Федеральное агентство по образованию
Пояснительная записка к курсовому проекту
по курсу «Моделирование систем»
Тема: «Имитационное моделирование работы вычислительной системы из трех ЭВМ в среде GPSS»
Екатеринбург 2008г
Содержание
Введение
Вычислительная система состоит из трех ЭВМ. С интервалом 3 ± 1 мин в систему поступают задания, которые с вероятностями Р1 = 0,4; P2 = P3 = 0,3 адресуются одной из трех ЭВМ. Перед каждой ЭВМ имеется очередь заданий, длина которой не ограничена. После обработки задания на первой ЭВМ, оно с вероятностью P12 = 0,3 поступает в очередь ко второй ЭВМ и с вероятностью P13 = 0,7 - в очередь к третьей ЭВМ. После обработки на второй или третьей ЭВМ задание считается выполненным. Продолжительность обработки заданий на разных ЭВМ характеризуется интервалами времени Т1= 7 ± 4 мин, T2 = 3 ± 1 мин, T3 = 5 ± 2 мин. Смоделировать процесс обработки 200 заданий. Определить максимальную длину каждой очереди и коэффициенты загрузки ЭВМ.
1. Построение концептуальной модели системы и ее формализация
1.1 Формулировка цели и постановка задачи машинного моделирования системы
Необходимо исследовать работу вычислительной системы из трех ЭВМ. В качестве цели моделирования выберем изучение функционирования системы, а именно оценивание ее характеристик с точки зрения эффективности работы системы, т.е. минимизацию длины очереди к ЭВМ и максимизацию коэффициента загрузки ЭВМ (т.е. будет ли она простаивать, работать на износ или работать с запасом). В качестве цели эффективного функционирования системы целесообразно выбрать максимизацию коэффициента загрузки каждой ЭВМ.
С учетом имеющихся ресурсов в качестве метода решения задачи выберем метод имитационного моделирования, позволяющий не только анализировать характеристики модели, но и проводить структурный, алгоритмический и параметрический синтез модели на ЭВМ при заданных критериях оценки эффективности и ограничениях.
Постановка задачи исследования функционирования вычислительной системы состоящей из трех ЭВМ представлена в задании к курсовому проектированию, из которого следует, что необходимо определить:
ь максимальную длину очередей к каждой ЭВМ;
ь коэффициенты загрузки каждой ЭВМ.
Пересмотр начальной постановки задачи исследования не предусмотрен.
1.2 Анализ задачи моделирования системы
В качестве критерия оценки эффективности процесса функционирования системы целесообразно выбрать коэффициент загрузки ЭВМ, который должен быть максимальным, при этом длина очереди к каждой ЭВМ должна быть минимальной. Соотношение загрузки каждой ЭВМ должно быть в среднем одинаковым, чтобы каждое устройство было задействовано равноценно. В качестве еще одного традиционного критерия оценки эффективности процесса функционирования системы можно выбрать минимальное время обработки заданий в системе в целом при максимальном количестве обработанных заданий.
Экзогенные (независимые) переменные модели:
ь интервал времени поступления заданий;
ь вероятность поступления заданий на первоначальную обработку к каждой из ЭВМ;
ь вероятность поступления заданий на дальнейшую обработку к оставшимся ЭВМ;
ь продолжительность обработки заданий на каждой из ЭВМ;
ь количество заданий.
Эндогенные (зависимые) переменные модели:
ь длину очереди к каждой из ЭВМ;
ь коэффициент загрузки каждой ЭВМ.
При построении математической имитационной модели процессов функционирования системы будем использовать непрерывно-стохастический подход на примере типовой Q-схемы, потому что исследуемая система - вычислительная система из трех ЭВМ - может быть представлена как система массового обслуживания с непрерывным временем обработки параметров при наличии случайных факторов.
