Введение
В дошкольном возрасте игра имеет важнейшее значение в жизни маленького ребенка. Потребность в игре у детей сохраняется и занимает значительное место и впервые годы их обучения в школе. В играх нет реальной обусловленности обстоятельствами, пространством, временем. Дети - творцы настоящего и будущего. В этом заключается обаяние игры.
В каждую эпоху общественного развития дети живут тем, чем живет народ. Но окружающий мир воспринимается ребенком по-иному, чем взрослым. Ребенок - «Новичок», все для него полно новизны.
В игре ребенок делает открытия того, что давно известно взрослому. Дети не ставят в игре каких-либо иных целей, чем играть.
«Игра, есть потребность растущего детского организма. В игре развиваются физические силы ребенка, тверже рука, гибче тело, вернее глаз, развиваются сообразительность, находчивость, инициатива» - так писала выдающийся советский педагог Н.К. Крупская. Она так же указывала на возможность расширения впечатлений, представлений в игре, вхождения детей в жизнь, о связи игр с действительностью, с жизнью [3; 53].
Для ребят дошкольного возраста игра имеет исключительное значение: игра для них - учеба, игра для них - труд, игра для них - серьезная форма воспитания. Игра для дошкольников - способ познания окружающего мира.
Игра будет являться средством воспитания, если она будет включаться в целостный педагогический процесс. Руководя игрой, организуя жизнь детей в игре, воспитатель воздействует на все стороны развития личности ребенка: на чувства, на сознание, на волю и на поведение в целом.
В игре ребенок приобретает новые знания, умения, навыки. Игры, способствующие развитию восприятия, внимания, памяти, мышления, развитию творческих способностей, направлены на умственное развитие дошкольника в целом.
Огромную роль в умственном воспитании играет математика. В настоящее время, в эпоху компьютерной революции встречающаяся точка зрения, выражаемая словами: «Не каждый будет математиком», безнадежно устарела.
Сегодня, а тем более завтра математика будет необходима огромному числу людей различных профессий. В математике заложены огромные возможности для развития мышления детей, в процессе их обучения с самого раннего возраста.
Обучение математике в детском саду основывается на конкретных образах и представлениях. Эти конкретные представления подготавливают фундамент для формирования на их основе математических понятий.
Без обогащения чувственного познавательного опыта невозможно полноценное владением математическими знаниями и умениями.
Теория и практика обучения накопили определенный опыт использования разных методов в работе с детьми.
В разработку методов обучения внесла много нового Е.И. Тихеева, составленные ею игры - занятия сочетали в себе слово, действие, наглядность. Игру как метод обучения Е.И. Тихеева предлагала вводить по мере того, как то или другое числовое представление уже извлечено детьми из самой жизни. [22; 89]
Существенный вклад в разработку дидактических игр и включение их в систему обучения дошкольников внесли Т.В. Васильева, Т.А. Мусейбова, А.И. Сорокина, Л.И. Сысуева, Е.И. Удальцова, М. Монтессори, Ф. Фребель и др.
В настоящее время значение дидактических игр умаляется в виду того, что многие воспитатели плохо владеют методикой их проведения, вследствие чего активность играющих затормаживается или дидактические игры подчас превращаются в занятия, где воспитатель выступает в роли руководителя, диктующего, что нужно делать, а не в качестве партнера по игре - в результате ограничивается самостоятельность детей.
Наличие в дидактической игре 2-х элементов (познавательного и игрового) приводит к тому, что первый часто подавляет второй - это обедняет игры, снижает интерес детей к ним, и самостоятельно в эти игры они почти не играют.
Исходя из вышесказанного перед нами стоит проблема: какова роль дидактических игр в самостоятельной познавательной деятельности детей.
Объект исследования: процесс самостоятельной познавательной деятельности детей в ходе дидактической игры.
Предмет исследования: педагогические условия использования дидактических игр в самостоятельной познавательной деятельности детей.
Цель исследования: изучение особенностей применения дидактических игр в ходе самостоятельной познавательной деятельности детей; осуществление целенаправленной работы по использованию дидактических игр.
Гипотеза: роль дидактических игр в самостоятельной познавательной деятельности детей будет значимой, если педагогическая работа по их использованию будет носить целенаправленный и планомерный характер.
Для достижения цели и проверки гипотезы необходимо решить следующие задачи:
1. Определить и проанализировать какова роль дидактических игр в самостоятельной познавательной деятельности детей.
2. Разработать и апробировать методику использования дидактических игр в самостоятельной познавательной деятельности детей.
3. Проверить в опытной работе эффективность использования методики использования дидактических игр.
В процессе работы над данным исследованием были использованы следующие методы исследования: изучение психолого-педагогической и методической литературы по исследуемой проблеме; педагогический эксперимент: констатирующий, формирующий и контрольные этапы; педагогическое наблюдение, беседа, тестирование; статистические методы обработки материалов.
1. Психолого-педагогическое обоснование проблемы роли дидактических игр в самостоятельной познавательной деятельности детей
1.1 Характеристика самостоятельной познавательной деятельности
Активизация мыслительной деятельности на занятиях по формированию элементарных математических представлений путем разнообразных средств и приемов ведет к развитию самостоятельности, формированию активной позиции ребенка в учении.
Показателями мыслительной активности на занятиях по формированию элементарных математических представлений следует считать наличием интереса у детей к учебной задаче и процессу её решения, проявления самостоятельности в поиске решения, умение замечать и исправлять свои ошибки и ошибки товарища, задавать вопросы, выдвигать познавательную задачу в конкретной ситуации.
Целенаправленная познавательная деятельность вне занятий является эффективной формой развития элементарных математических представлений у дошкольников [19; 140].
Руководство познавательной деятельностью детей на занятиях состоит:
- в четкой постановке учебно-познавательных задач перед детьми и соответствующей возрасту мотивации: учебной, практической, игровой;
- в использовании различных форм организации познавательной деятельности детей: фронтальной, групповой, индивидуальной. При фронтальной форме работы участвуют все дети, их активность обеспечивается постановкой разнообразных вопросов. Групповая форма работы предполагает дифференцирование заданий с учетом индивидуальных возможностей, уровня развития детей. Индивидуальная работа обеспечивает высокий уровень самостоятельности детей, формирование умений и навыков, контроль за усвоением;
- в активизации обучения через содержание, методы, приемы, формы организации.
В самостоятельной познавательной деятельности совершенствуются, углубляются и расширяются представления детей о числах, соотношениях размеров, разнообразии геометрических форм, различной длительности временных отрезков, пространственных отношениях. Её организация возможна лишь при определенном уровне математического развития детей, наличии разнообразных дидактических, игровых материалов, игр математического содержания, руководстве этой деятельностью взрослым.
Кроме этого, дети должны уметь самостоятельно выполнять некоторые действия, вызванные интересом.
Признаками самостоятельной познавательной деятельности являются интерес к ней со стороны детей, проявление ими творческой инициативы, самостоятельности в выборе игры и способа реализации задуманного. Это могут быть игры детей с дидактическими материалами, развивающие и обучающие игры, занимательные задачи и упражнения, сюжетно-ролевые игры с использованием объектов, возникающие в трудовой и бытовой деятельности. Активные игровые действия детей вызываются и стимулируются игровой задачей, возможностью проявить самостоятельность, смекалку, элементами соревнования, потребностью самовыражения. Совершенствование способов действий, развития мышления, элементы творчества - характерные черты самостоятельной познавательной деятельности.
Самостоятельная познавательная деятельность детей имеет непосредственную связь с обучением на занятиях. Соблюдение преемственности между этими двумя формами развития элементарных математических представлений дает возможность разгрузить занятия от второстепенного материала, сосредоточив внимание на изучении основного, упражнять ребят в применении знаний в новых условиях, полнее удовлетворять их познавательные интересы, развивать способности.
Под влиянием правильно организованной самостоятельной познавательной деятельности у детей развиваются умственные операции и процессы, творческое воображение, воспитываются интерес, волевые черты личности, желание учиться, сосредоточенность, привычка к умственному напряжению и труду. Самостоятельная познавательная деятельность должна организовываться не только в детском саду, но и в домашних условиях.
1.2 Роль игры в жизни ребенка
Игра - явление многогранное, ее можно рассматривать как особую форму существования всех без исключения сторон жизнедеятельности коллектива. Столь же много оттенков появляется с игрой в педагогическом руководстве воспитательным процессом.
Советский педагог В.А. Сухомлинский подчеркивал, что «игра - это огромное светлое окно, через которое в духовный мир ребенка вливается живительный поток представлений, понятий об окружающем мире. Игра - это искра, зажигающая огонек пытливости и любознательности» [3; 71]
Игра - особый вид деятельности человека. Она возникает в ответ на общественную потребность в подготовке подрастающего поколения к жизни.
А.В. Запорожец писал: «Особое значение имеют психические изменения, происходящие в игре, которые заключаются не в переходе отдельных действий из материального в идеальный, умственный план, а в формировании у ребенка на основе внешней игровой деятельности самого этого умственного плана, в развитии способностей создавать системы обобщенных, типичных образов окружающих предметов и явления и затем совершать различные их мысленные преобразования, подобные тем, которые совершались реально с материальными объектами». [21; 72]
Ведущие зарубежные и отечественные педагоги рассматривают игру как одно из наиболее эффективных средств организации жизни детей и их совместной деятельности.
