1
С древнейших времен педагоги ищут способы наилучшего обучения детей. Ставятся задачи определить такие методы и технологии, чтобы оно протекало быстро и качественно, с разумными затратами сил учителей и учеников. Испробовано уже многое. Не осталось ни одного более или менее очевидного пути, по которому бы не пытались идти учителя. Все самое ценное осело в арсенале научной дидактики, практическая задача которой - указать учителям наиболее рациональные пути скорейшего приобретения знаний, умений, навыков, выработанные предшествующими поколениями учителей.
Среди проблем, обращающих на себя внимание современных исследователей, все большее значение приобретают те, которые связаны с поисками путей повышения качества и эффективности целенаправленного воспитания в условиях современной кризисной ситуации в экономике, духовной и культурной сферах нашего общества.
Дети не ставят в игре каких-то иных целей, чем цель - играть. Но было бы неправильно не учитывать обучающего и развивающего влияния игры и при сохранении в ней непосредственности жизни детей. Игра является средством воспитания, когда она включается в целостный педагогический процесс.
Ценность игры как воспитательного средства заключается я в том, что, оказывая воздействие на коллектив играющих детей, педагог через коллектив оказывает воздействие на каждого из детей. Организуя жизнь детей в игре, воспитатель формирует не только игровые отношения, но и реальные, закрепляя полезные привычки в нормы поведения детей в разных условиях и вне игры- таким образом при правильном руководстве детьми игра становится школой воспитания.
Игра является и средством первоначального обучения, усвоения детьми «науки до науки». В игре дети отражают окружающую жизнь и познают те или иные доступные их восприятию и пониманию факты, явления. Используя игру как средство ознакомления с окружающим миром, педагог имеет возможность направить внимание детей на те явления, которые ценны для расширения круга представлений. И вместе с тем он питает интерес детей, развивает любознательность, потребность и сознание необходимости усвоения знаний для обогащения содержания игры, а через игру, в процессе игры формирует умение распоряжаться знаниями в различных условиях. Руководя игрой, педагог воспитывает активное стремление делать что-то, узнавать искать, проявлять усилие, и находить, обогащает духовный мир детей. А это все содействует умственному и общему развитию. Этой цели и служат дидактические игры.
Дидактическая игра как феномен культуры обучает, развивает, воспитывает, социализирует, развлекает, дает отдых, и она же пародирует, иронизирует, смеется, публично демонстрирует относительность социальных статусов и положений. С самых ранних начал цивилизации игра стала контрольным мерилом проявления всех важнейших черт личности.
Педагогической обработкой дидактических игр, отбором и пропагандой игровых форм как средств воспитания занимались В.И. Даль, П.Ф. Лесгафт, П.Н. Бокин, Е.М. Дементьев и др.
Организаторами методической работы по игре и детским праздникам выступали В.Г. Марц, Н.П. Булатов и др.
Игра и сегодня объединяет творческий коллектив педагогов, этнографов, собирателей-энтузиастов (Г.Н. Волков, В.М. Григорьев, С.А. Шмаков и др.) являясь тем самым их общей воспитательной целью.
Цель работы: выявить и обосновать педагогические условия использования дидактической игры в обучении детей математике.
Объектом исследования данной работы являются младшие школьники восьми лет.
Предмет исследования заключается в обучении детей математике с помощью игры.
Задачи исследования:
1. Выявить основные свойства дидактической игры и выявить ее роль в воспитании личности.
2.Рассмотреть основные типы дидактических игр, их особенности и основные характеристики.
3. Исследовать основные воспитательные условия эффективности игры как средства воспитания всесторонне развитой личности.
4. Раскрыть основные принципы построения дидактической игры и особенности их применения .
5. Рассмотреть основные цели, для которых применяются дидактические игры.
Нелегко дать обоснованную оценку или хотя бы представить реальную роль игры в формировании личности, особенно в сравнении с другими средствами воспитания. Попробуем это сделать, привлекая на помощь сведения из истории развития образовательно-воспитательных систем и современные приметы использования игры в учебной и воспитательной работе.
В последние десятилетия медленно, но достаточно настойчиво в школьную практику начали внедряться компьютерные игры.
Однако даже к компьютерным играм если и не вводит их в мир современных технологий, то хотя бы показывает характер отношений человека с техникой в обществе будущего.
Конечно, всякая игра, в том числе и используемая на уроке с целью проверки и закрепления знаний, воспитывает, причем не в одном каком-то отношении, а во многих. Однако есть игры, которые организуются с учащимися во внеурочное время с целью освоения норм и правил поведения, формирования определенного отношения к нравственно - эстетическим ценностям, политике, труду и др. Так, в начальных классах с детьми разыгрывают ролевые игры по правилам поведения в общественных местах, инсценировки домашних праздников, конкурсы сказок, частушек, национальных игр, проводят игры - практикумы по освоению “техники” жестов, обращений, разговора по телефону и т.д.
В целях эстетического воспитания используют театральные игры: кукольный театр, драматизации сказок, художественных произведений.