Формализовав процесс функционирования исследуемой системы в абстракциях Q-схемы, на втором этапе алгоритмизации модели и ее машинной реализации выберем язык имитационного моделирования, потому что высокий уровень проблемной ориентации языка значительно упростит программирование, а специально предусмотренные в нем возможности сбора, обработки и вывода результатов моделирования позволят быстро и подробно проанализировать возможные исходы имитационного эксперимента с моделью. Для получения полной информации о характеристиках процесса функционирования системы необходимо будет провести полный факторный эксперимент, который позволит определить, насколько эффективно функционирует система, и выдать рекомендации по ее усовершенствованию.
1.3 Определение требований к исходной информации об объекте моделирования и организация ее сбора
Вся необходимая информация о системе и внешней среде представлена в задании к курсовому проектированию и не требует предварительной обработки.
1.4 Выдвижение гипотез и принятие предположений
Для заполнения пробелов в понимании задачи исследования, а также проверки возможных результатов моделирования при проведении машинного эксперимента выдвигаем следующие гипотезы:
ь если интенсивность поступления заданий в ВС будет меньше времени обработки заданий на каждой из ЭВМ, то коэффициент загрузки каждой из ЭВМ будет возрастать, и, как следствие, будет увеличиваться количество поступивших заданий в ВС, которые образуют длинные очереди;
ь первая ЭВМ прорешивает меньше заданий двух других ЭВМ и при этом имеет длину очереди всегда больше длины очереди ко второй ЭВМ;
ь третья ЭВМ прорешивает всегда больше заданий, чем две другие ЭВМ по отдельности.
Для упрощения модели можно выдвинуть следующие предположения:
ь время перехода задания от одной ЭВМ к другой равно нулю.
1.5 Определение параметров и переменных модели
Входные переменные модели:
v интервал времени (интенсивность) поступления заданий в вычислительную систему (ВС), tп tп, где tп - средний интервал времени между поступлением заданий в ВС, tп - половина интервала, в котором равномерно распределено значение, единица измерения - минута;
Выходные переменные модели:
v количество заданий обработанных на каждой из ЭВМ в заданные интервалы времени обработки заданий и вероятностями поступления заданий на них, NОЗ1, NОЗ2, NОЗ3, единица измерения - количество заданий;
v коэффициент загрузки каждой из ЭВМ, ZЭ1, ZЭ2, ZЭ3, единица измерения - относительная единица;
v количество заданий, которым пришлось ждать в очереди, вследствие высокого коэффициента загрузки ЭВМ в заданные интервалы времени обработки заданий на каждой из ЭВМ и вероятностями поступления заданий на них, NО1, NО2, NО3, единица измерения - количество студентов.
Параметры модели:
вероятность поступления заданий на вторую или третью ЭВМ после обработки на первой ЭВМ, РР2, РР3, единица измерения - %;
вероятность поступления заданий на первоначальную обработку к каждой из ЭВМ, РП1, РП2, РП3, единица измерения - количество заданий;
количество заданий, решенных второй или третьей ЭВМ в заданные интервалы времени обработки заданий на каждой из ЭВМ и вероятностями поступления заданий на них, NРЗ2, NРЗ3, единица измерения - количество заданий;
количество заданий, которые надо прорешать, NО, единица измерения - количество заданий;
интервал времени (интенсивность) обработки заданий каждой из ЭВМ, tЭ1, tЭ2, tЭ3, единица измерения - минута.
Воздействия внешней среды отсутствуют.
1.6 Установление основного содержания модели
На основе анализа исходных данных и выдвинутых гипотез можно сделать вывод о том, что процессы, происходящие в моделируемой системе, являются процессами массового обслуживания, поэтому эти процессы целесообразно описать на языке Q-схем.
1.7 Обоснование критериев оценки эффективности системы
Для оценки качества процесса функционирования моделируемой системы сформируем на основании анализа задачи моделирования системы функцию поверхности отклика в исследуемой области изменения параметров и переменных как совокупность критериев оценки эффективности. Эта функция позволит определить экстремумы реакции системы.
