Курсовая работа по предмету "Биология и естествознание"


Почки и их функция



3

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

ТАВРИЧЕСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ИМ. В.И.ВЕРНАДСКОГО

Факультет физической культуры и спорта

Кафедра медико-биологических основ физической культуры

Усманова Ленуре Леноровна

Курсовая работа по физиологии

ПОЧКИ И ИХ ФУНКЦИИ

Специальность 6.01.02.00 "Физическая реабилитация"

Курс 3

Научный руководитель:

Доцент кафедры медико-биологических

основ физической культуры

Грабовская Е.Ю.

кандидат биологических наук

Симферополь 2007

Реферат

Автор работы Усманова Ленуре Леноровна. Название работы: «Почки и их функции». Курсовая работа изложена на 32 страницах, содержит 5 рисунков, список литературы.

Цель работы - изучить функции почек и мочевыделительной системы привести примеры исследования функций почек и мочевыделительной системы.

Объектом исследования являются почки.

Методами исследования почек, описанными в курсовой работе послужили: методы количественной оценки числа лейкоцитов, эритроцитов, цилиндров в моче и степени бактериурии, методы определения парциальных функций почек, рентгеновские методы исследования, ультразвуковое исследование почек. Методы, приведенные в данной работе, специально подобраны, для успешной диагностики гидронефроза.

В результате проделанной работы автор показал многие способы и методы исследования почек и мочевыделительной системы, описал анатомо-физиологическое строение и функции, показал основные методы исследования в лабораторных условиях, диагностику нарушения почек.

Ключевые слова: ПОЧКА, НЕФРОН, МОЧЕВЫДЕЛИТЕЛЬНАЯ СИСТЕМА, АНАТОМИЯ ПОЧЕК.

Содержание

  • Содержание 3
  • Введение 4
  • Раздел 1. Морфо-функциональная характеристика мочевыделительной системы 5
    • 1.1. Анатомия почек 5
    • 1.2. Строение почек 7
    • 1.3. Функции почек. Механизм мочеобразования 15
    • 1.4. Кровоснабжение почек 19
  • Раздел 2. Методы лабораторной и инструментальной диагностики заболеваний органов мочеотделения 22
    • 2.1. Методы количественной оценки числа лейкоцитов, эритроцитов, цилиндров в моче и степени бактериурии 24
    • 2.2. Методы определения парциальных функций почек 25
    • 2.3. Рентгеновские методы исследования 26
    • 2.4. Ультразвуковое исследование почек 28
  • Выводы 30
  • Литература 32

Введение

Нет ни одного органа в теле, в отношении которого наши представления о функции так тесно зависели бы от ознакомления со структурой, как в отношении почек.

Почки являются основным органом выделения (экскреции) конечных продуктов азотистого обмена, и органом, охраняющим постоянство физико-химических условий, осмотического давления и щелочно-кислотного равновесия в организме. Эта основная роль почек не может быть заменима никакими другими экстраремальными системами выделения. Выпадение или резкое нарушение функций общих почек у человека при некоторых патологических состояниях ведет к смертельному исходу в результате уремии.

Почки, выделяя продукты обмена всех органов и тканей связаны своей экспреторной работе со всем организмом, но особенно выступает связь почек с основными органами эктраремального выделения: желудочно-кишечным трактом, печенью, кожей (потовыми железами) и органами дыхания.

Целью нашего исследования явилось изучение анатомо-физиологический особенности почек в норме и при патологии.

В работе решены следующие задачи:

1) изучить анатомо-физиологические особенности почек

2) изучить процесс мочеобразования

3) изучить методы количественного исследования основных функций почек

4) изучить патологические процессы в почках.

Раздел 1. Морфо-функциональная характеристика мочевыделительной системы

1.1. Анатомия почек

Почки расположены забрюшинно (ретроперитонеально) по обе стороны от позвоночника, причем правая почка несколько ниже левой. Нижний полюс левой почки лежит на уровне верхнего края тела III поясничного позвонка, а нижний полюс правой почки соответствует его середине. XII ребро пересекает заднюю поверхность левой почки почти на середине ее длины, а правую - ближе к ее верхнему краю.[8]

Почки имеют бобовидную форму. Длина каждой почки составляет 10-12 см, ширина - 5-6 см, толщина - 3-4 см. Масса почки составляет 150-160 г. Поверхность почек гладкая. В среднем отделе почки имеется углубление - почечные ворота (hilus renalis), в которые впадают почечная артерия и нервы. Из почечных ворот выходят почечная вена и лимфатические протоки. Здесь же расположена почечная лоханка, которая переходит в мочеточник.

На разрезе почки хорошо заметны 2 слоя: корковое и мозговое вещество почки. В ткани коркового вещества находятся почечные (мальпигиевы) тельца. Во многих местах корковое вещество глубоко проникает в толщу мозгового в виде радиально расположенных почечных столбов, которые разделяют мозговое вещество на почечные пирамиды, состоящие из прямых канальцев, образующих петлю нефрона, и из проходящих в мозговом веществе собирательных трубок. Верхушки каждой почечной пирамиды образуют почечные сосочки с отверстиями, открывающимися в почечные чашки. Последние сливаются и образуют почечную лоханку, которая переходит затем в мочеточник. Почечные чашки, лоханка и мочеточник составляют мочевыводящие пути почки. Сверху почка покрыта плотной соединительнотканной капсулой.

Мочевой пузырь располагается в полости малого таза и лежит позади лобкового симфиза. При наполнении мочевого пузыря мочой его верхушка выступает над лобком и соприкасается с передней брюшной стенкой. У женщин задняя поверхность мочевого пузыря соприкасается с передней стенкой шейки матки и влагалища, а у мужчин прилежит к прямой кишке.