Игра в детском возрасте - норма, ребенок должен играть, даже если он делает самое серьезное дело. Игра отражает внутреннюю потребность детей в активной деятельности, это средство познания окружающего мира; в игре дети обогащают свой чувственный и жизненный опыт, вступают в определенные отношения со сверстниками и взрослыми.
Могучую силу игры отмечал Ян Амос Коменский. Он считал, что дети отражают в игре серьезные стороны жизни. [13; 100]
Н.К. Крупская во многих статьях говорила о значении игры для познания мира, для нравственного воспитания детей. «…Самодеятельная подражательная игра, которая помогает осваивать полученные впечатления, имеет громадное значение, гораздо большее, чем что-либо другое» [13; 105] Ту же мысль высказывает А.М. Горький; «Игра - путь детей к познанию мира, в котором они живут и который призваны изменить» [13; 103]
В игре формируются все стороны личности ребенка, происходят значительные изменения в его психике, подготавливающие переход к новой, более высокой стадии развития. Этим объясняются огромные воспитательные возможности игры.
В игровой деятельности наиболее интенсивно формируются психические качества и личные особенности ребенка. В игре складываются другие виды деятельности, которые потом приобретают самостоятельное значение.
Игровая деятельность влияет на формирование произвольности психических процессов [3; 121]. Так, в игре у детей начинают развиваться произвольное внимание и произвольная память. В условиях игры дети сосредотачиваются лучше и запоминают больше, чем в условиях лабораторных опытов.
Игровая ситуация и действия в ней оказывают постоянное влияние на развитие умственной деятельности ребенка дошкольного возраста. В игре ребенок учится действовать с заместителями предмета - он дает заместителю новое игровое название и действует с ним в соответствии с названием. Предмет - заместитель становится опорой для мышления. На основе действий с предметами - заместителями ребенок учится мыслить о реальном предмете. Постепенно игровые действия с предметами сокращаются, ребенок научается мыслить о предметах и действовать с ними в умственном плане. Таким образом, игра в большей мере способствует тому, что ребенок переходит к мышлению в плане представлений. [3; 121]
Очень большое влияние игра оказывает на развитие речи. Игровая ситуация требует от каждого включенного в неё ребенка определенного уровня развития речевого общения.
Психологи и педагоги (Е.И. Тихеева, А.В. Запорожец, В.С. Мухина и др) характеризуют игру как форму практического познания окружающей действительности, как способ перехода от незнания к знанию.
«Игра, - писал выдающийся психолог А.В. Запорожец, - дает возможность воссоздать в активной наглядно-действенной форме неизмеримо более широкие сферы действительности, далеко выходящие за пределы личной практики ребенка. В игре дошкольник с помощью своих движений и действий с игрушками активно воссоздает труд и быт окружающих взрослых, события их жизни, отношения между ними и т.д. Тем самым складываются необходимые условия для осознания ребенком этих новых областей действительности, а вместе с тем и для развития соответствующих способностей» [20; 8]
Игра - это особый вид деятельности дошкольников, она всегда носит творческий характер. В игре отражается реальная действительность, но в воображаемых обстоятельствах.
Кроме того игра - самостоятельный вид деятельности: ребенок всегда начинает играть сам, продолжая играть или самостоятельно, или же выбирает партнеров. В последнем случае дети придумывают сюжет игры, правила, распределяют роли и намечают её окончание с определенным результатом.
Огромное значение игра имеет и в формировании элементарных математических представлений. С помощью игр детям легко дается счет. «Учить детей дошкольного возраста счислению недопустимо, - писала Е.И. Тихеева, - но нормальный ребенок должен постигнуть первый десяток до семи лет. Все числовые представления, доступные для этого возраста, он должен извлечь их жизни, среди которой он живет и в которой принимает действенное участие. Играя, работая, живя он непременно самолично научится считать, если мы, взрослые, будем при этом его незаметными пособниками и его руководителями. [14; 45] Е.И. Тихеева рекомендует специальные игры - занятия с дидактическим материалом, которые бы закрепляли знания, количественные представления, полученные детьми в жизни. «Игры эти выдвигаются тогда, когда то или другое числовое представление уже извлечено детьми из самой жизни, и служит для уяснения и упрочения этого представления, для укрепления нужных навыков в счете». [14; 46]
При формировании элементарных математических представлений игра выступает как самостоятельный метод обучения. Наиболее широко используются дидактические игры. Благодаря обучающей задаче, облеченной в игровую форму (игровой замысел), игровым действиям и правилам ребенок непреднамеренно усваивает определенное познавательное содержание. Все виды дидактических игр являются эффективным средством и методом формирования элементарных математических представлений.
1.3 Сущность дидактической игры и ее место в обучении дошкольников
Значение игры в воспитании ребенка рассматривается во многих педагогических системах прошлого и настоящего. Большинство педагогов расценивают игру как серьезную и нужную для ребенка деятельность. [1; 4]
В истории зарубежной и русской педагогической науки сложилось 2 направления использования игры в воспитании детей: для всестороннего гармонического развития и в узкодидактических целях.
Ярким представителем первого направления был великий чешский педагог Я.А. Коменский. Он считал игру необходимой формой деятельности ребенка, отвечающей его природе и склонностям: игра - серьезная умственная деятельность, в которой развиваются все виды способностей ребенка; в игре расширяется и обогащается круг представлений об окружающем мире, развивается речь; в совместных играх ребенок сближается со сверстниками. [13, 100].
Дидактическое направление использования игры получило развитие в XVIII в. у педагогов - филантропистов (И.С. Базедов, Х.Г. Зальцман и др.). Они стремились сделать обучение детей занимательным, отвечающим их возрастным особенностям, филантрописты использовали разнообразные игры. [13; 22]
С наибольшей полнотой дидактическое направление представлено в педагогике Ф. Фребеля. «Процесс игры, утверждал Ф. Фребель, - это выявление и проявление того, что изначально заложено в человеке божеством. Через игру ребенок, по мнению Ф. Фребеля, познает божественное начало, законы мироздания и самого себя. Ф. Фребель придает игре большое воспитательное значение: игра развивает ребенка физически, обогащает его речь, мышление, воображение; игра является активной деятельностью для детей дошкольного возраста. Потому основной воспитания детей в детском саду Фребель считал игру». [13; 101].
Дидактическое направление использования игры характерно и для современной английской педагогики. В детских учреждениях, работающих по системе М. Монтессори или Ф. Фребеля, по-прежнему основное место отводится дидактическим играм и упражнениям с различными материальными, самостоятельным творческим играм детей не придается значения.
В трудах К.Д. Ушинского, П.Ф. Каптерева, П.Ф. Лесгафта и других содержатся важные мысли о роли игры в формировании ребенка.
К.Д. Ушинский указал зависимость содержания детских игр от социального окружения. Он утверждал, что игры не проходят для ребенка бесследно: они могут определить характер и поведение человека в обществе. Так, дитя, привыкшее командовать или подчиняться в игре, нелегко отучается от этого направления и в действительной жизни. К.Д. Ушинский придавал большое значение совместным играм, так как в них завязываются первые общественные отношения. Он ценил самостоятельность детей в игре, видел в этом основу глубокого влияния игры на ребенка, однако считал необходимым направлять детские игры, обеспечивая нравственное содержание детских впечатлений. [5; 8].
Большой интерес представляют взгляды на игру Е.И. Тихеевой. Е.И. Тихеева рассматривает игру как одну их форм организации педагогического процесса в детском саду и вместе с тем как одно из важнейших средств воспитательного воздействия на ребенка.
В детском саду, руководимом Е.И. Тихеевой, существовали и использовались игры 2 видов: свободные игры, стимулированные окружающей средой, и игры, организованные педагогом, игры с правилами. Особая заслуга принадлежит Е.И. Тихеевой в раскрытии роли дидактической игры. Она справедливо считала, что дидактическая игра дает возможность развивать самые разнообразные способности ребенка, его восприятие, речь, внимание. Она определила особую роль воспитателя в дидактической игре: он вводит детей в игру, знакомит с ее содержанием и правилами. Е.И. Тихеева разработала много дидактических игр, которые до сих пор используются в детских садах. [7; 10].
У каждого метода имеются игры, которые в течение веков создавались взрослыми для детей, а некоторые и самими детьми. Русские народные игры были впервые собраны и обработаны Е.А. Покровским. Богатство содержания, разнообразие форм, простота, занимательность, юмор - характерные их черты.
Игра необходимая форма деятельности ребенка. Игра - серьезная умственная деятельность, в которой развиваются все виды способностей ребенка, в ней расширяется и обогащается круг представлений об окружающем мире, развивается речь. Дидактическая игра дает возможность развивать самые разнообразные способности ребенка, его восприятие, речь, внимание.
Много игр с готовым содержанием и правилами создается в настоящее время педагогами.
Игры с правилами предназначены для формирования и развития определенных качеств личности ребенка. В дошкольной педагогике принято делить игры с готовым содержанием и правилами на дидактические, подвижные и музыкальные.