1.8 Определение процедур аппроксимации
Для аппроксимации реальных процессов, протекающих в системе, воспользуемся процедурой определения средних значений выходных переменных, поскольку в системе имеются случайные значения переменных и параметров.
1.9 Описание концептуальной модели системы
Концептуальная модель исследуемой системы представлена в виде структурной схемы (рис. 1), состоящей из одного входного потока х - задания, поступающие в вычислительную систему, двух выходных потоков у1, у2 - задания, решенные в вычислительной системе на второй и третьей ЭВМ.
Целевая функция модели системы:
Рис. 1. Концептуальная модель в виде структурной схемы
В качестве типовой математической схемы применяется Q-схема, состоящая из одного источника (И), трех накопителей (Н1, Н2, Н3), трех каналов (К1, К2, К3), восемью клапанов (рис. 2). Задания в систему поступают от источника И с интервалом 3 1 мин в каждый из первых трех клапанов с вероятностями: клапан 1 - 40%, клапан 2 - 30%, клапан 3 - 30%. Клапан 1, клапан 2, клапан 3 управляются накопителями Н1, Н2, Н3, ёмкость которых LН1, LН2, LН3 не ограничена по условию задачи. С накопителя 1 (Н1), задания поступают в клапан 4, который управляется каналом 1 (К1). Аналогично с накопителями 2 и 3 (Н2, Н3), задания с которых поступают в клапан 5 и 6, управляются каналами 2 и 3 (К2, К3) соответственно. Обработка (задержка) заданий в каналах К1, К2, К3 занимает 7 4 мин, 3 1 мин, 5 2 мин соответственно. После обработки каналом 1 (К1), задания поступают на конечный этап обработки до решенного состояния с вероятностями 30% в клапан 2 и 70% в клапан 3. После вновь поступившие задания в клапан 2 и 3, управляются накопителями 2 и 3 (Н2, Н3), задания с которых поступают в клапан 5 и 6, управляются каналами 2 и 3 (К2, К3) соответственно. После очередной обработки (задержки) в каналах 2 и 3 (К2, К3), задания поступают в клапаны 7 и 8, где и уничтожаются, как полностью выполненные (решенные) задания.
Рис. 2. Концептуальная модель в виде Q-схемы
Формальная модель системы:
Q = {И, Н1, Н2, Н3, К1, К2, К3, NО, NОЗ1, NРЗ2, NРЗ3, кл1, кл2, кл3, кл4, кл5, кл6, кл7, кл8, LН = ? }.
Согласно разработанной концептуальной модели окончательные гипотезы и предположения совпадают с ранее принятыми. Выбранная процедура аппроксимации определения средних значений выходных переменных соответствует реальным случайным процессам, протекающим в системе массового обслуживания.
1.10 Проверка достоверности концептуальной модели
Проверка достоверности концептуальной модели включает:
а) проверку замысла модели: изначальное изучение поставленной задачи было сделано очень подробно, а именно описаны все параметры и переменные, выдвинуты гипотезы и предположения, доказательство которых должно быть подтверждено в дальнейших этапах анализа;
б) оценку достоверности исходной информации: в течение первого этапа анализа задачи четко определились и выявились данные, которые нужно найти и с помощью чего, что подтверждается элементарной логикой;
в) рассмотрение задачи моделирования: проходит через анализ по отдельным этапам, по которым выдвигаются начальные зависимости данных в задаче;
г) анализ принятых аппроксимаций: на принятых аппроксимациях, возможен дальнейший анализ и обратная логика тоже подтверждена, но полный анализ будет проходить на дальнейших этапах исследования;
д) исследование гипотез и предположений: из данных и полученных различных формулировок возможно выдвинуть гипотезы и предположения, которые не опровергают все выше сказанное.
2. Алгоритмизация модели системы и ее машинная реализация
2.1 Построение логической схемы модели
Логическая схема модели представлена на рис. 3.
