Реферат по предмету "Коммуникации и связь"


Полупроводниковые диоды 2

--PAGE_BREAK--Для того чтобы примесная проводимость преобладала над собственной, концентрация атомов донорной или акцепторной примеси должна превышать концентрацию собственных носителей заряда. Практически при изготовления примесных полупроводников концентрация примесей значительно (не менее чем на три порядка) больше концентрации собственных носителей.
Электронно-дырочный переход Основным элементом большинства полупроводниковых приборов является электронно-дырочный переход (р-п переход), представляющий собой переходный слой между двумя областями полупроводника, одна из которых имеет электронную электропроводность, другая – дырочную.
Реально электронно-дырочный переход нельзя создать простым соприкосновением пластин n и p-типа, так как при этом неизбежен промежуточный слой воздуха, окислов или поверхностных загрязнений, невозможно идеальное совпадение кристаллических решеток и т.д. Эти переходы получают вплавлением или диффузией соответствующих примесей в пластинки монокристалла полупроводника, или путем выращивания р-n перехода из расплава полупроводника с регулируемым количеством примесей и т.п. В зависимости от способа изготовления р-n переходы бывают сплавными, диффузионными и др. Однако, для упрощения анализа процесса формирования перехода будем считать, что изначально взяли и механически соединили два примесных полупроводниковых кристалла с проводимостью разного типа (n и р типа) с одинаковой концентрацией донорных и акцепторных примесей и с идеальной поверхностью и кристаллической решеткой. Рассмотрим явления, возникающие на их границе.

Рисунок 1.3. Образование р-п перехода
Вследствие того, что концентрация электронов в n области выше, чем в р-области, а концентрация дырок в р-области выше, чем в n области, на границе этих областей существует градиент концентраций носителей, вызывающий диффузионный ток электронов из n области в p область и диффузионный ток дырок из p области в n область. Кроме тока, обусловленного движением основных носителей заряда, через границу раздела полупроводников возможен ток неосновных носителей (электронов из р области в n область и дырок из n области в p-область). Однако, они незначительны (вследствие существенного различия в концентрациях основных и неосновных носителей) и мы их не будем учитывать.
Если бы электроны и дырки были нейтральными, то диффузия в конечном итоге привела к полному выравниванию их концентрации по всему объему кристалла. На самом же деле процессу диффузии препятствует электрическое поле, возникающее в приконтактной области. Уход электронов из приконтактной n области приводит к тому, что их концентрация здесь уменьшается и возникает нескомпенсированный положительный заряд ионов донорной примеси. Точно так же в р области вследствие ухода дырок их концентрация в приконтактном слое снижается и здесь возникает нескомпенсированный отрицательный заряд ионов акцепторной примеси. Ионы же «уйти» со своих мест не могут, т.к их удерживают сильнейшие силы (связи) кристаллической решетки. Таким образом, на границе областей n и p типа образуются два слоя противоположных по знаку зарядов. Возникает электрическое поле, направленное от положительно заряженных ионов доноров к отрицательно заряженным ионам акцепторов. Область, образовавшихся пространственных зарядов и электрическое поле собственно и представляет собой р-n переход. Его ширина имеет порядок от сотых долей до единиц микрометров, что является значительным размером по сравнению с размерами кристаллической решетки.
Таким образом, на границе р-n перехода образуется контактная разность потенциалов, численно характеризующаяся высотой потенциального барьера (Dj рисунка 1.3), который основным носителям каждой области необходимо преодолеть, чтобы попасть в другую область. Контактная разность потенциалов имеет порядок десятых долей вольт.
Поле р-п перехода является тормозящим для основных носителей заряда и ускоряющим для неосновных. Любой электрон, проходящий из электронной области в дырочную, попадает в электрическое поле, стремящееся возвратить его обратно в электронную область. Точно так же и дырки, попадая из области р в электрическое поле р-n перехода, будут возвращены этим полем обратно в p-область. Аналогичным образом поле воздействует на заряды, образовавшиеся в силу тех или иных причин внутри р-n перехода. В результате воздействия поля на носители заряда область р-п перехода оказывается обедненной, а ее проводимость – близкой к собственной проводимости исходного полупроводника.
Наличие собственного электрического поля определяет и прохождение тока при приложении внешнего источника напряжения – величина тока оказываются различными в зависимости от полярности приложенного напряжения. Если внешнее напряжение противоположно по знаку контактной разности потенциалов, то это приводит к снижению высоты потенциального барьера. Поэтому ширина р-n перехода уменьшится (рисунок 1.3, б). Улучшаются условия для токопрохождения: уменьшившийся потенциальный барьер смогут преодолеть основные носители, имеющие наибольшую энергию. При увеличении внешнего напряжения ток через р-п переход будет нарастать. Такая полярность внешнего напряжения и ток называются прямыми.
Нетрудно заметить, что преодолевшие потенциальный барьер носители заряда попадают в область полупроводника, для которой они являются неосновными. Они диффундируют в глубь соответствующей области полупроводника, рекомбинируя с основными носителями этой области. Так, по мере проникновения дырок из р-области в n область они рекомбинируют с электронами. Аналогичные процессы происходят и с электронами инжектированными в р-область.