Для всех игр с готовым содержанием и правилами характерны следующие особенности: наличие игрового замысла или игровой задачи, которые реализуются (решаются) через игровые действия. Игровой замысел (или задача) и игровые действия составляют содержание игры; действия, и отношения играющих регулируются правилами; наличие правил, и готовое содержание позволяют детям самостоятельно организовывать и проводить игру.
Воспитательно-образовательное содержание игры заключено в игровом замысле, игровых действиях и правилах и не выступает для детей как самостоятельная задача.
Среди дидактических игр различают игры в собственном смысле слова и игры-занятия, игры-упражнения. Для дидактической игры характерно наличие игрового замысла или игровой задачи. Существенным элементом дидактической игры являются правила. Выполнение правил обеспечивает реализацию игрового содержания. Наличие правил помогает осуществить игровые действия и решить игровую задачу. Таким образом, ребенок в игре учится непреднамеренно.
В дидактической игре формируется умение подчиниться правилам, т.к. от точности соблюдения правил зависит успех игры. В результате игры оказывают влияние на формирование произвольного поведения, организованности.
По характеру используемого материала дидактические игры условно делятся на игры с предметами, настольно-печатные игры и словесные игры.
Предметные игры - это игры с народной дидактической игрушкой, мозаикой природным материалом. Основные игровые действия с ними: нанизывание, выкладывание, катание, собирание целого из частей и т.д. Эти игры развивают цвета, величины, формы.
Настольно-печатные игры направлены на уточнение представлений об окружающем, стимулирование знаний, развитие мыслительных процессов и операций (анализ, синтез, обобщение, классификацию и др.)
Настольно печатные игры разделены на несколько видов: парные картинки, лото, домино, разрезные картинки и складные кубики, игры типа «Лабиринт» для старших дошкольников
Словесные игры. В эту группу входит большое количество народных игр типа «Краски», «Молчок», «Черное и белое» и др. Игры развивают внимание, сообразительность, быстроту реакции, связную речь.
Структура дидактической игры, ее задачи, игровые правила, и игровые действия объективно содержат в себе возможность развития многих качеств социальной активности.
Таким образом, в дидактической игре ребенок имеет возможность конструировать свое поведение и действия.
Дидактическую игру условно разделяют на несколько стадий. Для каждой характерны определенные проявления детской активности. Знание этих стадий необходимо воспитателю для правильной оценки эффективности игры.
Ш Первая стадия характеризуется появлением у ребенка желания играть, активно действовать. Возможны различные приемы с целью вызвать интерес к игре: беседа, загадки, считалочки, напоминание о понравившейся игре.
Ш На второй стадии ребенок учится выполнять игровую задачу, правила и действия игры. В этот период закладываются основы таких важных качеств, как честность, целеустремленность, настойчивость, способность преодолевать горечь неудачи, умение радоваться не только своему успеху, но и успеху товарищей.
Ш На третьей стадии ребенок, уже знакомый с правилами игры, проявляет творчество, занят поиском самостоятельных действий. Он должен выполнить действия, содержащиеся в игре: угадать, найти, спрятать, изобразить, подобрать. Чтобы успешно справиться с ними, необходимо проявить смекалку, находчивость, способность ориентироваться в обстановке. Ребенок, усвоивший игру, должен стать и ее организатором, и ее активным участником.
Каждому этапу игры соответствуют и определенные педагогические задачи. На первой стадии педагог заинтересовывает детей игрой, создает радостное ожидание новой интересной игры, вызывает желание играть. На второй стадии воспитатель выступает не только как наблюдатель, но и как равноправный партнер, умеющий вовремя прийти на помощь, справедливо оценить поведение детей в игре. На третьей стадии роль дефектолога заключается в оценке детского творчества при решении игровых задач.
В дидактической игре дети учатся думать о вещах, которые они в данное время непосредственно не воспринимают. Эта игра учит опираться в решении задачи на представление о ранее воспринятых предметах. Игра требует использования приобретенных ранее знание в новых связях, в новых обстоятельствах. В этих играх ребенок должен решать самостоятельно разнообразные мыслительные задачи: описывать предметы, отгадывать по описанию, по признакам сходства и различия, группировать предметы по различным свойствам, признакам, находить алогизмы в суждениях, самому придумывать рассказы с включением небылиц и т.д.
В советской дошкольной педагогике страстным защитником игры как формы обучения детей дошкольного возраста выступала Н.К. Крупская, она неоднократно говорила о значении игры как важнейшем средстве всестороннего воспитания дошкольников: «…игра для них - учеба, игра для них - труд, игра для них - серьезная форма воспитания». [13; 6]. Называя народные игры, Н.К. Крупская отмечала их большое значение в воспитании у детей целого ряда качеств: находчивости, дисциплинированности, наблюдательности, чувства юмора.
Игры для детей младшего и среднего дошкольного возраста в основном направлены на развитие речи, уточнение и закрепление словаря, воспитание правильного звукопроизношения, умение считать, ориентироваться в пространстве. Лишь незначительная часть игр направлены на развитие мыслительной способности детей.
В старшем дошкольном возрасте, когда у детей начинает формироваться словесно - логическое мышление, необходимо больше использовать игры именно с целью развития самостоятельности мышления, формирования мыслительной деятельности.
Особенно серьезное внимание воспитанию самостоятельности и активности мышления детей следует уделить в старших группах детского сада. Таким образом, дидактическая игра - доступный, полезный, эффектный метод воспитания самостоятельности мышления у детей. Она не требует специального материала, определенных условий, а требует лишь знания воспитателя самой игры. При этом необходимо учитывать, что предлагаемые игры будут способствовать развитию самостоятельности мышления лишь в том случае, если они будут проводиться в определенной системе с использованием необходимой методики.
Таким образом, дидактическая игра - одна из форм обучающего воздействия взрослого на ребенка. В то же время игра - основной вид деятельности детей. Таким образом, дидактическая игра имеет две цели: одна из них обучающая, которую преследует взрослый, а другая - игровая, ради которой действует ребенок. Важно, чтобы эти две цели дополняли друг друга и обеспечивали усвоение программного материала. Усвоение программного содержания становится условием достижения игровой цели.
В дидактической игре создаются такие условия, в которых каждый ребенок получает возможность самостоятельно действовать в определенной ситуации или с определенными предметами, приобретая собственный действенный и чувственный опыт.
Ребенку для усвоения способов ориентировки в окружающем мире, для понимания того или иного действия требуются многократные повторения. Дидактическая игра позволяет обеспечить нужное количество повторений на разном материале при сохранении эмоционально положительного отношения к заданию.
Таким образом, особая роль дидактической игры в обучающем процессе определяется тем, что игра должна сделать сам процесс обучения эмоциональным, действенным, позволить ребенку получить собственный опыт.
Ранний и дошкольный возраст можно назвать возрастом чувственного познания окружающего. В этот период у детей происходит становление всех видов восприятия - зрительного, тактильно-двигательного, слухового, формируются представления о предметах и явлениях окружающего мира. Чувственный опыт дети приобретают в процессе широкой ориентировочно-исследовательской деятельности. Ребенок-дошкольник, познавая мир, совершает поисковые способы ориентировки, т. е. ведущее место на ранних этапах развития ребенка занимает метод проб и ошибок, который в дальнейшем сменяется перцептивными способами - примериванием и зрительной ориентировкой. Метод проб как поисковый способ основан на том, что ребенок фиксирует правильные действия и отбрасывает ошибочные варианты. Метод проб является практической ориентировкой, однако, он подготавливает ребенка к ориентировке, происходящей во внутреннем плане, т.е. перцептивной ориентировке. Благодаря дидактическим играм можно так организовать деятельность ребенка, что она будет способствовать формированию у него умения решать не только доступные практические, но и несложные проблемные задачи. А полученный при этом опыт даст возможность понимать и решать знакомые задачи в наглядно-образном и даже в словесном плане.
Таким образом, важным в психическом развитии ребенка является формирование мышления. Именно в дошкольный период возникают не только основные формы наглядного мышления - наглядно-действенное и наглядно-образное, но и закладываются основы логического мышления - способность к переносу одного свойства предмета на другие (первые виды обобщения), причинное мышление, способность к анализу, синтезу и др.
Несомненно, успешному проведению дидактических игр способствует умелое педагогическое руководство ими. Необходима доброжелательность взрослого, благодаря которой и появляется сотрудничество, обеспечивающее желание ребенка действовать вместе и добиваться положительного результата.
Роль взрослого в дидактической игре двойственна: с одной стороны, он руководит познавательным процессом, организует обучение детей, а с другой - выполняет роль участника игры, партнера, направляет каждого ребенка на выполнение игровых действий, а при необходимости дает образец поведения в игре. Участвуя в игре, взрослый одновременно следит за выполнением правил.
Важным условием результативного использования дидактических игр в обучении является соблюдение последовательности в подборе игр. Прежде всего, должны учитываться следующие дидактические принципы: доступность, повторяемость, постепенность выполнения заданий.
1.3.1 Роль сюжетно-дидактических игр в приобретении дошкольниками математических знаний
Начальное обучение дошкольников математическим знаниям осуществляется на занятиях. В соответствии с программой дети должны получить элементарные математические представления в области счета и измерения (считать свободно различные предметы, звуки, движения; сравнивать числа, знать, как можно получить число; измерять длину, ширину, высоту предметов; определять объем жидких и сыпучих тел с помощью условной меры и т.д.)