После генерации заявок в источнике И (блок 1) осуществляется распределение потока заданий с вероятностями 40%, 30%, 30% между накопителями Н1 (блок 2), Н2 (блок 3), Н3 (блок 4). В условии задачи емкость накопителя не ограничена, поэтому отказов в системе нет. После ожидания в накопителях Н1, Н2, Н3, задания поступают на обслуживание в каналы К1 (блок 5), К2 (блок 6), К3 (блок 7). Задание, закончившее обработку на первом канале не является решенным, поэтому поступает на ожидание последней обработки в накопители Н2 (блок 3), Н3 (блок 4) с вероятностным распределением 30% и 70% соответственно. Для того чтобы определить загруженность (или простои) каналов К1, К2 и К3, можно проанализировать статистические данные, касающиеся очереди перед соответствующими каналами. После обработки в каналах К2 и К3, задание поступает на удаление (блок 8 и блок 9) и покидает систему.
Рис. 3. Логическая схема
2.2 Получение математических соотношений
Для построения машинной модели системы в комбинированном виде, т.е. с использованием аналитико-имитационного подхода, необходимо часть процессов в системе описать аналитически, а другую часть сымитировать соответствующими алгоритмами. На данном этапе построения аналитической модели зададим математические соотношения в виде явных функций.
Загрузки каждой ЭВМ и максимальную длину очередей в виде явных функций записать трудно. Эти величины определим с помощью языка имитационного моделирования.
2.3 Проверка достоверности модели системы
На данном подэтапе достоверность модели системы проверяется по следующим показателям:
а) возможности решения поставленной задачи:
Решение данной задачи с помощью математических отношений нецелесообразно, так как искомые данные не имеют явных функций. Использование имитационного моделирования решает эти сложности, но для правильной реализации нужно точно и безошибочно определить параметры и переменные модели, обосновать критерии оценки эффективности системы, составить концептуальную модель и построить логическую схему. Все эти шаги построить модель данного процесса;
б) точности отражения замысла в логической схеме:
При составлении логической схемы, важно понимать смысл задачи, до этого построить концептуальную модель. Проверку точности можно выполнить при подробном описании самой схемы, при этом, сопоставлять с описанием концептуальной модели;
в) полноте логической схемы модели:
Проверить наличие всех выше описанных переменных, параметров, зависимостей, последовательности действий;
г) правильности используемых математических соотношений:
2.4 Выбор инструментальных средств моделирования
В нашем случае для проведения моделирования системы массового обслуживания с непрерывным временем обработки параметров при наличии случайных факторов необходимо использовать ЭВМ с применением языка имитационного моделирования GPSS, т.к. в настоящее время самым доступным средством моделирования систем является ЭВМ, а применение простого и доступного языка имитационного моделирования GPSS (http://www.gpss.ru) позволяет получить информацию о функции состояний zi(t) системы, анализируя непрерывные процессы функционирования системы только в «особые» дискретные моменты времени при смене состояний системы благодаря моделирующему алгоритму, реализованному по «принципу особых состояний» (принцип z). Кроме того, высокий уровень проблемной ориентации языка GPSS значительно упростит программирование, специально предусмотренные в нем возможности сбора, обработки и вывода результатов моделирования позволят быстро и подробно проанализировать возможные исходы имитационного эксперимента с моделью.
2.5 Составление плана выполнения работ по программированию
Выбранный язык имитационного моделирования GPSS имеет три версии: MICRO-GPSS Version 88-01-01, GPSS/PC Version 2, GPSS World Students Version 4.3.5. Micro-GPSS имеет DOS-интерфейс, который чувствителен к стилю написания программы (количеству пробелов между операндами, длине меток и имен и др.), не содержит текстового редактора. GPSS/PC лишен указанных недостатков, однако интерпретатор GPSS World Students имеет ряд преимуществ перед ним, например наличие интерфейса Windows, пошагового отладчика, возможность сбора и сохранения в файлах различной статистической информации, визуальный ввод команд. Поэтому для разработки модели был выбран именно интерпретатор GPSS World Students.