Процесс введения носителей заряда через электронно-дырочный переход при понижении высоты потенциального барьера в область полупроводника, где эти носители заряда являются неосновными, называется инжекцией (от английского слова inject – впрыскивать, вводить).
Если поменять полярность внешнего напряжения (приложить обратное внешнее напряжение), то электрическое поле, создаваемое источником, совпадает c полем р-n перехода. Потенциальный барьер между р и n областями возрастает на величину внешнего напряжения. Количество основных носителей, способных преодолеть действие результирующего поля, уменьшается. Основные носители 6удут оттягиваться от приграничных слоев в глубь полупроводника. Ширина р-n перехода увеличивается (эффект Эрли, рисунок 1.3, в).
Для неосновных носителей (дырок в n области и электронов в р-области) потенциальный барьер в электронно-дырочном переходе отсутствует и они будут втягиваться полем в области р-n перехода. Это явление называется экстракцией. Током неосновных носителей, а также носителей, возникших в области р-п перехода, и будет определяться обратный ток через р-п переход. Величина обратного тока практически не зависит от внешнего обратного напряжения. Это можно объяснить тем, что в единицу времени количество генерируемых пар электрон–дырка при неизменной температуре остается неизменным.
Проведенный анализ позволяет рассматривать р-п переход как нелинейный элемент, сопротивление которого изменяется в зависимости от величины в полярности приложенного напряжения. При увеличении прямого напряжения сопротивление р-n перехода уменьшается. С изменением полярности и величины приложенного напряжения сопротивления р-n перехода резко возрастает. Следовательно, прямая (линейная) зависимость между напряжением и током (закон Ома) для р-n переходов не соблюдается.
Как видно из рисунка 1.3, р-п переход представляет собой двойной слой противоположных по знаку неподвижных объемных зарядов. Его можно уподобить обкладкам плоского конденсатора, обкладками которого являются р — и п-области, а диэлектриком служит р-п переход, практически не имеющий подвижных зарядов. Величина образовавшейся, так называемой, барьерной (зарядной) емкости обратно пропорциональна расстоянию между обкладками. При повышении запирающего напряжения, приложенного к переходу, увеличивается область, обедненная подвижными носителями заряда – электронами или дырками, что соответствует увеличению расстояния между обкладками конденсатора и уменьшению величины емкости. Следовательно, p-n переход можно использовать как емкость, управляемую величиной обратного напряжения. Значение барьерной емкости колеблется от десятков до сотен пикофарад; изменение этой емкости при изменении напряжения может достигать десятикратной величины
При прохождении через переход прямого тока по обе стороны от границы раздела областей накапливается избыточный заряд неосновных носителей противоположного знака, которые не могут мгновенно рекомбинировать. Он формируют емкость, которая получила наименование диффузионной. Диффузная емкость включена параллельно барьерной. Значения диффузионной емкости могут иметь порядок от сотен до тысяч пикофарад. Поэтому при прямом напряжений емкость р-п-перехода определяется преимущественно диффузионной емкостью, а при обратном напряжении – барьерной емкостью.
При прямом напряжении диффузионная емкость не оказывает существенного влияния на работу p-n перехода, так как она всегда зашунтирована малым прямым сопротивлением перехода. Ее негативное влияние проявляется при быстрых переключениях р-п перехода из открытого состояния в закрытое.
Вольтамперная характеристика п-р перехода Свойства электронно-дырочного перехода наглядно иллюстрируются его вольтамперной характеристикой (рисунок 1.4), показывающей зависимость тока через р-n переход от величины и полярности приложенного напряжения. Необходимо обратить внимание на то, что графики прямой и обратной ветви ВАХ перехода обычно имеют различные масштабы для осей ординат и абсцисс (масштабы первой и третьей четвертей рисунка). Это обусловлено значительной разницей в значениях прямых и обратных токов (см., например, таблицу 1.1), а также допустимых величин прямого и обратного напряжения.

Рисунок 1.4. Вольтамперная характеристика р-n перехода
Аналитическим выражением вольтамперной характеристики р-n перехода является формула
,(1.1)
где І0 – обратный ток насыщения р-n перехода, определяемый физическими свойствами полупроводникового материала;
U – напряжение, приложенное к р-n переходу;
е — основание натуральных логарифмов;
q – заряд электрона;
k – постоянная Больцмана;
Т – абсолютная температура р-n перехода
 –температурный потенциал, при комнатной температуре равный примерно 0,025 В.
Формула (1.1) пригодна как для прямых, так и обратных напряжений, при этом прямое напряжение считается положительным, обратное – отрицательным. В таблице 1.1. приведены данные, показывающие изменение прямого (Iпр) и обратного (Iоб) тока через переход при разных величинах приложенного внешнего напряжения.
Таблица 1.1
Токи приведены в значениях, относительных обратного тока I0. Расчет проводился по формуле (1.1).