Однако дети не всегда понимают смысл выполняемых ими действий: для чего нужно считать, измерять; почему надо производить именно эти действия и выполнять их не приближено, а точно? Не уяснив на занятиях значения совершаемых действий, дети выполняют их механически.
В чем же причина такого положения и как избежать формального усвоения материала?
Заниженный уровень знаний и представлений детей данного возраста обусловлен отнюдь не их психолого-физиологическими возможностями, а в значительной мере объясняется несовершенством форм и методов обучения. Существенные изменения программы начальной школы, в том числе по математике, повышают соответственно и требования к подготовке детей к школе в условиях дошкольного учреждения.
Многие советские психологи и педагоги (П.Я. Гальперин, А.Н. Леушина.Т.В. Тарунтаева и др.) считают, что формирование у ребят математических представлений должно опираться на предметно-чувственную деятельность, в процессе которой легче усвоить весь объем знаний и умений, осознанно овладеть навыками счета, измерения, т. е. приобрести элементарную, прочную основу ориентировки в общих, математических понятиях [20; 4].
Изучение количественных отношений - процесс сложный и трудный. Положения программы, которые связаны с изучением данной темы, должны осваиваться последовательно, равномерно и систематически. С этой целью надо продумывать различные формы образовательной работы с детьми, т. е. обучение необходимо проводить не только непосредственно на занятиях по математике, но и во время других видов воспитательной работы (в игре, в процессе выработки трудовых навыков и др.). Этому должны соответствовать и методы педагогического руководства деятельностью детей, направленные на обогащение и закрепление элементарных математических знаний и умений, усвоенных дошкольниками на занятиях.
Главное место в жизни ребенка занимает игра. Это его основная деятельность, непременный спутник жизни. Дети играют в самые разнообразные игры: дидактические, подвижные, сюжетно-ролевые и др. Для педагога игры являются важным средством всестороннего развития и воспитания детей.
Роль сюжетно-дидактической игры, помогающей дошкольникам овладеть элементарными математическими знаниями и умениями, развить новые познавательные мотивы детей. Система сюжетно-дидактических игр должны быть выстроена с учетом последовательности и усложнения программных задач. Каждая игра должна быть основана на практическом применении счетно-измерительных действий, освоенных детьми на занятиях по математике, что обеспечивает тесную взаимосвязь двух основных видов деятельности - занятий и последующей игры.
Воспитатель должен соблюдать принципы организации сюжетно-дидактических игр, включающих счет и измерение, учитывать особенности методики педагогического руководства ими и творчески относиться к процессу обучения началам математики детей дошкольного возраста.
Наряду с дидактическими в детских садах бытуют увлекательные игры «в кого-нибудь» или «во что-нибудь»: в строителей, космонавтов, моряков, хлеборобов; в больницу, магазин, школу, завод. Этим сюжетно-ролевым, творческим, играм присуща свободная, активная, по личной инициативе ребенка предпринимаемая деятельность, насыщенная положительными эмоциями. В сюжетно-ролевой игре знания детей не только уточняются и расширяются, но и в силу их неоднократного, практически-действенного воспроизведения преобразовываются, качественно изменяются, приобретают сознательный и обобщенный характер. Поэтому советские психологи и педагоги характеризуют игру как форму практического познания окружающей действительности, как способ перехода от незнания к знанию. Отражая в играх деятельность взрослых, в которой ребенок практически еще не может участвовать, он действительно воспроизводит наиболее для него интересные, запечатлевающиеся трудовые процессы взрослых.
Может ли количественная сторона действительности стать содержанием сюжетно-ролевой игры? На первый взгляд ответ прост: да, может. Действительно, дошкольники в сюжете и содержании игр, а также в игровых действиях отражают знакомую им область действительности: быт семьи, детского сада, события общественной жизни, различные виды труда взрослых. В таких играх иногда создаются ситуации, в которых, выполняя взятую на себя роль, ребенок может производить разнообразные счетные и измерительные действия. Например, в игре «Магазин» он пересчитывает предметы, записывает свои подсчеты, измеряет ткань, ленты, веревочки и др.; в игре «Транспорт» устанавливает маршруты и рейсы поездов, самолетов, автобусов и т. д.
Для того чтобы дошкольник мог развернуть сюжет игры, смоделировать ту или иную деятельность взрослых, он должен понять ее смысл, мотивы, задачи и нормы отношений, существующие между взрослыми. Самостоятельно сделать это ребенок не может. Лишь подготовленное воспитателем ознакомление с доступными детям дошкольного возраста видами труда раскрывает им смысл трудовых взаимоотношений взрослых, значение выполняемых ими действий. На этой основе возникает игра, и ребенок, реализуя взятую роль, начинает глубже вникать в смысл, понимать мотивы и задачи деятельности людей, а также значение своей роли и своих действий.
Что касается количественных отношений, то самостоятельно, непосредственно воспринять действия взрослого с числом, счетом, измерением дошкольник также не может. Область количественных отношений как бы выпадает из поля его зрения. Он в своем опыте обычно не сталкивается с необходимостью практического использования этих отношений, и потому они не отражаются в его играх. Выделить в деятельности взрослых количественные отношения и способы их определения ребенок может только с помощью воспитателя.
Счет и измерение - действия взаимозависимые, они должны выполняться не приблизительно, а точно, правильно и в определенной последовательности. Поэтому в творческой игре, где используются счет или измерение, воспитатель должен брать на себя такую роль, которая позволила бы ему контролировать правильность и точность выполнения каждым ребенком математических действий. Однако при авторитарном руководстве воспитателя возникает опасность нарушения самостоятельного характера детской игры. Следовательно, чтобы сохранить саму природу игры и в то же время успешно осуществлять обучение ребят математическим основам, а именно операциям счета и действиям с мерами, необходимы игры особого рода. Они должны быть организованы так, чтобы в них: во-первых, в качестве способа выполнения игровых действий возникала объективная необходимость в практическом применении счета и измерения; во-вторых, содержание игры и практические действия были бы интересными и предоставляли возможность для проявления самостоятельности и инициативы детей.
Иначе говоря, в такой игре должен быть развернутый сюжет, включающий разнообразные роли, и не обязательно с математическим содержанием, но определенные игровые задачи должны решаться непосредственно на основе усвоенных на занятиях математических знаний и предлагаться ребенку в виде игровых правил. Речь идет о сюжетно-дидактических играх, в которых дети, играя в профессии, постигают смысл труда и воспроизводят трудовую деятельность взрослых, а также одновременно учатся точному выполнению правил и математических действий в бытовой обстановке.
Чтобы развернуть эти игры со старшими дошкольниками, воспитателю надо прежде всего познакомиться с принципами их организации. К таковым относятся:
Отбор математических знаний, полученных на занятиях, для последующего отражения их в играх старших дошкольников. Для реализации этого положения необходимо:
· определить возможность применения знаний о числе, счете и измерении в детских играх;
· обеспечить преемственность между содержанием занятий по математике с последующей игровой деятельностью;
· включать в игры специфические действия, направленные на формирование первоначальных математических представлений и понятий.
Ознакомление детей с деятельностью взрослых, в которую органически входят действия счета и измерения. Для построения игр надо ориентироваться на такую деятельность взрослых, которая отвечала бы следующим требованиям:
· она должна быть общественно значимой и доступной для наблюдения и понимания детей. Действия счета и измерения должны выполнять в ней одну из ведущих функций и являться средством достижения социально значимых результатов;
· профессиональная деятельность взрослых должна быть наглядной как по процессу счета и измерения, так и по получаемому продукту;
· содержание трудовых действий и отношений взрослых должно
быть доступным для воспроизведения в игровых ролях;
· сообщаемым знаниям следует придавать эмоциональную окраску, чтобы у детей легче и яснее складывались представления о данном виде труда, о взаимосвязях людей в трудовом процессе, о применении счета и измерения в разных сферах жизни, о точности выполнения людьми указанных действий, обеспечивающих успешность деятельности; чтобы у ребят возник интерес к трудовым профессиям и желание включать их в игры;
· необходимо использовать разнообразные методы и приемы, позволяющие знакомить детей с разными видами труда.
Отображение знакомой детям деятельности взрослых в сюжете и содержании игр. Для реализации этого принципа необходимо соблюдать следующие условия:
· дети должны хорошо ориентироваться в деятельности взрослых, отображаемой в игре. Тогда, решая игровую задачу, они будут целенаправленно и достоверно воспроизводить в игре счетно-измерительные действия;
· при отображении труда следует включать в игру действия счета и измерения не как одноразовое поручение, а как действия, закрепленные за данной ролью. В этом случае они будут выступать как средства достижения цели деятельности, как практическая необходимость в применении математических знаний;
· последовательность выполняемых ребенком действий с реальными предметами, а затем их изображениями должна приводить к результату, который явится проверкой правильности выполнения действий счета или измерения. Тем самым будет раскрываться смысл и значение реальных действий.