Для моделирования достаточно использовать ЭВМ типа IBM/PC, применение специализированных устройств не требуется. В программное обеспечение ЭВМ, на которой проводится моделирование, должны входить операционная система Windows (версия 9Х и выше) и интерпретатор GPSS. Затраты оперативной и внешней памяти незначительны, и необходимости в их расчете при современном уровне техники нет. Затраты времени на программирование и отладку программы на ЭВМ зависят только от уровня знаний языка и имеющихся навыков, которые были получены мною на лабораторных работах.
2.6 Спецификация и построение схемы программы
к программе на языке имитационного моделирования GPSS согласно спецификации программы предъявляются традиционные требования: структурированность, читабельность, корректность, эффективность и работоспособность.
Спецификация постановки задачи данного курсового проекта - определить максимальную длину очередей перед каждой ЭВМ (NО1, NО2, NО3) и коэффициенты загрузки каждой из ЭВМ (ZЭ1, ZЭ2, ZЭ3). В качестве исходных данных задаются интервал времени (интенсивность) поступления заданий в вычислительную систему, состоящую их трех ЭВМ (tпр tпр), интервал времени обработки заданий на каждой из ЭВМ (tЭ1, tЭ2, tЭ3), а также процент распределения заданий на одну из трех ЭВМ (РЭ1, РЭ2, РЭ3), процент распределения заданий на последний этап обработки на вторую и третью ЭВМ (РР2, РР3).
Спецификация ограничений на параметры исследуемой системы следующая: исходные данные должны быть положительными числами, кроме того, процент распределения заданий на одну из трех ЭВМ (РЭ1, РЭ2, РЭ3) и процент распределения заданий на последний этап обработки на вторую и третью ЭВМ (РР2, РР3), каждый по отдельности в сумме должен составлять 100%.
Схема программы (см. рис. 4) зависит от выбранного языка моделирования.
Блоки схемы соответствуют блок-диаграмме языка GPSS, что позволит легко написать текст программы, провести ее модификацию и тестирование. Для полного покрытия программы тестами необходимо так подобрать параметры, чтобы все ветви в разветвлениях проходились по меньшей мере по одному разу. Интерпретатор языка GPSS позволяет проанализировать статистические данные по каждой ветви программы.
Оценка затрат машинного времени проводится по нескольким критериям эффективности программы: затраты памяти ЭВМ, затраты вычислений (идентичны времени вычислений при последовательной обработке), время вычислений («время ответа»). Форма представления входных и выходных данных определяется интерпретатором языка GPSS и изменить ее по усмотрению пользователя невозможно.
