(-)) формирует полярность и величины эталонов, количество формируемых эталонов равно 11, их значения – 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 усл. ед.    продолжение
--PAGE_BREAK--
ПК преобразует параллельный код в последовательный, считывая состояние выходов 1 … 8 ЦР;
ГОпер управляет работой узлов кодера;
БКЭ – блок выбора и коммутации эталонных токов – для подключения выбранных ГЭТ, а также для подключения выбранных эталонных токов по сигналам от ключей;
КЛ – компрессирующая логика – для коммутации поступающего от ЦР семиразрядного регистра (без первого символа полярности) в П-разрядный двоичный код для управления разрядами выбранного ГЭТ.
Структурная схема нелинейного кодера: см. приложение №2.
1-й этап – кодирование полярности – 130>0 → 1;
2-й этап – кодирование номера сегмента, выбор основного эталонного тока –
130>128 → 1
130
130
→ 4 сегмент (ОЭ для 4 сегмента – 128)
3-й этап – кодирование уровня квантования внутри выбранного сегмента, выбор дополнительного эталонного тока: ОЭ –128, ДЭ –64, 32, 16, 8
130
130
130
130
Шаг квантования равен последнему эталону – 8
Ошибка квантования: εкв=130–128=2, не должна превышать 0,5Δ


Опред. полярности
Выбор основного эталонного тока, Iосн.эт.
Вкл.Iосн.эт.
Дополнительные эталонные токи, Iдоп.эт.
Разряды кодирования
1
2
3
4


5
6
7
8
Iэт.
1
128
512
256
128
64
32
16
8
Iаим- ΣIэт.
130>0
130-128>0
130–512
130–256


130 – (128 +64)
130 – (128+32)
130 – (128+16)
130 – (128+8)
Состояние выхода компаратора
1
1