Организация коллективных игр. Привлечение каждого ребенка к выполнению ролей, включающих математические действия. Осуществление этого принципа создает условия для практического применения и развития математических представлений каждого дошкольника, для формирования эмоционально-положительного отношения к указанным знаниям, для развития самодеятельности и активности всех участников игры. Чтобы реализовать данные положения, необходимо:
· обогащать игры по тематике, сюжетам, игровым ролям, взаимоотношениям детей. В этом случае усвоенные правила и способы действий дети будут переносить в другие игры с новыми объектами. Сфера применения знаний значительно расширится;
· готовить вместе с детьми необходимый материал и атрибуты для игры. В совместном труде у детей появится интерес к содержанию игры, к будущим ролям и развертыванию сюжета;
· игры, предполагающие использование счета и измерения, следует организовывать наряду с существующими в группе другими играми. Это позволит удовлетворить интересы всех детей.
Непосредственное участие в игре воспитателя, выполняющего наряду с детьми игровую роль. Это положение имеет принципиальное значение как с точки зрения организации самой игры, так и с точки зрения направленности и руководства ею. Необходимость участия взрослого в игре диктуется следующими соображениями:
· счетно-измерительные действия нужно выполнять не приблизительно, а правильно и точно, иначе допущенные ошибки будут закрепляться;
· беря на себя ведущую роль, воспитатель имеет возможность естественно (изнутри) видеть всю игру, контролировать правильность выполнения игровых действий, связанных со счетом и измерением, при затруднениях оказывать помощь в виде вопросов, разъяснений, советов и т. п., влиять на распределение ролей, подсказывать и создавать новые ситуации игры, подчеркивать, одобрять успехи детей, привлекая внимание коллектива, вызывать положительное эмоциональное настроение, стимулировать инициативу и творчество.
Индивидуальный подход к детям (учет знаний, интересов, способностей, игровых навыков и умений каждого ребенка). Целенаправленное воздействие воспитателя на поведение ребенка является важным условием для достижения всеми детьми определенного уровня овладения математическими знаниями, обеспечивающими подготовку их к учебной деятельности в школе. С этой целью воспитателю необходимо:
· подбирать роли, соответствующие возможностям ребенка, его игровым интересам и навыкам;
· предлагать решение посильных для ребенка задач, приводящих к развитию уверенности в своих силах, к проявлению активности и самостоятельности;
· создавать игровые проблемные ситуации, последовательно усложняющиеся и вызывающие у детей радость поиска;
· удивляться догадкам детей, их сообразительности, поддерживая атмосферу доброжелательности, творчества, создавая специальные ситуации для застенчивых и неуверенных в себе детей.
Переход от практического счета предметов к действиям сета в плане представлений, а затем к операциям с числами. Пути реализации этого принципа следующие:
· осуществление в игровых ситуациях постепенного перехода счета реальных предметов к их заместителям, а затем к устному счету;
· создание по ходу игры ситуаций взаимодействия с партнером,
· в которых возникает необходимость словесного обозначения количества (постановки задачи или вопроса, сообщения результата);
· постепенное повышение уровня трудности задач, решение которых требует сравнения, рассуждения и обобщения знаний.
Итак, при проектировании и проведении сюжетно-дидактических игр воспитатель должен руководствоваться указанными выше принципами, которые взаимосвязаны и взаимообусловлены. В pазных детских садах игры могут быть различными по тематике содержанию, но принципы их организации остаются теми же. Так, если детский сад находится на территории поселка и дети постоянно наблюдают работу животноводов, полеводов, то, безусловно быт и труд людей этих профессий послужит поводом для подражания им в игре. В городских условиях содержанием детских игр может стать труд строителей, кондитеров, рабочих и т. д. Но, несмотря на специфику местных условий, в любом случае игра должна быть организована так, чтобы в ней возникала объективная необходимость в практическом применении математических знаний.
2. Экспериментальное исследование процесса влияния дидактической игры на самостоятельную познавательную деятельность детей
Форми рованию у ребенка математических представлений способствует использование разнообразных дидактических игр. В игре ребенок приобретает новые знания, умения, навыки. Игры, способствующие развитию восприятия, внимания, памяти, мышления, развитию творческих способностей, направлены на умственное развитие дошкольника в целом.
В начальной школе курс математики вовсе не прост. Зачастую дети испытывают разного рода затруднения при освоении школьной программы по математике. Возможно, одной из основных причин подобных трудностей является потеря интереса к математике как предмету.
Следовательно, одной из наиболее важных задач воспитателя и родителей - развить у ребенка интерес к математике в дошкольном возрасте. Приобщение к этому предмету в игровой и занимательной форме поможет ребенку в дальнейшем быстрее и легче усваивать школьную программу.
Программа по математике для детей седьмого года жизни предусматривает дальнейшее изучение количественного и порядкового счета, количественного состава числа из единиц, закрепление знаний о связях и отношениях между числами в пределах 10, знакомство с составом числа из 2-х меньших чисел в пределах 10 и др.
Нами были определены задачи экспериментальной части исследования:
1. Определить уровень умения детей подготовительной к школе группы самостоятельно применять математические знания в новых условиях.
2. Разработать и апробировать методический материал по использованию дидактических игр в самостоятельной познавательной деятельности детей 6-7 лет.
3. Определить эффективность разработанного методического материала.
Эксперимент состоял из 3-х этапов:
1. Констатирующего;
2. Формирующего;
3. Контрольного.
База исследования: воспитанников подготовительной к школе группы ДОУ № 4 комбинированного вида г. Октябрьска.
2.1 Выявление уровня умения самостоятельно применять усвоенные знания в условиях дидактической игры (констатирующий эксперимент)
Выбор детей данного возраста носил не случайный характер, т.к. работа по формированию элементарных математических представлений у детей дошкольного возраста является частью их общей подготовки к школе. Формирование элементарных математических представлений способствует развитию тех качеств, которые необходимы будущему школьнику.
Поэтому самостоятельное применение математических знаний в новых условиях (игре), свидетельствует о прочном усвоении детьми этого возраста программного материала.
Для участия в нашем исследовании были отобраны 9 детей подготовительной к школе группы (Приложение 1), равные по уровню развития. Констатирующий этап исследования проводился в спокойной, привычной для детей обстановке.
Для определения уровня умения детей самостоятельно применять усвоенные на занятиях математические знания в новых условиях воспитанникам были предложены 6 заданий, которые в целом составили дидактическую игру «Цирк».
Цирк.
Цель игры: Проверка знаний о счете, умения самостоятельно решать математические задачи в новых условиях.
Игровые действия. Выполнение роли зрителя, правильное решение задач, четкие ответы на вопросы ведущего.
Правила игры. По сигналу ведущего подбирать соответствующую числовую карточку, выполнять задания точно и быстро.
Материал. У каждого ребенка - конверт, в котором находятся числовые карточки.
Ход игры. Все дети выполняют роль зрителей, воспитатель - ведущий.
Ведущий. Дети, у нас сегодня открылся цирк. Вы хотите пойти в цирк?
Получив дружное согласие, ведущий обращает общее внимание на кассу, и предлагает всем купить билеты. Дети быстро выстраиваются друг за другом, покупают билеты и с интересом их рассматривают (на билетах красным карандашом написан номер ряда, а синим - номер места). Все зрители проходят в красиво оформленный зал - это цирк. Оживленно разговаривают о предстоящем представлении и высказывают предложения об участии в цирковой программе клоунов, дрессированных зверей и т. д. Звенит звонок, и зрители начинают определять по билету свое место в зале.
Задание I - порядковый счет.
Ведущий. Все вы купили билеты, на которых красным карандашом указан номер ряда, а синим - номер места. Каждый из вас должен найти свой ряд и место в зале.
Когда все рассаживаются, контролер (воспитатель) проходит между рядами и проверяет билеты, т. е. выясняет, правильно ли дети нашли свои места. Ведущий спрашивает каждого ребенка: «На котором месте ты сидишь? Как ты считал? Почему ты думаешь, что сел на седьмое место?» Тем, кто правильно нашел ряд и место, вручает фишки.
Появляется Петрушка.
П е т р у ш к а. Здравствуйте, друзья дорогие: и маленькие, и большие! Не один я к вам пришел, а гостей с собой привел. Не простых гостей - дрессированных зверей. Кого- я не скажу, а загадку расскажу:
С хозяином дружит,
Дом сторожит.
Спит под крылечком,
Хвост колечком.
Кто это?. Правильно. Это собака. Ее зовут Жучка. Вы видели разных собачек, которые умеют танцевать, кувыркаться. А сегодня вы познакомитесь с собачкой Жучкой, которая умеет считать. Только вы будьте внимательны. Собачка может ошибиться. Когда Жучке зададут вопрос, вы слушайте и вместе с ней считайте. Затем возьмите в конверте нужную карточку и покажите ответ. Приготовились!
Из-за ширмы появляется собачка. Жучка здоровается с детьми, дети дружно и громко ей отвечают. Жучка решает задачи, дети контролируют.
Задание 2 - количественный счет до 10.
Петрушка. Жучка, дети хотят узнать, умеешь ли ты считать. Ну-ка, Жучка, сосчитай, сколько здесь кубиков. (На лесенке стоят 7 кубиков. Жучка лает 6 раз.)
Петрушка. Правильно Жучка сосчитала? Дети отвечают сколько кубиков Жучка не досчитала.
П е т р у ш к а. Жучка, посчитай еще раз. (Жучка опять лает 6 раз.)