рис. 4. Схема программы
2.7 Проведение программирования модели
Метки |
Текст программы |
Комментарии |
|
Simulate |
Начало программирования |
||
Generate 3,1,,200 |
Генерация входных заданий |
||
Transfer .400, Met4, Met1 |
40% заданий направляется на метку 1, а 60% - на метку 4 |
||
Met1 |
Queue EVMQ1 |
Сбор статистических данных о входе задания в очередь EVMQ1 к прибору EVM1 |
|
Seize EVM1 |
Занятие прибора EVM1 |
||
Depart EVMQ1 |
Сбор статистических данных о выходе задания из очереди EVMQ1 к прибору EVM1 |
||
Advance 7,4 |
Обработка заявки в приборе EVM1 |
||
Release EVM1 |
Освобождение прибора EVM1 |
||
Transfer .300, Met3, Met2 |
30% заданий, обработанных на приборе EVM1 направляется на метку 2, а 70% - на метку 3 |
||
Met4 |
Transfer .500, Met3, Met2 |
из 60% заданий - 30% заданий направляется на обработку к метке 2 и 30% к метке 3 |
|
Met2 |
Queue EVMQ2 |
Сбор статистических данных о входе задания в очередь EVMQ2 к прибору EVM2 |
|
Seize EVM2 |
Занятие прибора EVM2 |
||
Depart EVMQ2 |
Сбор статистических данных о выходе задания из очереди EVMQ2 к прибору EVM2 |
||
Advance 3,1 |
Обработка заявки в приборе EVM2 |
||
Release EVM2 |
Освобождение прибора EVM2 |
||
Terminate 1 |
Уничтожение одного задания |
||
Met3 |
Queue EVMQ3 |
Сбор статистических данных о входе задания в очередь EVMQ3 к прибору EVM3 |
|
Seize EVM3 |
Занятие прибора EVM3 |
||
Depart EVMQ3 |
Сбор статистических данных о выходе задания из очереди EVMQ2 к прибору EVM3 |
||
Advance 5,2 |
Обработка заявки в приборе EVM3 |
||
Release EVM3 |
Освобождение прибора EVM3 |
||
Terminate 1 |
Уничтожение одного задания |
||
Start 200 |
|||
End |
Конец моделирования |
||
2.9 Проверка достоверности программы
На данном подэтапе последняя проверка машинной реализации модели проводится следующим образом:
а) обратным переводом программы в исходную схему, что в очередной раз подтверждает правильность пути исследования для моделирования;
б) проверкой отдельных частей программы при решении различных тестовых задач;
в) объединением всех частей программы и проверкой ее в целом на контрольном примере моделирования варианта системы.
На этом подэтапе необходимо также проверить затраты машинного времени на моделирование.
3. Получение и интерпретация результатов моделирования системы
3.1 Планирование машинного эксперимента с моделью системы
Для получения максимального объема необходимой информации об объекте моделирования при минимальных затратах машинных ресурсов проведем полный факторный эксперимент с четырьмя существенными факторами (переменных и параметров).
Согласно выбранным критериям оценки эффективности системы и целевой функции модели выберем следующие существенные факторы:
х1 - интервал времени (интенсивность) поступления заданий в вычислительную систему, состоящую их трех ЭВМ, tпр = 3мин;
х2 - интервал времени обработки заданий на первой ЭВМ, tЭ1 = 7;
х3 - интервал времени обработки заданий на второй ЭВМ tЭ2 = 3;
х4 - интервал времени обработки заданий на третьей ЭВМ tЭ3 = 5.
Зададим уровни вариации для каждого фактора:
х1= 1, х2= 4, х3= 1, х2= 2.
Составим матрицу плана полного факторного эксперимента
Номер опыта |
Фактор х1 |
Фактор х2 |
Фактор х3 |
Фактор х4 |
|
0 (базовый) |
3 |
7 |
3 |
5 |
|
1 |
2 |
3 |
2 |
3 |
|
2 |
2 |
3 |
2 |
7 |
|
3 |
2 |
3 |
4 |
3 |
|
4 |
2 |
3 |
4 |
7 |
|
5 |
2 |
11 |
2 |
3 |
|
6 |
2 |
11 |
2 |
7 |
|
7 |
2 |
11 |
4 |
3 |
|
8 |
2 |
11 |
4 |
7 |
|
9 |
4 |
3 |
2 |
3 |
|
10 |
4 |
3 |
2 |
7 |
|
11 |
4 |
3 |
4 |
3 |
|
12 |
4 |
3 |
4 |
7 |
|
13 |
4 |
11 |
2 |
3 |
|
14 |
4 |
11 |
2 |
7 |
|
15 |
4 |
11 |
4 |
3 |
|
16 |
4 |
11 |
4 |
7 |
|
3.2 Определение требований к вычислительным средствам
Для проведения эксперимента потребуется только один персональный компьютер без внешних устройств. Время выполнения эксперимента ограничено лишь временем доступа к персональному компьютеру.