Женский мочеиспускательный канал короткий - длиной 2,5-3,5 см. Длина мужского мочеиспускательного канала около 16 см; его начальная (предстательная) часть проходит через предстательную железу.[7]

Главная особенность кровоснабжения почечного (коркового) нефрона состоит в том, что междольковые артерии дважды распадаются на артериальные капилляры. Это так называемая «чудесная сеть» почки. Приносящая артериола после входа в клубочковую капсулу распадается на клубочковые капилляры, которые затем объединяются снова и образуют выносящую клубочковую артериолу. Последняя после выхода из капсулы Шумлянского-Боумена вновь распадается на капилляры, густо оплетающие проксимальные и дистальные отделы канальцев, а также петлю Генле, обеспечивая их кровью.

Второй важной особенностью кровообращения в почке является существование в почках двух кругов кровообращения: большого (коркового) и малого (юкстамедуллярного), соответствующих двум типам одноименных нефронов.

Клубочки юкстамедуллярных нефронов также располагаются в корковом веществе почки, но несколько ближе к мозговому слою. Петли Генле этих нефронов глубоко опускаются в мозговое вещество почки, достигая вершин пирамид. Выносящая артериола юкстамедуллярных нефронов не распадается на вторую капиллярную сеть, а образует несколько прямых артериальных сосудов, которые направляются к вершинам пирамид, а затем, образуя поворот в виде петли, возвращаются обратно в корковое вещество в виде венозных сосудов. Прямые сосуды юкстамедуллярных нефронов, располагаясь рядом с восходящим и нисходящим отделами петли Генле и являясь существенными элементами противоточно-поворотной системы почек, выполняют важную роль в процессах осмотической концентрации и разведения мочи.[4]

1.2. Строение почек

Почки являются основным органом выделения. Они выполняют в организме много функций. Одни из них прямо или косвенно связаны с процессами выделения, другие - не имеют такой связи.

У человека имеется пара почек, лежащих у задней стенки брюшной полости по обе стороны позвоночника на уровне поясничных позвонков. Вес одной почки составляет около 0,5% общего веса тела, левая почка слегка выдвинута вперед по сравнению с правой почкой.

Кровь поступает в почки через почечные артерии, а оттекает от них по почечным венам, впадающим в нижнюю полую вену. Образующаяся в почках моча стекает по двум мочеточникам в мочевой пузырь, где накапливается до тех пор, пока не будет выведена через мочеиспускательный канал.[1]

На поперечном разрезе почки видны две ясно различимые зоны: лежащее ближе к поверхности корковое вещество почки и внутреннее мозговое вещество почки. Корковое вещество почки покрыто фиброзной капсулой и содержит почечные клубочки, едва видные невооруженным глазом. Мозговое вещество состоит из почечных канальцев, почечных собирательных трубок и кровеносных сосудов, собранных вместе в виде почечных пирамид. Верхушки пирамид, называемые почечными сосочками, открываются в почечную лоханку, образующую расширенное устье мочеточника. Через почки проходит множество сосудов, образующих густую капиллярную сеть.

Основной структурной и функциональной единицей почки является нефрон с его кровеносными сосудами (рис.1.1).

Нефрон - структурная и функциональная единица почки. У человека в каждой почке содержится около миллиона нефронов, каждый длиной около 3 см.

Каждый нефрон включает шесть отделов, сильно различающихся по строению и физиологическим функциям: почечное тельце (мальпигиево тельце), состоящее из боуменовой капсулы и почечного клубочка; проксимальный извитой почечный каналец; нисходящее колено петли Генле; восходящее колено петли Генле; дистальный извитой почечный каналец; собирательная почечная трубка.

Существуют нефроны двух типов - корковые нефроны и юкстамедуллярные нефроны. Корковые нефроны расположены в корковом веществе почек и имеют относительно короткие петли Генле, которые лишь недалеко заходят в мозговое вещество почек. Корковые нефроны контролируют объем плазмы крови при нормальном количестве воды в организме, а при недостатке воды происходит усиленная ее реабсорбция в юкстамедуллярных нефронах. В юкстамедуллярных нефронах почечные тельца расположены около границы почечного коркового вещества и почечного мозгового вещества. Они имеют длинные нисходящие и восходящие колена петли Генле, глубоко проникающие в мозговое вещество. Юкстамедуллярные нефроны усиленно реабсорбируют воду при недостатке ее в организме.[4]

Кровь поступает в почку по почечной артерии, которая разветвляется сначала на междолевые артерии, затем на дуговые артерии и междольковые артерии, от последних отходят приносящие артериолы, снабжающие кровью клубочки. Из клубочков кровь, объем которой уменьшился, оттекает по выносящим артериолам. Далее она течет по сети перитубулярных капилляров, находящихся в почечном корковом веществе и окружающих проксимальные и дистальные извитые канальцы всех нефронов и петли Генле корковых нефронов. От этих капилляров отходят почечные прямые сосуды, идущие в почечном мозговом веществе параллельно петлям Генле и собирательным трубкам. Функция обеих сосудистых систем - возвращение крови, содержащей ценные для организма питательные вещества, в общую кровеносную систему. Через прямые сосуды протекает значительно меньше крови, чем через перитубулярные капилляры, благодаря чему в интерстициальном пространстве почечного мозгового вещества поддерживается высокое осмотическое давление, необходимое для образования концентрированной мочи.

Сосуды прямые. Узкий нисходящий и более широкий восходящий почечные капилляры прямых сосудов на всем протяжении идут параллельно друг другу и образуют на разных уровнях ветвящиеся петли. Эти капилляры проходят очень близко к канальцам петли Генле, однако прямого переноса веществ из фильтрата петли в прямые сосуды не происходит. Вместо этого растворенные вещества выходят сначала в интерстициальные пространства почечного мозгового вещества, где мочевина и хлористый натрий задерживаются из-за малой скорости кровотока в прямых сосудах, и осмотический градиент тканевой жидкости сохраняется. Клетки стенок прямых сосудов свободно пропускают воду, мочевину и соли, а поскольку эти сосуды идут рядом, они функционируют как система противоточного обмена. При вступлении нисходящего капилляра в мозговое вещество из плазмы крови вследствие прогрессирующего повышения осмотического давления тканевой жидкости выходит путем осмоса вода, а обратно входят путем диффузии хлористый натрий и мочевина. В восходящем капилляре происходит обратный процесс. Благодаря этому механизму осмотическая концентрация плазмы, выходящей из почек, остается стабильной независимо от концентрации плазмы, поступающей в них.