Петрушка. Покажите, дети, Жучке, сколько здесь кубиков? (Дети должны показатькарточку, на которой нарисовано 7 кружков.)
Петрушка. А сколько Жучка насчитала кубиков? Покажите карточку. (Дети показывают.)
Петрушка. Молодцы! Хорошо умеете считать:
Раз, два, три, четыре, пять!
Можно все пересчитать,
Сосчитать, измерить, взвесить.
Сколько в комнате углов? (Ответ детей.)
Сколько ног у воробьев? (Ответ детей.)
Сколько пальцев на руках? (Ответ детей.)
Сколько пальцев на ногах? (Ответ детей.)
Сколько в садике скамеек? (Лает Жучка.)
Сколько в пятачке копеек? (Ответ детей.)
Задание 3 - сравнение рядом стоящих чисел в пределах 10.
Петрушка. Сейчас я буду называть числа, а вы вместе с Жучкой определите какое число больше: 7 или б? Покажите карточку. Какое число меньше: 7 или 6? Покажите карточку. (Дети должны показать вначале карточку, где 7 кружков, а затем - где 6. Жучка ошибается, показывает наоборот.) Жучка, постарайся правильно считать, я тебе сейчас другое задание дам. (Петрушка расставляет 4 елочки. Жучка лает 4 раза. Дети радостно хлопают в ладоши.) Дети, скажите Жучке, какое число больше числа 4 на I. (Дети должны называть число 5 и показать соответствующую карточку.) Какое число меньше числа 4 на 1? (Дети должны назвать число 3 и показать соответствующую карточку.)
Задание 4 - определение независимости числа предметов от их величины.
Из-за ширмы появляются 7 больших гусей и 8 маленьких гусят, а за ними лиса. Гуси, спасаясь от лисицы, прячутся на первой ступеньке лесенки, а гусята забираются на вторую ступеньку.
Петрушка. Спрятались гуси с гусятами от лисы. Очень хорошо. А кого больше, гусей или гусят? (Дети должны ответить, что гусят, а Жучка показывает лапой на гусей.) Кто же прав, дети или Жучка? Как узнать?
Дети. Петрушка, ты посчитай.
Петрушка. Хорошо, я посчитаю, но и вы считайте, сколько гусей. А потом покажете карточку, на которой столько же кружков, (Дети считают и показывают карточку, за ними показывает карточку и Жучка.) А сколько гусят? (Дети должны пересчитать гусят и поднять соответствующую карточку, где 8 кружков.) Сейчас будет трудный вопрос. Все внимательно слушайте. И ты, Жучка, слушай, кого больше (меньше): 7 больших гусей или 8 маленьких гусят? Покажите карточку.! А теперь скажите, какое число больше (меньше): 7 или 8? (Дети должны показать соответствующие карточки).
Задание 5 - запоминание связей между числами и предметами.
Жучка что-то шепчет Петрушке на ухо.
П е т р у ш к а. Дети, Жучка говорит, что к вам в гости едут 7 зайчиков и 5 рыжих лисиц. Они хотят посмотреть сказку «Репка». Вы их видели?
Дети отвечают.
П е т р у ш к а. Их нужно встретить. Пойду встречать. Ой, я забыл, сколько и кто едет в гости? Напомните мне пожалуйста.
Задание 6 - состав числа из единиц в пределах 10.
Проводится показ сказки «Репка» (настольный театр).
П е т р у ш к а. Кто тянул репку? Сколько всего собралось персонажей, чтобы вытянуть репку? По скольку их было? На котором месте внучка? Жучка? Мышка? Как считали?
Эту игру мы проводили с детьми только группы детей, участвующих в эксперименте, что дало нам возможность выявить успехи и самостоятельность каждого ребенка.
Выполнение ребенком заданий оценивалось в баллах:
0 баллов - ребенок не выполнил задание;
1 балл - ребенок выполнил задание не полностью. (Нп., ответил не на все вопросы задания, а частично).
2 балла - ребенок выполнил задание полностью.
В этой игре вопросы задают любимые персонажи: Петрушка, собачка Жучка, «умеющая считать». Знакомые детям количественные отношения они впервые постигли в необычной для них форме соревновательной ситуации: кто лучше считает, кто сделал меньше ошибок? Счет начинала Жучка, а зрители - дети контролировали правильность решения задачи. В этой интересной и острой ситуации дети должны были максимально мобилизоваться, стремиться самостоятельно решить задачу и показать свои успехи в счете. В данной игровой ситуации у детей наиболее полно обнаружился уровень умений применять полученные на занятиях математические знания.
Для выявления уровня умений каждого ребенка мы составили таблицу, в которую поместили результаты ответов детей на каждое задание игры.
Оценка результатов задания по уровням.
Низкий - 0-4 баллов;
Средний - 5-9 баллов;
Высокий - 10-12 баллов.
Исходя из результатов таблицы мы видим, что детей ответивших правильно на все вопросы всех заданий нет (0%);
частично выполнивших задания - 9 детей или 100% из них:
§ 3 детей (33,3%) со средним уровнем умений
§ 6 детей (67,7%) с низким уровнем умений.
Особенно тяжело дались детям ответы на вопросы 3 и 4 задания. Дети при ответе на вопросы этих заданий вели себя растеряно, путались в своих ответах. Алеша С., Вика К., Вика Д., Женя Б., Толик С., не смогли вовремя ответить какое число больше и какое меньше 4 на 1, поэтому ответ на этот вопрос ими не был засчитан.
При ответе на вопрос 4 задания 6 детей (Вика К., Вика Д., Данил С., Женя Б., Лена П, Толя С) ответили, что больше больших гусей, а меньше маленьких гусят. Это говорит о том, что с этими детьми мало ведется работа по определению независимости числа предметов от их величины. Причем эта работа не должна ограничивать только занятиями по математике, но и осуществляться и в свободной игровой деятельности детей.
По результатам заданий мы составили диаграмму (Рис. 1) из которой видно какие задания вызвали затруднения у детей.
Рис. 1 Результаты качества выполнения заданий констатирующего этапа эксперимента
Исходя из результатов констатирующего этапа эксперимента мы наметили для себя дальнейшую работу по повышению уровня умения самостоятельно применять полученные на занятиях математические знания в условиях дидактической игры.
2.2 Повышение уровня умения самостоятельно применять полученные на занятиях математические знания в условиях дидактической игры (формирующий эксперимент)
Для повышения уровня нами была разработана система по использованию дидактических игр для умения применять на практике полученные на занятиях математические знания.
Для различения количественного счета детям были предложены игры «Зоопарк» (Приложение 3); «Бензозаправочная станция». В последствии на основе этих игр дети самостоятельно организовывали игры «Аэропорт», «Магазин».
Педагоги поощряли детскую инициативу, поддерживали радостную атмосферу, старались создать интересную перспективу игры на следующий день. Дети предлагали поиграть в «Хлебзавод», «Столовую», «Детский сад» и другие игры, которые предоставляют огромные возможности применить и закрепить полученные на занятиях по математике знания и умения.
В содержании математических знаний и умений входит измерение. Введение в программу измерения непрерывных величин (протяженностей, массы, объемов жидкости и вместимости сосудов), использование для измерения условных мер разного размера помогает детям уяснить новое значение числа как выражения отношения одной величины к другой, принятой за единицу меры.
Многие профессии взрослых, которые доступны пониманию детей (например, швея, столяр, доярка, продавец и др.), основаны на измерении. Оно является необходимым средством выполнения различных трудовых процессов. Детям было предложено воспроизвести в сюжетно-дидактических играх действия людей разных профессий. Для проявления самостоятельной познавательной деятельности дети выбрали следующие игры: «Швейная фабрика», «Молочная ферма».
Выполняя разные роли в игре «Мебельная мастерская» (Приложение 5), дети измеряют протяженности, следя за точностью работы. Удовлетворяется желание всех детей осуществлять процесс измерения, не ожидая очереди для работы в мастерской. Дошкольники выбирают роли в соответствии со своими, интересами. Измерение включается и в другие игры. Так, жильцам одной квартиры привозят мебель, и, прежде чем ее расставить, мальчики измеряют длину простенка и ширину шкафа (игра «Новоселье»). Диспетчеры устанавливают маршруты поездов и теплоходов, следят за временем их отправления, измеряют расстояние от одной станции до другой (игра «Транспорт»). Кто-то из ребят предложил построить жилой район. Так началась игра «Строительство». И вот уже появились первые высотные дома. Строитель Алеша комментировал результаты своего труда строками из стихотворения С. Баруздина «Кто построил этот дом?».
Бетонщики в это время сооружали новую дорогу. Двое мальчиков - Андрей и Толик - решили провести разделительную линию и расставили дорожные знаки. С помощью условных мерок (линеек) они начали измерять длину и ширину дороги. Это привлекло внимание еще троих детей. Все дружно трудились, и вскоре на дороге появилась разделительная линия белого цвета, дорожные знаки для пешеходов и транспорта.
В процессе работы по повышению уровня умения применять полученные математические знания в процессе дидактических игр также были использованы настольно-печатные игры (Приложение 6) и игры с «жизненным» дидактическим материалом (Приложение 7).