Из таблицы и формулы (1.1) следует, что при положительных (прямых) напряжениях ток через р-n переход с увеличением напряжения резко возрастает, поэтому
, (1.2)
При отрицательных (обратных) напряжениях показатель степени числа е – отрицательный. Поэтому при увеличении обратного напряжения величина
, (1.3)
т.е. обратный ток равен току насыщения и в определенных пределах остается величиной практически постоянной. Обычно ток І0 имеет величину порядка микроампер.
Р-п переход представляет собой нелинейный элемент. У него не только явно выраженная неодинаковая проводимость при прямом и обратном напряжении, но и явная нелинейность прямой ветви ВАХ. Ее можно описать статическим и дифференциальным (динамическим) сопротивлениями. Дифференциальное сопротивление (rд) находится путем дифференцирования ВАХ, что с учетом (1.2) приводит к выражению:
(1.4)
Динамическое сопротивление может быть определено графически как котангенс угла между касательной в рассматриваемой точке ВАХ и осью абсцисс (штриховая линия на рисунке 1.4. с углом наклона β):
(1.5)
где DU и DI – конечные приращения напряжения и тока вблизи рабочей точки;
ти и mI – масштабы осей напряжения и тока.
Статическое сопротивление (Rст) численно равно отношению напряжения на элементе U к протекающему через него току I. Это сопротивление равно котангенсу угла наклона прямой, проведенной из начала координат через заданную рабочую точку ВАХ, к оси абсцисс:
(1.6)
В зависимости от того, на каком участке ВАХ расположена заданная рабочая точка, значение RСТ может быть меньше, равно или больше значения rд. Однако RСТ всегда положительно, в то время как rд может быть и отрицательным, как, например, в случае туннельного диода.
Падение напряжения на прямой ветви ВАХ перехода могут быть определены аналитически:
. (1.7)
Диоды. Основные свойства Полупроводниковый диод – это полупроводниковый прибор с одним выпрямляющим электрическим переходом и двумя выводами.
В качестве выпрямляющего электрического перехода используется электронно-дырочный р-п переход, разделяющий р и n области кристалла полупроводника, который был рассмотрен выше. По существу, к р — и n областям кристалла привариваются или припаиваются металлические выводы, и вся система заключается в металлический, металлокерамический, стеклянный или пластмассовый корпус. Поэтому основные характеристики и параметры диода определяются свойствами перехода. Прежде всего, это его выпрямляющие свойства.
Как было указано выше вольтамперная характеристика (ВАХ) диода (рисунок 1.4), в первом приближении, описывается выражением (1.1). Некоторые отличия определяются реальными конструктивно-технологическими особенностями и допущениями, использованными при выводе (1.1). Наиболее заметны расхождения при обратных напряжениях. Обратный ток увеличивается при увеличении обратного напряжения, в то время как из анализа он должен быть практически неизменным. Обуславливается это появлением составляющих, связанных с ростом объема (толщины) p-n перехода и утечками по поверхности диода между его выводами. Соотношение между этими составляющими и током I0, входящим в выражение (1.1), различно у разных приборов и, прежде всего, зависит от типа исходного полупроводникового материала. Так, для германия основную роль играет тепловой ток, а для кремния – картина противоположная. Поэтому, хотя теоретические значения обратного тока I0 германиевых диодов на 7...8 порядков больше, чем для кремниевых, реальные обратные токи отличаются примерно на 3 порядка.
Так как обратные токи невелики, а индивидуальные разбросы могут быть значительными, то в технической документации диода указывают их максимально возможные величины, получаемые при определенных условиях. В дальнейшем, для обозначения обратного тока мы будем использовать обозначение I0, не учитывая его разделение на составляющие. Для сохранения преемственности вычисления прямого тока в выражение (1.2) вводят поправочный коэффициент т:
, (1.8)
который для кремниевых диодов может принимать значения 2 и выше.
Свойства p-n перехода существенно зависят от температуры окружающей среды. При повышении температуры возрастает генерация пар носителей заряда – электронов и дырок, т.е. увеличивается концентрация неосновных носителей и собственная проводимость полупроводника, что, прежде всего, сказывается на изменении обратного тока. При увеличении температуры обратный ток увеличивается примерно в 2 раза при изменении температуры (DT) на каждые 100С у германиевых и на каждые 7,50С у кремниевых диодов:
, (1.9)
где обратный ток  измерен при температуре .
Максимально допустимое увеличение обратного тока определяет максимально допустимую температуру диода, которая составляет 80 … 100°С для германиевых диодов и 150 … 200°С – для кремниевых.
Минимально допустимая температура диодов лежит в пределах минус (60 … 70) °С.
Прямой ток p-n перехода при нагреве возрастает не так сильно, как обратный ток. Это объясняется тем, что прямой ток возникает в основном за счет примесной проводимости. Но концентрация носителей, определяемых примесью, от температуры практически не зависит. Температурная зависимость прямой ветви вольтамперной характеристики в соответствии с формулой (1.4) определяется изменениями тока І0 и показателя экспоненты, в который входит температурный потенциал. Увеличение обратного тока приводит к изменению падения напряжения на нем при прохождении прямого тока. Если через германиевый диод протекает постоянный ток, при изменении температуры падение напряжения на диоде изменяется приблизительно на 2,5 мВ/°С:
    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.