Поскольку все перемещения растворенных веществ и воды происходят пассивно, противоточный обмен в прямых сосудах происходит без затрат энергии.

Каналец извитой проксимальный. Проксимальный извитой каналец - наиболее длинная (14 мм) и широкая (60 мкм) часть нефрона, по которой фильтрат поступает из боуменовой капсулы в петлю Генле. Стенки этого канальца состоят из одного слоя эпителиальных клеток с многочисленными длинными (1 мкм) микроворсинками, образующими щеточную каемку на внутренней поверхности канальца. Наружная мембрана эпителиальной клетки примыкает к базальной мембране, и ее впячивания образуют базальный лабиринт. Мембраны соседних эпителиальных клеток разделены межклеточными пространствами, и через них и лабиринт циркулирует жидкость. Эта жидкость омывает клетки проксимальных извитых канальцев и окружающую сеть перитубулярных капилляров, образуя связующее звено между ними. В клетках проксимального извитого канальца около базальной мембраны сосредоточены многочисленные митохондрии, генерирующие АТФ, необходимый для активного транспорта веществ.[9]

Большая поверхность проксимальных извитых канальцев, многочисленные митохондрии в них и близость перитубулярных капилляров - все это приспособления для избирательной реабсорбции веществ из клубочкового фильтрата. Здесь всасывается обратно более 80% веществ, в том числе вся глюкоза, все аминокислоты, витамины и гормоны и около 85% хлористого натрия и воды. Из фильтрата путем диффузии реабсорбируется также около 50% мочевины, которая поступает в перитубулярные капилляры и возвращается таким образом, в общую систему кровообращения, остальная мочевина выводится с мочой.

Белки с молекулярной массой менее 68 000, поступающие в процессе ультрафильтрации в просвет почечного канальца, извлекаются из фильтрата путем пиноцитоза, происходящего у основания микроворсинок. Они оказываются внутри пиноцитозных пузырьков, к которым прикрепляются первичные лизосомы, в которых гидролитические ферменты расщепляют белки до аминокислот, которые используются клетками канальца или переходят путем диффузии в перитубулярные капилляры.

В проксимальных извитых канальцах происходит также секреция креатинина и секреция чужеродных веществ, которые транспортируются из межклеточной жидкости, омывающей канальцы, в канальцевый фильтрат и выводятся с мочой.[1]

Каналец извитой дистальный. Дистальный извитой каналец подходит к мальпигиеву тельцу и весь лежит в почечном корковом веществе. Клетки дистальных канальцев имеют щеточную каемку и содержат много митохондрий. Именно этот отдел нефрона ответственен за тонкую регуляцию водно-солевого баланса и регуляцию рН крови. Проницаемость клеток дистального извитого канальца регулируется антидиуретическим гормоном.

Трубка собирательная. Собирательная трубка начинается в почечном корковом веществе от почечного дистального извитого канальца и идет вниз через почечный мозговой слой, где объединяется с несколькими другими собирательными трубками в более крупные протоки (протоки Беллини). Проницаемость стенок собирательных трубок для воды и мочевины регулируется антидиуретическим гормоном, и благодаря этой регуляции собирательная трубка участвует вместе с дистальным извитым канальцем в образовании гипертонической мочи в зависимости от потребности организма в воде.

Петля Генле. Петля Генле вместе с капиллярами почечных прямых сосудов и почечной собирательной трубкой создает и поддерживает продольный градиент осмотического давления в мозговом веществе почек по направлению от почечного коркового вещества к почечному сосочку за счет повышения концентрации хлористого натрия и мочевины. Благодаря этому градиенту возможно удаление все большего количества воды путем осмоса из просвета канальца в интерстициальное пространство почечного мозгового вещества, откуда она переходит в прямые почечные сосуды. В конечном счете, в почечной соединительной трубке образуется гипертоническая моча. Движение ионов, мочевины и воды между петлей Генле, прямыми сосудами и собирательной трубкой можно описать следующим образом:

Короткий и относительно широкий (30 мкм) верхний сегмент нисходящего колена петли Генле непроницаем для солей, мочевины и воды. По этому участку фильтрат переходит из проксимального извитого почечного канальца в более длинный тонкий (12 мкм) сегмент нисходящего колена петли Генле, свободно пропускающий воду.

Благодаря высокой концентрации хлористого натрия и мочевины в тканевой жидкости почечного мозгового вещества создается высокое осмотическое давление, вода отсасывается из фильтрата и поступает в почечные прямые сосуды.[8]

В результате выхода воды из фильтрата его объем уменьшается на 5 % и он становится гипертоничным. В верхушке мозгового вещества (в почечном сосочке) нисходящее колено петли Генле изгибается и переходит в восходящее колено, которое по всей своей длине проницаемо для воды.

Нижний участок восходящего колена - тонкий сегмент - проницаем для хлористого натрия и мочевины, и хлористый натрий диффундирует из него, а мочевина диффундирует внутрь.

В следующем, толстом сегменте восходящего колена эпителий состоит из уплощенных кубовидных клеток с рудиментарной щеточной каемкой и многочисленными митохондриями. В этих клетках осуществляется активный перенос ионов натрия и хлора из фильтрата.