Одновременно с дополнительным введением в самостоятельную деятельность детей дидактических игр продолжались занятия по формированию элементарных математических представлений.
В обстановке группы была создана атмосфера, которая побуждала детей использовать свои знания и умения в самостоятельной игровой деятельности.
В уголке группы были размещены различные игры-лото: «Что похоже на данную фигуру?»; «Найди на один меньше».
С родителями детей данной группы была проведена консультация на тему: «Специфика развития математических способностей» (приложение 8)
Было подготовлено и сделано выступление на педагогическом совете ДОУ на тему: «Познавательная деятельность детей в ДОУ». (Приложение 9)
Заключительным этапов формирующего эксперимента было проведение математического досуга с участием детей всей подготовительной группы. (Приложение10)
2.3 Проверка эффективности проделанной работы на формирующем этапе эксперимента (контрольный эксперимент)
Для определения эффективности проделанной нами работы на формирующем этапе эксперимента был использован следующий диагностический материал.
Задание 1.
Перед каждым ребенком положили 2 листа бумаги. На одном с нарисованы в ряд кружочки, на другом изображены семена.
Экспериментатор:
Это болотце с кочками, по которым будут скакать лягушки. Лягушонок (он перед вами) должен прискакать на седьмую кочку и остаться на ней. Подумайте, как надо считать, чтобы лягушонок попал на седьмую кочку.
Экспериментатор: Подвиньте листочки, на которых нарисованы семена. Самые первые ростки появились из четвертого и шестого семени. Нарисуйте на этих семенах ростки.
Задание 2 - установление связей и отношений между числами натурального ряда.
Экспериментатор. Сейчас поиграем в игру «Угадай числа». Я буду называть вам числа, а вы, взяв нужную карточку с цифрами, покажите, какое число больше (меньше) названного на 1 (называются числа 5, 6, 7). Итак:
какое число стоит до 7? после 7? (Дети показывают карточки с цифрами в и 8.) угадайте, какое число больше 5 и меньше 7. (Дети показывают цифру 6.) угадайте, какое число больше 7 и меньше 9. (Дети показывают цифру И.)
Задание 3 - состав числа из двух меньших.
На воротах, сделанных из фанеры, прикрепляется карточка с цифрой. У каждого ребенка имеется 1 карточка с одной из цифр от 1 до 9. В ворота может пройти та пара, у которой в сумме на карточках получается число, какое обозначено цифрой на воротах. Цифры меняются, и соответственно им ребенку каждый раз нужно найти себе в пару другого игрока с цифрой, которая вместе с его карточкой составит сумму, равную указанной на воротах. Каждая пара получает по 2 фишки.
Задание 4 - сохранение дискретных количеств.
Экспериментатор. Все вы, дети, любите играть в шашки. Но сегодня вы будете играть не так, как в настоящей игре. У каждого на столе 2 ряда черных и белых шашек (шашек одинаковое количество, расположены они параллельно). Каких шашек больше (меньше) или их поровну? Если шашек поровну, вы должны поднять квадрат красного цвета, если не поровну, то зеленого цвета. (Дети поднимают красные квадраты.)
Экспериментатор. А теперь поставьте черные шашки в столбик. Каких шашек больше (меньше) или их поровну? (Тем детям, которые поднимают красные квадраты, что означает: шашек поровну, их количество не изменилось, - вручают фишки.)
Задание 5 - счет единиц по мерке, равной нескольким частям, которые физически не объединяются.
Экспериментатор. Дети, вы любите кашу? Чтобы сварить вам на ужин вкусную кашу, повару нужна крупа. Но весы на кухне сломались, и он не смог узнать, сколько взять крупы. Помогите ему: у нас есть полиэтиленовые пакеты, в каждый пакет нужно насыпать по 2 больших бокала крупы.
Дети с удовольствием соглашаются помочь. Экспериментатор сообщает, что имеется, к сожалению, только 1 бокал, но перед каждым стоит маленькая чашка, 2 таких чашки составляют 1 бокал. Он демонстрирует, что в 1 бокал вмещаются 2 маленьких чашки крупы. Дети самостоятельно меряют крупу чашками и отдают мешочки повару. Правильно выполнившим задание члены жюри вручают фишки.
Задание 6 зависимость числа от величины мерки при неизменной величине объекта измерения.
У всех детей имеются одинаковые по длине ленты, но для их измерения воспитанники получают разные мерки.
Экспериментатор. Сколько раз уложилась мерка по длине ленты? Почему получились разные числа? (Дети объясняют.)
Ответы детей оценивались по бальной системе
0 баллов - ребенок не выполнил задание;
1 балл - ребенок выполнил задание частично;
2 балла - ребенок выполнил задание полностью.
Наибольшее количество баллов, которое мог бы набрать ребенок по результатам 6 заданий 12 баллов.
Результаты выполнения заданий в контрольном эксперименте приведены в Приложении 11.
Оценка результатов:
Высокий уровень - 10-12 баллов;
Средний уровень - 5-9 баллов;
Низкий уровень - 0-4 балла.
Сравнивая результаты констатирующего и контрольного этапов эксперимента (Таблица 1) видно, что у большинства детей наметилась положительная тенденции к повышению уровня умения самостоятельно применять полученные на занятиях математические знания в новых условиях.
Таблица 1. Динамика повышения уровня умения самостоятельно применять полученные математические знаний
№ п/п |
Имя ребенка |
Констатриующий эксперимент |
Контрольный эксперимент |
Прирост (в баллах) |
|||
Общее кол-во баллов |
Уровень |
Общее кол-во баллов |
Уровень |
||||
1 |
Алеша С. |
5 |
С |
8 |
С |
3 |
|
2 |
Андрей К. |
5 |
С |
9 |
С |
4 |
|
3 |
Аня М. |
6 |
С |
10 |
В |
4 |
|
4 |
Вика Д. |
5 |
Н |
8 |
С |
3 |
|
5 |
Вика К. |
4 |
Н |
7 |
С |
3 |
|
6 |
Женя Б. |
2 |
Н |
8 |
С |
6 |
|
7 |
Лена П. |
4 |
Н |
6 |
С |
2 |
|
8 |
Данил С. |
3 |
Н |
5 |
С |
2 |
|
9 |
Толик С. |
3 |
Н |
4 |
Н |
1 |
|
Как видно из таблицы 3 детей (34%) остались на том же уровне, 1 ребенок (11%) повысил свой уровень до высокого, 4 ребенка (44%) повысили свой уровень до среднего и 1 реб-к (11%) остался на том же уровне (низком).
Наиболее наглядно это можно увидеть на сравнительной диаграмме (Рис/ 2).
Рис. 2 Сравнительная диаграмма динамики повышения уровней умений по результатам констатирующего и контрольного этапов эксперимента
Анализ ответов детей на задания контрольного эксперимента свидетельствует о том, что большинство детей овладели программным материалом по математике и они могут применять эти знания при решении задач, сформулированных в ходе игры по-новому.
Большинство детей легко понимали смысл практических заданий, дети логично действовали и доказывали правильность своего ответа, ребята старались свободно ориентироваться в сложных зависимостях существующих между объектами измерения, мерами и числами., но к сожалению, это не удалось сделать Толе С, Жене Б.
Толик на вопросы задания № 2, сильно нервничал, путался в карточках и поэтому не смог дать правильного ответа.
Данил С. Проходя через ворота вместе с Леной П (задание 3) не смог показать второе правильное число из которого должна получиться сумма 8 (Лена показала число 3, а Данил 6).
Большинство детей (5 человек) легко справились с 4 заданием, а у 4 детей это задание вызвало небольшое затруднение. Так, Вика К. не смогла определить количество шашек на столе, девочка сказала, что белых шашек больше чем черных (Правильный ответ поровну).
С 5 заданием справились всего 3 детей. 6 детей не смогли использовать условную мерку: дети пересыпали в пакет маленькие чашки, вместо того, чтобы 2 маленькие чашки высыпать в один бокал.
Таким образом, результаты контрольного эксперимента свидетельствуют о эффективности проделанной нами работы на формирующем этапе эксперимента. Необходимо отметить то, что по окончании нашего исследования работа по использованию дидактических игр в самостоятельной познавательной деятельности детей педагогами ДОУ должна продолжаться, так как не все дети умеют самостоятельно применять полученные на занятиях по математике знания в новых условиях.
Заключение
В дошкольном возрасте закладываются основы знаний, необходимых ребенку в школе. Математика представляет собой сложную науку, которая может вызвать определенные трудности во время школьного обучения. К тому же далеко не все дети имеют склонности и обладают математическим складом ума, поэтому при подготовке к школе важно познакомить ребенка с основами счета.
И родители, и педагоги знают, что математика - это мощный фактор психического развития ребенка, формирования его познавательных и творческих способностей. Самое главное - это привить ребенку интерес к познанию. Для этого занятия и повседневная деятельность детей должны проходить в увлекательной игровой форме.
Благодаря играм удаётся сконцентрировать внимание и привлечь интерес даже у самых несобранных детей дошкольного возраста. В начале их увлекают только игровые действия, а затем и то, чему учит та или иная игра. Постепенно у детей пробуждается интерес и к самому предмету обучения.