3.3 Проведение рабочих расчетов
Набор исходных данных для ввода в ЭВМ представлен в виде матрицы плана, с помощью которой в достаточном объеме исследуется факторное пространство. Получение выходных данных зависит от интерпретатора языка GPSS. Дополнительные расчеты не требуются.
3.4 Анализ результатов моделирования системы
Планирование полного факторного эксперимента с моделью позволяет вывести необходимое количество выходных данных, при этом каждый опыт соответствует одному из возможных состояний исследуемой системы. Статистические характеристики модели вычисляются в интерпретаторе языка GPSS автоматически. Проведение регрессионного, корреляционного и дисперсионного анализа не требуется.
3.5 Представление результатов моделирования
Результаты моделирования представлены в табл. 1, 2.
Коэффициент использования - это доля времени моделирования, в течение которого устройство было занято. Среднее время занятия устройства из расчета именно одним транзактом в течение времени моделирования, единица измерения - в минутах.
Таблица 1. Результаты работы устройств EVM1, EVM2, EVM3
Номер опыта |
Устройство |
Кол-во раз, когда устройство было занято |
Коэффициент использования |
Среднее время занятия устройства |
Конечное время работы устройств |
|
1 |
2 |
3 |
4 |
5 |
6 |
|
0 |
EVM1 |
77 |
0,831 |
7 |
649,000 |
|
EVM2 |
73 |
0,337 |
3 |
|||
EVM3 |
127 |
0,978 |
5 |
|||
1 |
EVM1 |
80 |
0,583 |
3 |
412,000 |
|
EVM2 |
84 |
0,408 |
2 |
|||
EVM3 |
116 |
0,845 |
3 |
|||
2 |
EVM1 |
81 |
0,303 |
3 |
803,000 |
|
EVM2 |
86 |
0,214 |
2 |
|||
EVM3 |
114 |
0,994 |
7 |
|||
3 |
EVM1 |
86 |
0,623 |
3 |
414,000 |
|
EVM2 |
81 |
0,783 |
4 |
|||
EVM3 |
119 |
0,862 |
3 |
|||
4 |
EVM1 |
83 |
0,316 |
3 |
789,000 |
|
EVM2 |
88 |
0,446 |
4 |
|||
EVM3 |
112 |
0,994 |
7 |
|||
5 |
EVM1 |
96 |
0.996 |
11 |
1060,000 |
|
EVM2 |
83 |
0.331 |
2 |
|||
EVM3 |
117 |
0.157 |
3 |
|||
6 |
EVM1 |
89 |
0.991 |
11 |
988,000 |
|
EVM2 |
91 |
0.772 |
2 |
|||
EVM3 |
109 |
0.184 |
7 |
|||
7 |
EVM1 |
87 |
0.994 |
11 |
963,000 |
|
EVM2 |
87 |
0.352 |
4 |
|||
Продолжение таблицы 1 |
||||||
1 |
2 |
3 |
4 |
5 |
6 |
|
EVM3 |
113 |
0.361 |
3 |
963,000 |
||
8 |
EVM1 |
84 |
0.994 |
11 |
930,000 |
|
EVM2 |
87 |
0.374 |
4 |
|||
EVM3 |
113 |
0.851 |
7 |
|||
9 |
EVM1 |
81 |
0.302 |
3 |
805,000 |
|
EVM2 |
92 |
0.229 |
2 |
|||
EVM3 |
108 |
0.402 |
3 |
|||
10 |
EVM1 |
66 |
0.239 |
3 |
830,000 |
|
EVM2 |
90 |
0.217 |
2 |
|||
EVM3 |
110 |
0.928 |
7 |
|||
11 |
EVM1 |
75 |
0.280 |
3 |
804,000 |
|
EVM2 |
92 |
0.458 |
4 |
|||
EVM3 |
108 |
0.403 |
3 |
|||
12 |
EVM1 |
77 |
0.945 |
3 |
822,000 |
|
EVM2 |
89 |
0.433 |
4 |
|||
EVM3 |
111 |
0.281 |
7 |
|||
13 |
EVM1 |
91 |
0.993 |
11 |
1008,000 |
|
EVM2 |
87 |
0.336 |
2 |
|||
EVM3 |
113 |
0.173 |
3 |
|||
14 |
EVM1 |
78 |
0.975 |
11 |
880,000 |
|
EVM2 |
93 |
0.211 |
2 |
|||
EVM3 |
107 |
0.851 |
7 |
|||
15 |
EVM1 |
80 |
0.992 |
11 |
887,000 |
|
EVM2 |
85 |
0.383 |
4 |
|||
EVM3 |
115 |
0.389 |
3 |
|||
16 |
EVM1 |
82 |
0.988 |
11 |
913,000 |
|
EVM2 |
83 |
0.364 |
4 |
|||
EVM3 |
117 |
0.897 |
7 |
|||