Вследствие выхода ионов натрия и хлора из фильтрата повышается осмолярность почечного мозгового вещества, а в дистальные извитые почечные канальцы поступает гипотоничный фильтрат. Клетки эпителиальные, выполняющие барьерную функцию (главным образом) клетки эпителиальные мочеполового тракта, выполняющие барьерную функцию.[1]

Клубочек почечный. Почечный клубочек состоит примерно из 50 собранных в пучок капилляров, на которые разветвляется единственная подходящая к клубочку приносящая артериола и которые сливаются затем в выносящую артериолу.

В результате ультрафильтрации, происходящей в клубочках, из крови удаляются все вещества с молекулярным весом менее 68 000, и образуется жидкость, называемая клубочковым фильтратом

Тельце мальпигиево. Мальпигиево тельце - начальный отдел нефрона, оно состоит из почечного клубочка и боуменовой капсулы. Эта капсула образуется в результате впячивания слепого конца эпителиального канальца и охватывает в виде двухслойного мешочка почечный клубочек. Строение мальпигиева тельца целиком связано с его функцией - фильтрацией крови. Стенки капилляров состоят из одного слоя эндотелиальных клеток, между которыми имеются поры диаметром 50 - 100 нм. Эти клетки лежат на базальной мембране, которая полностью окружает каждый капилляр и образует непрерывный слой, полностью отделяющий находящуюся в капилляре кровь от просвета боуменовой капсулы. Внутренний листок боуменовой капсулы состоит из клеток с отростками, которые называются подоцитами. Отростки поддерживают базальную мембрану и окруженный ею капилляр. Клетки наружного листка боуменовой капсулы представляют собой плоские неспециализированные эпителиальные клетки.

В результате ультрафильтрации, происходящей в клубочках, из крови удаляются все вещества с молекулярным весом менее 68 000 и образуется жидкость, называемая клубочковым фильтратом.

Всего через обе почки проходит 1 200 мл крови в 1 мин (т.е. за 4 - 5 мин проходит вся кровь, имеющаяся в кровеносной системе). В этом объеме крови содержится 700 мл плазмы, из которых 125 мл отфильтровывается в мальпигиевых тельцах. Вещества, фильтрующиеся из крови в клубочковых капиллярах, проходят через их поры и базальную мембрану под действием давления в капиллярах, которое может варьировать при изменении диаметра приносящей и выносящей артериол, находящихся под нервным контролем и гормональным контролем. Сужение выносящей артериолы приводит к уменьшению оттока крови из клубочка и повышению в нем гидростатического давления. При таком состоянии в клубочковый фильтрат могут проходить и вещества с молекулярной массой более 68 000.[7]

По химическому составу клубочковый фильтрат сходен с плазмой крови. Он содержит глюкозу, аминокислоты, витамины, некоторые гормоны, мочевину, мочевую кислоту, креатинин, электролиты и воду. Лейкоциты, эритроциты, тромбоциты и такие белки плазмы, как альбумины и глобулины, не могут выходить из капилляров - они задерживаются базальной мембраной, которая выполняет роль фильтра. Кровь, оттекающая от клубочков, обладает повышенным онкотическим давлением, так как в плазме повышена концентрация белков, но ее гидростатическое давление снижено.

Почечное кровообращение. Средняя скорость почечного кровотока составляет в покое около 4,0 мл/г в минуту, т.е. в целом для почек, вес которых около 300 г, примерно 1200 мл в минуту. Это составляет примерно 20% общего сердечного выброса. Особенность почечного кровообращения заключается в наличии двух последовательных капиллярных сетей. Приносящие артериолы распадаются на клубочковые капилляры почек, отделенные от околоканальцевого капиллярного ложа почек выносящими артериолами. Выносящие артериолы характеризуются высоким гидродинамическим сопротивлением. Давление в клубочковых капиллярах почек довольно велико (порядка 60 мм рт.ст.), а давление в околоканальцевых капиллярах почек - относительно мало (около 13 мм рт. ст.).[1]

1.3. Функции почек. Механизм мочеобразования

В основе деятельности почек лежат следующие механизмы:

1. Активный транспорт. В процессах избирательной реабсорбции и секреции молекулы и ионы активно секретируются в фильтрат или всасываются из него. Так, например, осуществляется всасывание глюкозы в перитубулярные капилляры, окружающие проксимальный извитой почечный каналец, и хлористый натрий - в толстом восходящем колене петли Генле.

2. Избирательная проницаемость. Различные участки нефрона обладают избирательной проницаемостью для ионов, воды и мочевины. Например, проксимальные извитые почечные канальцы относительно мало проницаемы по сравнению с дистальными извитыми почечными канальцами. Проницаемость дистальной почечной трубки может регулироваться гормонами.

3. Концентрационные градиенты. В результате действия двух описанных механизмов в интерстициальном пространстве почечного мозгового вещества поддерживаются концентрационные градиенты.

4. Пассивная диффузия и осмос. Ионы натрия и хлора и молекулы мочевины будут диффундировать в фильтрат и из него по концентрационному градиенту в тех участках нефрона, которые проницаемы для них. А молекулы воды в проницаемых для них участках нефрона будут, выходит осмотически из фильтрата в тканевую (интерстициальную) жидкость почки там, где эта жидкость гипертонична.

5. Гормональная регуляция. Водный баланс организма и экскрецию солей регулируют гормоны, действующие на дистальные извитые почечные канальцы и почечные собирательные трубки, - антидиуретический гормон, альдостерон и другие.[5]

Почки служат главным органом выделения и главным органом осморегуляции. Их функции включают удаление из организма ненужных продуктов обмена и чужеродных веществ, регуляцию химического состава жидкостей тела путем удаления веществ, количество которых превышает текущие потребности, регуляцию содержания воды в жидкостях тела (и тем самым их объема) и регуляцию рН жидкостей тела.

Почки обильно снабжаются кровью и гомеостатически регулируют состав крови. Благодаря этому поддерживается оптимальный состав тканевой жидкости, и следовательно, внутриклеточной жидкости омываемых ею клеток, что обеспечивает их эффективную работу.