Таким образом, в игровой форме прививание ребенку знания из области математики, научит его выполнять различные действия, разовьет память, мышление, творческие способности. В процессе игры дети усваивают сложные математические понятия, учатся считать, читать и писать, а в развитии этих навыков ребенку помогают близкие люди - его родители и педагог.
Формированию у ребенка математических представлений способствует использование разнообразных дидактических игр. Такие игры учат ребенка понимать некоторые сложные математические понятия, формируют представление о соотношении цифры и числа, количества и цифры, развивают умения ориентироваться в направлениях пространства, делать выводы.
При использовании дидактических игр широко применяются различные предметы и наглядный материал, который способствует тому, что занятия проходят в веселой, занимательной и доступной форме.
Логические игры математического содержания воспитывают у детей познавательный интерес, способность к творческому поиску, желание и умение учиться. Необычная игровая ситуация с элементами проблемности, характерными для каждой занимательной задачи, всегда вызывает интерес у детей.
Занимательные задачи способствуют развитию у ребенка умения быстро воспринимать познавательные задачи и находить для них верные решения. Дети начинают понимать, что для правильного решения логической задачи необходимо сосредоточиться, они начинают осознавать, что такая занимательная задачка содержит в себе некий «подвох» и для ее решения необходимо понять, в чем тут хитрость.
Анализ теоретических положений и методических выводов позволил предоставить результаты опытно-экспериментальной работы, проведённой на базе ДОУ № 4 комбинированного вида г. Октябрьска по повышению уровня умения самостоятельно применять полученные на занятиях по математике знания в условиях дидактической игры. Была прослежена динамика изменения уровня умения в процессе экспериментальной работы. При прочих равных условиях на начальном этапе эксперимента уровень развития детей был приблизительно одинаков. Анализ результатов до и после формирующего эксперимента свидетельствует об эффективности разработанной нами методики совершенствования работы. Результаты детей улучшились. Один ребенок достиг высокого уровня умения, также возросли показатели среднего уровня с 67,7% до 78%, но к сожалению остался один ребенок на прежнем низком уровне.
В процессе работы были замечены такие изменения: дети стали считать предметы на расстоянии, взором, вслух произнося числительные и пользуясь указательным жестом. Дети стали более активными, самостоятельными и внимательными к действиям счета, стали рассуждать, доказывать. Некоторые заметно расширили свои знания, за счет общения в игре с другими детьми, они не только стали решать задачи без всякой наглядной опоры, но и самостоятельно придумывать новые игры со счетными действиями, привлекая к ним и других детей.
Разумеется, данное исследование не претендует на достаточно полное, и вопрос остаётся актуальным. Однако в плане повышения роль дидактических игр в самостоятельной познавательной деятельности детей переработаны известные методические аспекты и адаптированы для детей старшего дошкольного возраста в конкретных условиях детского учреждения.
Исходя из анализа опытно-экспериментальной работы, можно прийти к выводу, что гипотеза о том, что роль дидактических игр в самостоятельной познавательной деятельности детей будет значимой, если педагогическая работа по их использованию будет носить целенаправленный и планомерный характер, если создать такие педагогические условия:
1. Систематически давать детям возможность использовать свои знания на практике;
2. Способствовать самореализации детей в различных видах игровой деятельности;
3. Развивать познавательную деятельность детей, через нетрадиционный подход к использованию дидактических игр в педагогической деятельности;
Список используемой литературы
1. Бондаренко А.К. Дидактические игры в детском саду. - М.: Просвещение, 1991. - 160 с.
2. Болотин Л.Р., Т.С. Комарова, С.П. Баранов. Дошкольная педагогика - М.: Академия, 1997 - 240 с.
3. Венгер Л.А, Мухина В.С. Психология. - М.: Просвещение, 1988-326 с.
4. Возрастные возможности усвоения знаний. / Под ред. Д.Б. Эльконина и В.В. Давыдова - М.: Изд. «Просвещение», 1966. - 442 с.
5. Воспитателю о детской игре.: Пособие для воспитателей детского сада/ Под ред. Т.А. Марковой. - М.: Просвещение, 1982. - 128 с., ил.
6. Выготский Л.С. Избранные психологические исследования. Мышление и речь. Проблемы психологического развития ребенка - М.: Изд. Акад. пед. Наук РСФСР, 1956. - 520 с.
7. Гринченко И.С. Игра в теории, обучении, воспитании и коррекционной работе. Учебно-методическое пособие - М.: «ЦГЛ», 2002. - 80 с.
8. Дидактические игры и занятия с детьми раннего возраста: Пособие для воспитателей детского сада/ Е.В. Зворыгина, Н.С. Карпинская, И.М. Кононова и др.; Под ред. С.Л. Новоселовой. - 4-е изд., перераб. - М.: Просвещение, 1985. - 144 с., 4 л. ил.
9. Дневник воспитателя: развитие детей дошкольного возраста. / Под ред. О.М. Дьяченко, Т.В. Лаврентьевой - М.: «Издательство ГНОМ и Д», 2000. - 144 с.
10. Дурова Н.В., Новикова В.П. Ступеньки к познанию./ Худ. Ю.В. Богатова. - СПб.: ДЕТСТВО-ПРЕСС, 2003. - 56 с.: ил.
11. Запорожец А.В. Значение ранних периодов детства для формирования детской личности. Принцип развития в психологии. М. 1978, с. 243 - 267
12. Игры и упражнения по развитию умственных способностей у детей дошкольного возраста: Кн. для воспитателя дет. cада. - М.: Просвещение, 1989. - 127 с.: ил.
13. Коломенских Я.Л., Панько Е.А. Детская психология., Мн. «Университетское», 1988, - 223 с.
14. Леушина А.М. Формирование элементарных математических представлений у детей дошкольного возраста - М.: Просвещение, 1974-366 с.
15. Метлина Л.С. Занятия по математике в детском саду - М.: Просвещение, 1985-219 с.
16. Перова М.Н. Дидактические игры и упражнения по математике для работы с детьми дошкольного и младшего школьного возраста: Пособие для учителя. - 2-е изд., перераб. - М.: Просвещение, Учебная литература, 1996. - 144 с.: ил.
17. Сорокина А.И. Дидактические игры в детском саду: (Ст. группы). Пособие для воспитателей дет. сада. - М.: Просвещение, 1982. - 96 с.
18. Соколова Е., Митрохина М. Занимательная математика//Ребенок в детском саду-2005- № 4 -40-46 с.
19. Столяр А.А. Формирование элементарных математических представлений у дошкольников-М.: Просвещение, 1988-300 с.
20. Смоленцева А.А. Сюжетно-дидактические игры с математическим содержанием. - М.: Просвещение, 1987-97 с.
21. Урунтаева Г.А. Дошкольная психология: Учеб. пособие. - М.: Академия, 1996. - 336 с.
22. Щербакова Е.И. Методика обучения математике вы детском саду. - М.: Академия, 2000-270 с.
! | Как писать курсовую работу Практические советы по написанию семестровых и курсовых работ. |
! | Схема написания курсовой Из каких частей состоит курсовик. С чего начать и как правильно закончить работу. |
! | Формулировка проблемы Описываем цель курсовой, что анализируем, разрабатываем, какого результата хотим добиться. |
! | План курсовой работы Нумерованным списком описывается порядок и структура будующей работы. |
! | Введение курсовой работы Что пишется в введении, какой объем вводной части? |
! | Задачи курсовой работы Правильно начинать любую работу с постановки задач, описания того что необходимо сделать. |
! | Источники информации Какими источниками следует пользоваться. Почему не стоит доверять бесплатно скачанным работа. |
! | Заключение курсовой работы Подведение итогов проведенных мероприятий, достигнута ли цель, решена ли проблема. |
! | Оригинальность текстов Каким образом можно повысить оригинальность текстов чтобы пройти проверку антиплагиатом. |
! | Оформление курсовика Требования и методические рекомендации по оформлению работы по ГОСТ. |
→ | Разновидности курсовых Какие курсовые бывают в чем их особенности и принципиальные отличия. |
→ | Отличие курсового проекта от работы Чем принципиально отличается по структуре и подходу разработка курсового проекта. |
→ | Типичные недостатки На что чаще всего обращают внимание преподаватели и какие ошибки допускают студенты. |
→ | Защита курсовой работы Как подготовиться к защите курсовой работы и как ее провести. |
→ | Доклад на защиту Как подготовить доклад чтобы он был не скучным, интересным и информативным для преподавателя. |
→ | Оценка курсовой работы Каким образом преподаватели оценивают качества подготовленного курсовика. |
Курсовая работа | Деятельность Движения Харе Кришна в свете трансформационных процессов современности |
Курсовая работа | Маркетинговая деятельность предприятия (на примере ООО СФ "Контакт Плюс") |
Курсовая работа | Политический маркетинг |
Курсовая работа | Создание и внедрение мембранного аппарата |
Курсовая работа | Социальные услуги |
Курсовая работа | Педагогические условия нравственного воспитания младших школьников |
Курсовая работа | Деятельность социального педагога по решению проблемы злоупотребления алкоголем среди школьников |
Курсовая работа | Карибский кризис |
Курсовая работа | Сахарный диабет |
Курсовая работа | Разработка оптимизированных систем аспирации процессов переработки и дробления руд в цехе среднего и мелкого дробления Стойленского ГОКа |