1
1
1
1
Запись решения в ЦР
1
1


Шаг квантования


8
Ошибка квантования,


2


1-й этап
2-й этап
3-й этап
При неравномерном квантовании шаг квантования изменяется в допустимых пределах амплитудных значений квантуемых сигналов, возрастая с увеличением уровня сигнала. Абсолютная ошибка квантования возрастает с увеличением уровня сигнала, но ее относительное значение, т.е. отношение сигнал-ошибка квантования, не изменяется. Использование неравномерного квантования позволяет выровнять отношение сигнал-ошибка квантования во всем диапазоне сигналов, а, следовательно, сократить число шагов квантования в 2 … 4 раза по сравнению с равномерным квантованием до Мкв.=128 … 256, что требует семи разрядов кодовой группы.
Вывод: преимущество кодера с неравномерной шкалой квантования заключается в передаче сигналов с необходимым качеством.
Задание №4
Начертите структурную схему нелинейного декодера. Кратко поясните три этапа декодирования, назначение всех узлов декодера.
Выполните операцию нелинейного декодирования.
Укажите назначение эталона коррекции.
Исходные данные: кодовая комбинация – 11000000.
1. Назначение декодера – для преобразования 8-разрядной кодовой комбинации в соответствующую амплитуду отсчета АИМ-сигнала.
3 этапа декодирования:
1-й этап – по символу записанному в 1-м разряде, выбирается ГЭТ. Если записана «1», то выбирается ГЭТ(+), если «0» - ГЭТ(-).
2-й этап – по кодовой комбинации, записанной во 2, 3 и 4-м разрядах, выбирается эталонный ток Iосн.эт..
3-й этап – из четырех дополнительных эталонных токов данного Iосн.эт. выбираются те, в чьих разрядах записаны «1».
В конце добавляется эталон коррекции, равный половине шага квантования данного сегмента.
Структурная схема нелинейного декодера: см. приложение №3.
Назначение элементов схемы:    продолжение
--PAGE_BREAK--
ЦР – служит для принятия кодовой группы ИКМ-сигнала и формирования на выходе в виде 8-разрядного параллельного двоичного кода.
ГОпр – управляет работой узлов декодера.
ГЭТ – формирует полярность и величины эталонов, количество формируемых эталонов равно 11, их значения – 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 у. е.
БКЭ – для подключения выбранного ГЭТ1 или ГЭТ2, а также для подключения выбранных эталонных токов по сигналу от ЭЛ.
ЭЛ – экспандирующая логика – для коммутации 7-разрядного кода (без первого символа полярности сигнала), поступившего от ЦР, в 12-разрядный двоичный код для управления разрядами выбранного ГЭТ.
2. Кодовая комбинация – 1100000.
1-й этап – выбираем ГЭТ:
«1» → ГЭТ(+);
2-й этап – выбираем основной эталонный ток:
100 → 4-й сегмент → ОЭ – 128, ДЭ – 64, 32, 16, 8;
3-й этап – из ДЭ выбираем те, в чьих разрядах стоит «1». Т.к. в ДЭ нет разрядов со значением «1», выбираем последний и определяем шаг квантования:
Δ=8, эталон коррекции равен 0,5Δ=4.
128+4=132 (у. е.) – полученный КАИМ-сигнал.
Эталон коррекции применяется для уменьшения искажения при декодировании.
Задание №5
Приведите три требования к линейным кодам. Укажите достоинства и недостатки заданного линейного кода.
Постройте заданную цифровую последовательность в кодах:
Однополярном со скважностью Q=2 (ВН);
Однополярном со скважностью Q=1 (МБВН);
Двухполярном ЧПИ;
Двухполярном КВП-3 (МЧПИ).
Исходные данные:
Цифровая последовательность
Тип линейного кода
1110000110000101000010101
МБВН (NRZ)
1. Три требования к линейным кодам:
Энергетический спектр сигнала должен ограничиваться сверху и снизу, быть достаточно узким, располагаться на сравнительно низких частотах и не содержать постоянной составляющей.
В составе спектра должна быть составляющая fт.
Сигнал должен быть представлен в коде, содержащем информационную избыточность.
Линейный код МБВН (NRZ) – однополярный, со скважностью Q=1, так называемый сигнал с импульсами, затянутыми на тактовый интервал.
«+»:
Спектр линейного сигнала расположен в НЧ области, поэтому малы МСИ-1 и переходные помехи;
Схема генератора проще, чем у ЧПИ.
«-»:
В спектре есть постоянный ток и мощные НЧ составляющие, поэтому велики МСИ-1;
Возможен сбой УТС из-за большой серии нулей;
В коде нет избыточности, поэтому нельзя контролировать ошибки;
В спектре нет fр, поэтому схема УТС сложнее, чем у ВН.
/>
Список использованной литературы
Скалин Ю.В., Финкевич А.Д., Бернштейн А.Г. цифровые системы передачи. М.: Радио и связь, 1987
Цифровые системы передачи. Контрольные задания, методические указания по их выполнению и задание на курсовой проект для студентов заочных отделений по специальности 2005 – «Многоканальные телекоммуникационные системы».


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Негативные воздействия в системе “Человек – Среда обитания”
Реферат Egyptian Civilization Essay Research Paper Egyptian CivilizationAround
Реферат Облікова політика та її призначення з метою ефективного використання в теорії та практиці бухгалтерського обліку
Реферат История зарубежной публицистики
Реферат Наука и жизнь
Реферат Имущественные налоги
Реферат Исследования Великой Отечественной войны. Обзор
Реферат Нарушение земель горными и геологоразведочными работами
Реферат Інтернет залежність та її вплив на виховання підлітків та юнацтва
Реферат Стилистические особенности слоганов англо- и италоязычной рекламы
Реферат На чале дзяржаўнай канцылярыі
Реферат Saving Private Ryan Essay Research Paper Saving
Реферат Аудитория деловой прессы
Реферат Банковская система Республики Башкортостан и ее социально-экономическая роль
Реферат American Civil Liberties Union Aclu Defending The