Почки приспосабливают свою деятельность к изменениям, происходящим в организме. При этом только в двух последних отделах нефрона - в дистальном извитом канальце почки и собирательной трубке почки - изменяется функциональная активность с целью регуляции состава жидкостей тела. Остальная часть нефрона вплоть до дистального канальца функционирует при всех физиологических состояниях одинаково.[2]

Конечным продуктом деятельности почек является моча, объем, и состав которой варьирует в зависимости от физиологического состояния организма. В норме отделяется большое количество разведенной мочи, но при недостатке в организме воды образуется концентрированная моча.

Ультрафильтрация. В почечном клубочке все низкомолекулярные вещества, такие, как глюкоза, вода и мочевина, переходят в фильтрат, заполняющий боуменову капсулу и поступающий затем в почечный каналец нефрона.

Скорость ультрафильтрации довольно постоянна - за 1 мин образуется около 125 мл фильтрата. Если бы весь этот фильтрат выводился в виде мочи, то ее объем в сутки составил бы примерно 180 л. Однако 124 мл из этого фильтрата всасывается обратно.

Ультрафильтрация - процесс пассивный и неизбирательный, вместе с ненужными для организма веществами удаляются и вещества, которые могут быть использованы. Обратное всасывание веществ происходит в канальцах, там же может происходить дополнительное активное выведение ненужных продуктов из окружающих капилляров.

Избирательная реабсорбция. Все вещества, которые могут быть использованы организмом или нужны для поддержания водно-солевого состава жидкостей тела, всасываются из фильтрата в кровеносные капилляры в проксимальных извитых почечных канальцах .

Механизм избирательной реабсорбции. Механизм всасывания, происходящий в проксимальных извитых почечных канальцах, можно описать следующим образом:

Глюкоза, аминокислоты и неорганические ионы диффундируют из фильтрата в клетки проксимального извитого канальца, откуда активно переносятся транспортными системами плазматической мембраны в межклеточные пространства и щели лабиринта, откуда они диффундируют в чрезвычайно проницаемые перитубулярные капилляры и выводятся из нефрона. В результате непрерывного удаления этих веществ из клеток проксимального извитого канальца создается диффузионный градиент между находящимся в просвете канальца фильтратом и клетками, и по этому градиенту в клетки переходят новые молекулы, которые затем активно транспортируются из клеток в межклеточные пространства лабиринта, и весь процесс повторяется.

В результате активного поглощения натрия и сопровождающих его анионов осмотическое давление фильтрата снижается, и в перитубулярные капилляры путем осмоса переходит эквивалентное количество воды. Основная масса растворенных веществ и воды извлекается из фильтрата с довольно постоянной скоростью. В результате этого в канальце образуется фильтрат, изотоничный плазме крови перитубулярных капилляров.

Влияние антидиуретического гормона. Относительно стабильное осмотическое давление крови поддерживается за счет баланса между поступлением воды с питьем и пищей и потерей воды с выдыхаемым воздухом, потом, калом и мочой. За тонкую регуляцию осмотического давления отвечает антидиуретический гормон, путем изменения проницаемости дистальных извитых канальцев в почках и собирательных трубок в почках.[8, 9]

При недостаточном потреблении воды, сильном потоотделении или после приема большого количества соли осморецепторы, находящиеся в гипоталамусе, регистрируют повышение осмотического давления крови. Возникают нервные импульсы, которые передаются в заднюю долю гипофиза и вызывают высвобождение антидиуретического гормона, который повышает проницаемость для воды стенок дистального извитого канальца и собирательной трубки, вода выходит из фильтрата в тканевую жидкость коркового вещества почек и мозгового вещества почек, и почки выделяют меньший объем более концентрированной мочи.

Антидиуретический гормон повышает также проницаемость собирательной трубки для мочевины, которая диффундирует из мочи в тканевую жидкость мозгового вещества почки, в результате чего повышается осмолярность и происходит увеличение выхода воды из тонкого сегмента восходящего колена петли Генле.

После приема большого количества воды осмотическое давление крови уменьшается, и секреция антидиуретического гормона прекращается. Стенки дистального извитого канальца и собирательной трубки становятся непроницаемыми для воды, реабсорбция воды при прохождении фильтрата через мозговое вещество почки уменьшается и, следовательно, выводится большой объем гипотонической мочи.

При недостаточности антидиуретического гормона возникает несахарный диабет, при котором выделяется очень большое количество гипотонической мочи.[1]

1.4. Кровоснабжение почек

Отличительной особенностью кровоснабжения почек является то, что кровь используется не только для трофики органа, но и для образования мочи. Почки получают кровь из коротких почечных артерий, которые отходят от брюшного отдела аорты. В почке артерия делится на большое количество мелких сосудов-артериол, приносящих кровь к клубочку. Приносящая (афферентная) артериола входит в клубочек и распадается на капилляры, которые, сливаясь, образуют выносящую (эфферентную) артериолу. Диаметр приносящей артериолы почти в 2 раза больше, чем выносящей, что создает условия для поддержания необходимого артериального давления (70 мм рт.ст.) в клубочке. Мышечная стенка у приносящей артериолы выражена лучше, чем у выносящей. Это дает возможность регуляции просвета приносящей артериолы. Выносящая артериола вновь распадается на сеть капилляров вокруг проксимальных и дистальных канальцев. Артериальные капилляры переходят в венозные, которые, сливаясь в вены, отдают кровь в нижнюю полую вену. Капилляры клубочков выполняют только функцию мочеобразования. Особенностью кровоснабжения юкстамедуллярного нефрона является то, что эфферентная артериола не распадается на околоканальцевую капиллярную сеть, а образует прямые сосуды, которые вместе с петлей Генле спускаются в мозговое вещество почки и участвуют в осмотическом концентрировании мочи.