Таблица 2. Результаты работы очередей EVMQ1, EVMQ2, EVMQ2
Номер опыта |
Устройство |
Максимальное содержимое очереди |
Общее кол-во входов транзактов в очередь в течение времени моделирования |
Общее кол-во входов транзактов в очередь с нулевым временем ожидания |
Среднее значение содержимого очереди в течение времени моделирования |
Среднее время пребывания одного транзакта в очереди с учетом всех входов в очередь |
Среднее время пребывания одного транзакта в очереди без учета «нулевых» входов в очередь |
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
! | Как писать курсовую работу Практические советы по написанию семестровых и курсовых работ. |
! | Схема написания курсовой Из каких частей состоит курсовик. С чего начать и как правильно закончить работу. |
! | Формулировка проблемы Описываем цель курсовой, что анализируем, разрабатываем, какого результата хотим добиться. |
! | План курсовой работы Нумерованным списком описывается порядок и структура будующей работы. |
! | Введение курсовой работы Что пишется в введении, какой объем вводной части? |
! | Задачи курсовой работы Правильно начинать любую работу с постановки задач, описания того что необходимо сделать. |
! | Источники информации Какими источниками следует пользоваться. Почему не стоит доверять бесплатно скачанным работа. |
! | Заключение курсовой работы Подведение итогов проведенных мероприятий, достигнута ли цель, решена ли проблема. |
! | Оригинальность текстов Каким образом можно повысить оригинальность текстов чтобы пройти проверку антиплагиатом. |
! | Оформление курсовика Требования и методические рекомендации по оформлению работы по ГОСТ. |
→ | Разновидности курсовых Какие курсовые бывают в чем их особенности и принципиальные отличия. |
→ | Отличие курсового проекта от работы Чем принципиально отличается по структуре и подходу разработка курсового проекта. |
→ | Типичные недостатки На что чаще всего обращают внимание преподаватели и какие ошибки допускают студенты. |
→ | Защита курсовой работы Как подготовиться к защите курсовой работы и как ее провести. |
→ | Доклад на защиту Как подготовить доклад чтобы он был не скучным, интересным и информативным для преподавателя. |
→ | Оценка курсовой работы Каким образом преподаватели оценивают качества подготовленного курсовика. |
Курсовая работа | Деятельность Движения Харе Кришна в свете трансформационных процессов современности |
Курсовая работа | Маркетинговая деятельность предприятия (на примере ООО СФ "Контакт Плюс") |
Курсовая работа | Политический маркетинг |
Курсовая работа | Создание и внедрение мембранного аппарата |
Курсовая работа | Социальные услуги |
Курсовая работа | Педагогические условия нравственного воспитания младших школьников |
Курсовая работа | Деятельность социального педагога по решению проблемы злоупотребления алкоголем среди школьников |
Курсовая работа | Карибский кризис |
Курсовая работа | Сахарный диабет |
Курсовая работа | Разработка оптимизированных систем аспирации процессов переработки и дробления руд в цехе среднего и мелкого дробления Стойленского ГОКа |