Через сосуды почки в 1 мин проходит около 1/4 объема крови, выбрасываемого сердцем в аорту. Почечный кровоток условно делят на корковый и мозговой. Максимальная скорость кровотока приходится на корковое вещество (область, содержащую клубочки и проксимальные канальцы) и составляет 4-5 мл/мин на 1 г ткани, что является самым высоким уровнем органного кровотока. Благодаря особенностям кровоснабжения почки давление крови в капиллярах сосудистого клубочка выше, чем в капиллярах других областей тела, что необходимо для поддержания нормального уровня клубочковой фильтрации. Процесс мочеобразования требует создания постоянных условий кровотока. Это обеспечивается механизмами ауторегуляции. При повышении давления в приносящей артериоле ее гладкие мышцы сокращаются, уменьшается количество поступающей крови в капилляры и происходит снижение в них давления. При падении системного давления приносящие артериолы, напротив, расширяются. Клубочковые капилляры также чувствительны к ангиотензину II, простагландинам, брадикининам, вазопрессину. Благодаря указанным механизмам кровоток в почках остается постоянным при изменении системного артериального давления в пределах 100-150 мм рт. ст. Однако при ряде стрессовых ситуаций (кровопотеря, эмоциональный стресс и т.д.) кровоток в почках может уменьшаться.

Раздел 2. Методы лабораторной и инструментальной диагностики заболеваний органов мочеотделения

При восстановительном процессе в почках без лейкоцитурии для ее выявления используют так называемые провокационные тесты - преднизолоновый и пирогеналовый. Эти тесты основаны на том, что после введения в.в. 30 мг. преднизалона, или внутримышечно 10 МПД (миним. пирогенная доза) пирогенала, при воспалительных процессах в почках, в течение первых 3-х часов, отмечается повышение интенсивности лейкоцитурии, которое сохраняется в течение суток.

Диагностическая ценность тестов возрастает, если на ряду с определением числа лейкоцитов, а также значительное увеличение бактериурии следует рассматривать как признаки пиелонефрита.

Бактериоскопия мочи выявляет только факт присутствия в ней микробов и по практической значимости уступает бактериологическому исследованию, которое позволяет определить вид возбудителя воспаления, оценить бактериурию количественно, и установить чувствительность бактерий к антибактериальным препаратам. Для выявления бактериальной флоры. производят посевы мочи на различные питательные среды. В настоящее время применяют упрощенный посев на агар, в чашках Петри, который более удобен в клинической практике, и позволяет судить о содержании бактерий в 1 мл. мочи.

В 1 мл. нормальной мочи содержится 2*103 -4*103 лейкоцитов, 1*103 - 2*103 эритроцитов, 2*20 тромбоцитов, до 20 цилиндров

Общий клинический анализ мочи входит в программу обязательного лабораторного исследования всех стационарных и большинства амбулаторно-поликлинических больных, независимо от характера заболевания. Это наиболее простой метод исследования, с которого начинается обследование пациентов с подозрением на заболевание почек.[6]

Так же применяют иммунохимические методы исследования мочи. Из них, наиболее простым, является эмуноэлектрофоретический анализ уропротеинов. Более информативным, является количественное определение индивидуальных белков мочи с помощью реакции радиальной иммунодиффузии.[6]

Итак, выделим существующие методы инструментальной и лабораторной диагностики заболеваний почек

1. Общий клинический анализ мочи: Исследование физических свойств мочи; Химическое исследование мочи; Микроскопия осадка.

2. Методы количественной оценки числа лейкоцитов, эритроцитов, цилиндров в моче и степени бактериурии: проба Каковского-Аддиса; Проба Нечипоренко; Преднизолоновый тест; Трехстаканная проба; Бактериологическое исследование мочи.

3. Определение способности почек к осмотическому разведению и концентрированию мочи: Проба по Зимницкому; Проба на разведение мочи; Проба на концентрирование мочи; Методы определения осмотической концентрации мочи

4. Методы определения парциальных функций почек: Скорость клубочковой фильтрации; Определение канальцевой реабсорбции; Секреторная функция почек; Эффективный почечный плазмоток и кровоток.

5. Рентгеновские методы исследования: Подготовка к рентгенологическому исследованию; Обзорная рентгенография; Экскреторная урография; Инфузионная урография; Ретроградная (восходящая) пиелография.

6. Радионуклидные методы исследования: Радиоизотопная ренография; Сканирование почек;

7. Ультразвуковое исследование почек:

8. Катетеризация мочевого пузыря и цистоскопия: Техника катетеризации у мужчин; Техника катетеризации у женщин; Цистоскопия

9. Пункционная биопсия почек

Ниже, при описании методов определения парциальных функций почек будет приводить только те, с помощью которых можно диагностировать гидронефроз.

2.1. Методы количественной оценки числа лейкоцитов, эритроцитов, цилиндров в моче и степени бактериурии

Трехстаканная проба. Эта проба была предложена для уточнения локализации источника гематурии и лейкоцитурии (почки или мочевыводящие пути). Считают, что при поражении уретры патологический осадок (лейкоциты, эритроциты) появляются в первой порции мочи (рис. 2.1, а).

Для поражения почек, чашечно-лоханочной системы или мочеточников характерно появление патологического осадка во всех трех порциях мочи или в третьей и второй порциях (рис. 2.1, б). При локализации патологического процесса в мочевом пузыре гематурия или лейкоцитурия обнаруживается, главным образом, в третьей порции мочи (рис. 2.1, в).[6]

Хотя трехстаканная проба проста и не обременительна для больного, ее результаты имеют лишь относительное значение для дифференциальной диагностики ренальной и постренальной гематурии и лейкоцитурии. Например, в некоторых случаях при поражении мочевого пузыря (постоянно кровоточащая опухоль и др.) гематурия может выявляться во всех трех порциях мочи, а при поражении мочеиспускательного канала -- не в первой, а в третьей порции (терминальная гематурия) и т. д.

2.2. Методы определения парциальных функций почек

Определение канальцевой реабсорбции. Показатель канальцевой реабсорбции рассчитывают по следующей формуле:

R = (F - V) / F x 100%,

где R -- канальцевая реабсорбция; F -- клубочковая фильтрация; V -- минутный диурез.

В норме при обычном водном режиме канальцевая реабсорбция составляет 98-99%. Ее снижение может происходить практически при любых заболеваниях почек. Однако если при тубулоинтерстициальных заболеваниях (пиелонефрит, гидронефроз, поликистоз почек и др.) это наблюдается на ранних стадиях, то при заболеваниях с преимущественным поражением клубочков (гломерулонефрит, диабетический гломерулосклероз и др.) канальцевая реабсорбция уменьшается позже, чем клубочковая фильтрация. Это служит одним из лабораторных дифференциально-диагностических признаков этих групп заболеваний почек.

2.3. Рентгеновские методы исследования

Экскреторная урография. Она широко применяется в клинической практике для определения анатомического и функционального состояния почек, почечных лоханок, мочеточников, мочевого пузыря и наличия в них конкрементов. Сущность метода заключается во внутривенном струйном введении рентгеноконтрастного вещества, которое хорошо выделяется почками и постепенно контрастирует чашечно-лоханочную систему почек, мочеточники и мочевой пузырь, позволяя на серии рентгеновских снимков визуализировать все нарушения анатомической структуры этих участков мочевыводящей системы.[7]

Поскольку скорость выделения почками рентгеноконтрастного вещества зависит от функционального состояния почек, замедление контрастирования верхних отделов мочевыводящих путей позволяет составить представление о степени нарушения этой функции почек.

В качестве рентгеноконтрастного вещества используют йодсодержащие концентрированные (60-80%) растворы сергозина, урографина, уротраста и др. Препарат (20 мл) вводят внутривенно струйно медленно (в течение 2-3 мин). Серия рентгенограмм, выполненных на 1-й, 5-й, 10-й, 20-й, 45-й и 60-й мин позволяет составить практически полное представление о выделении контрастного вещества почками и его продвижении по мочевыводящим путям.

Иногда рентгенограммы фиксируют как бы по «сокращенной программе» (например, на 5-7-й, 30-й и 60-й мин). Индивидуальный выбор времени регистрации рентгенограмм зависит от предполагаемого характера и локализации патологического процесса в мочевыводящей системе и определяется совместно лечащим врачом и специалистами (рентгенологом и урологом).[6]

Серия рентгенограмм, полученных при экскреторной урографии, в большинстве случаев дает возможность судить о функциональной способности почек, размере и форме почечных лоханок, расположении мочеточников и наличии конкрементов (рис. 2.2 и 2.3).

Хорошо видны контрастированные чашечно-лоханочная система и мочеточники. Контрастное вещество поступает в мочевой пузырь. Определяется небольшое опущение правой почки

Обзорная рентгенография. Метод обзорной рентгенографии обладает весьма ограниченными диагностическими возможностями, но во многих случаях все же позволяет составить первое ориентировочное представление о: 1) положении и размерах почек и 2) наличии или отсутствии рентгенопозитивных конкрементов (оксалатов и фосфатов) в почках, мочеточниках и мочевом пузыре.[6]

Обзорная рентгенография в большинстве случаев используется как первый и наиболее простой метод экспресс-диагностики ряда патологических состояний (мочекаменной болезни, гидронефроза, опухолей почек и др.), результаты которой требуют в дальнейшем уточнения другими методами.

2.4. Ультразвуковое исследование почек

Ультразвуковое исследование (УЗИ) является одним из наиболее распространенных, информативных и безопасных методов обследования больных с заболеваниями почек и мочевыводящих путей. Важным достоинством метода является отсутствие противопоказаний к его применению и возможность проведения многократных исследований. Метод УЗИ почек позволяет решать следующие диагностические задачи: 1. определять размеры и локализацию почек относительно общепринятых анатомических ориентиров; 2. определять положение, размеры и структуру почечной лоханки; 3. определять структуру почечной паренхимы; 4. обнаруживать конкременты, кисты, опухоли почек; 5. определять состояние мочеточников и мочевого пузыря.[7]

УЗИ почек в большинстве случаев не требует специальной подготовки, за исключением мероприятий, направленных на уменьшение газообразования в кишечнике и освобождения его от каловых масс. Исследование целесообразно производить после водной нагрузки, при неопорожненном мочевом пузыре: так лучше визуализируются чашечно-лоханочная система и мочеточники.

Ультразвуковое исследование каждой почки рекомендуется производить с трех позиций: в положении больного лежа на спине, на боку с заведенной за голову рукой и на животе.

Наиболее частыми причинами гидронефроза являются:

1. камень в мочеточнике, лоханке или лоханочно-мочеточниковом сегменте;

2. кровяной сгусток в мочеточнике или лоханке;

3. стриктура мочеточника;

4. сдавление мочеточника извне;

5. перегибы мочеточника (например, при выраженном нефроптозе);

6. хроническая задержка мочи (например, при аденоме или раке предстательной железы) и другие причины.

Различают 3 стадии гидронефроза. III стадия -- резкое расширение лоханки и чашечек, а также выраженная атрофия паренхимы (рис. 2.4).[6]

Выводы

1. Почки являются основным органом выделения (экскреции) конечных продуктов азотистого обмена, и органом, охраняющим постоянство физико-химических условий, осмотического давления и щелочно-кислотного равновесия в организме. Эта основная роль почек не может быть заменима никакими другими экстремальными системами выделения. Выпадение или резкое нарушение функций общих почек у человека при некоторых патологических состояниях ведет к смертельному исходу в результате уремии. Нет ни одного органа в теле, в отношении которого наши представления о функции так тесно зависели бы от ознакомления со структурой, как в отношении почек.

2. Методы, используемые в инструментальной и лабораторной диагностики заболеваний почек следующие: 1. Общий клинический анализ мочи: Исследование физических свойств мочи; Химическое исследование мочи; Микроскопия осадка. 2. Методы количественной оценки числа лейкоцитов, эритроцитов, цилиндров в моче и степени бактериурии: проба Каковского-Аддиса; Проба Нечипоренко; Преднизолоновый тест; Трехстаканная проба; Бактериологическое исследование мочи. 3. Определение способности почек к осмотическому разведению и концентрированию мочи: Проба по Зимницкому; Проба на разведение мочи; Проба на концентрирование мочи; Методы определения осмотической концентрации мочи. 4. Методы определения парциальных функций почек: Скорость клубочковой фильтрации; Определение канальцевой реабсорбции; Секреторная функция почек; Эффективный почечный плазмоток и кровоток. 5. Рентгеновские методы исследования: Подготовка к рентгенологическому исследованию; Обзорная рентгенография; Экскреторная урография; Инфузионная урография; Ретроградная (восходящая) пиелография. 6. Радионуклидные методы исследования: Радиоизотопная ренография; Сканирование почек. 7. Ультразвуковое исследование почек. 8. Катетеризация мочевого пузыря и цистоскопия: Техника катетеризации у мужчин; Техника катетеризации у женщин; Цистоскопия. 9. Пункционная биопсия почек

Литература

1. Иваницкий М.Ф. Анатомия человека. Учебник для институтов физической культуры. - М.: Физкультура и спорт, 1985.

2. Карпенко В.С., Абрамов Ю.А., Кривошей Н.Ф. Амбулаторная урология. - К.: Здоровя, 1980.- 256 с.

3. Козловская Л.В., Николаев А.Ю. Учебное пособие по клиническим лабораторным методам исследования. 2-е изд. - М.: Медицина, 1987. - 189 с.

4. Кравчинский Б.Д. Основы физиологии почек. - Государственное издательство медицинской литературы. Медгиз. - 1978-363 с.

5. Рахимов Я.Р., Каримов М.К., Этинген Л.Е. Очерки по функциональной анатомии. - Душанбе, Изд-во Донис, 1987.

6. Ройтберг Г.Е., Струтынский А.В. Лабораторная и инструментальная диагностика заболеваний внутренних органов. - М.: Издательство: Бином, 1999 г.-622 с.

7. Урология: Учебник /Под ред. Н.А.Лопаткина. - М.: Медицина, 1992. - 400 с.

8. Физиология висцеральных систем: Учебник для биологических и медицинских специальных ВУЗов. /А.Д.Ноздрачев, Ю.И.Баженов, И.А.Баранникова, и др. под ред. А.Д.Ноздрачева. - М.: Высшая школа, 1995. - 528 с.

9. Физиология человека: Учебник для институтов физической культуры. /Под ред. Н.В.Зимкина. - М.: Физкультура и спорт, 1975. - 201 с.

10. Шульга Ю.Д. Болезни почек. - М.: Медицина, 1983.-262 с.




Не сдавайте скачаную работу преподавателю!
Данную курсовую работу Вы можете использовать для написания своего курсового проекта.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем курсовую работу самостоятельно:
! Как писать курсовую работу Практические советы по написанию семестровых и курсовых работ.
! Схема написания курсовой Из каких частей состоит курсовик. С чего начать и как правильно закончить работу.
! Формулировка проблемы Описываем цель курсовой, что анализируем, разрабатываем, какого результата хотим добиться.
! План курсовой работы Нумерованным списком описывается порядок и структура будующей работы.
! Введение курсовой работы Что пишется в введении, какой объем вводной части?
! Задачи курсовой работы Правильно начинать любую работу с постановки задач, описания того что необходимо сделать.
! Источники информации Какими источниками следует пользоваться. Почему не стоит доверять бесплатно скачанным работа.
! Заключение курсовой работы Подведение итогов проведенных мероприятий, достигнута ли цель, решена ли проблема.
! Оригинальность текстов Каким образом можно повысить оригинальность текстов чтобы пройти проверку антиплагиатом.
! Оформление курсовика Требования и методические рекомендации по оформлению работы по ГОСТ.

Читайте также:
Разновидности курсовых Какие курсовые бывают в чем их особенности и принципиальные отличия.
Отличие курсового проекта от работы Чем принципиально отличается по структуре и подходу разработка курсового проекта.
Типичные недостатки На что чаще всего обращают внимание преподаватели и какие ошибки допускают студенты.
Защита курсовой работы Как подготовиться к защите курсовой работы и как ее провести.
Доклад на защиту Как подготовить доклад чтобы он был не скучным, интересным и информативным для преподавателя.
Оценка курсовой работы Каким образом преподаватели оценивают качества подготовленного курсовика.

Сейчас смотрят :

Курсовая работа Система учета затрат и калькулирования себестоимости по методу "директ-костинг"
Курсовая работа Фразеология немецкого языка в лексикографическом аспекте
Курсовая работа Лекарственные препараты, получаемые биотехнологическими методами. Ферменты
Курсовая работа Анализ себестоимости услуг и продукции, пути ее снижения
Курсовая работа Расчет эффективности перевозок для автотранспортного предприятия
Курсовая работа Нетрадиционные формы уроков как способ развития интереса к учебе у детей младшего школьного возраста
Курсовая работа Хронический гломерулонефрит
Курсовая работа Здоровий спосіб життя
Курсовая работа Экономическое обоснование путей обновления оборудования на предприятии
Курсовая работа Финансовая устойчивость и платежеспособность предприятий
Курсовая работа Правоохранительная деятельность таможенных органов РФ
Курсовая работа Изучение феномена тревожности у студентов первого курса
Курсовая работа SWOT - анализ и синтез
Курсовая работа Расходы бюджетов РФ на национальную оборону
Курсовая работа Управление оборотными средствами