В последние годы в нашей стране получают распространение терапевтические игры, т.е. игры, организуемые с целью излечения от психических расстройств, для компенсации недостатков общения и облегчения или даже устранения некоторых физических и физиологических аномалий. Их эффективность в дошкольном и школьном возрасте очень велика. Используются они и в работе со взрослыми. Однако особенно часто они применяются в младшем школьном возрасте.
Занятия по игротерапии проводит психотерапевт, но методической и техникой игровой терапии может овладеть и учитель. Лэндрет Г.Л. Игровая терапия: Искусство отношений. - М., 1994. - С.47.
Основные дидактические принципы
Принципы, на которых основывается дидактическая игра, имеют много общего с основными принципами обучения в школе.
В.И Логинова относит к этим принципам:
-принцип развивающего обучения;
-принцип воспитывающего обучения;
-принцип доступности обучения;
-принцип системности и последовательности;
-принцип сознательности и активности детей в усвоении и применении знаний;
-принцип индивидуального подхода к детям.
К вышеперечисленным принципам В.И Логинова, рассматривая обучение как принцип всестороннего развития личности ребенка, добавляет принцип прочности знаний, который рассматривается как связь обучения с повседневной жизнью и деятельностью детей (игрой, трудом), т. е. как необходимость упражнения детей в применении полученных знаний на практике, а также учета индивидуальных и возрастных особенностей. Таким образом, ребенок, овладевая навыками учебной деятельности в форме игры, осваивает и основные способы выполнения учебных заданий. Ситаров В.А. Дидактика М. 2002 - с. 134.
Представленные принципы являются основой для определения образовательного содержания, которое должен освоить школьник. Впервые подобная опытно-экспериментальная программа была разработана известным отечественным методистом Е.И. Тихеевой.
В дальнейшем проблема определения оптимального содержания воспитательно-образовательной работы решалась в исследованиях А.М. Леушиной, А.П. Усовой, Т.С. Комаровой.
Согласно современным исследованиям Т.И. Бабаевой, В.И Логиновой, З.И. Михайловой, содержание знаний об окружающем мире должно включать три раздела (блока):
мир природы
мир людей
мир предметов
Наиболее сложным и менее разработанным является вопрос о приобщении ребенка к социальному миру в связи со значительной переоценкой ценностей в современном обществе.
В процессе дидактической игры предполагается решение следующих задач:
-обогащение чувственно-эмоционального опыта путем освоения детьми системных знаний;
-развитие мышления ребенка в плане осознания себя и своего места в мире природы и людей;
-развитие общей культуры ребенка, включающей языковую культуру, культуру общения в разных условиях.
В современных работах рассматриваются различные формы дидактических игр, связанные с данными позиционными моделями и подразделяющиеся соответственно на три типа:
Прямое знакомство детей со средствами и способами познания или отражения окружающей действительности.
Передача информации от детей - взрослым, когда дети действуют самостоятельно, а взрослый наблюдает за их деятельностью.
Равноправный поиск взрослыми и детьми как субъектами деятельности решения проблемы в ходе наблюдения, обсуждения или экспериментирования.
Целесообразное сочетание игровой и трудовой деятельности в образовательном процессе приобретает особое значение в духовном развитии детей младшего школьного возраста, обособление которой от игры происходит постепенно и представляет собой итог естественного развития игровой деятельности детей.
Нахождение значений математических выражений.
К этому виду вычислений можно отнести и числовые выражения и выражения, содержащие переменную. Числовые выражения могут предлагаться в различной словесной формулировке. Например, из 10 вычесть 5; 12 минус 7; уменьшаемое 21 вычитаемое 7, найти разность. Числовые выражения могут включать в себя одно арифметическое действие или несколько действий со скобками и без скобок. Например:
12 + (7 - 4) : 5;
35 - 15:2;
14+15*3.
Числовые выражения могут быть заданы в форме таблицы, окошек, рамок, и т.д. Например, задание заполнить недостающие числа в таблице.
Уменьшаемое |
56 |
95 |
64 |
97 |
|
Вычитаемое |
43 |
34 |
24 |
65 |
|
Разность |
|||||
Математические выражения могут быть заданы в форме выражения, содержащего одну или несколько переменных. Например, такое задание: “Найти значение выражения а + 15 при следующих значениях переменной 5, 10, 15, 20”. Подставляя данные вместо буквы, находят значение выражения. Цель каждого из этих заданий выработать вычислительные навыки.
В этом случае можно применить такие типы дидактических игр как игра «кто быстрее», когда команды учащихся соревнуются в заполнении таблиц, получая положительные очки за каждое правильное высказывание и отрицательные за каждую ошибку.
Сравнение математических выражений
Можно научить сравнивать числовые выражения и выражения с переменной. Существуют следующие способы сравнения выражений:
на основе нахождения значения каждого выражения и их сравнения;
на основе знания свойств арифметических действий;
на основе знания зависимости изменения результата действия от изменения одного из компонентов;
на основе знания зависимости изменения результатов результата действия от изменения одного из компонентов;
на основе знания частных случаев выполнения арифметических действий с числами 1 и 0.
Например, можно предложить найти похожие пары выражений по способу их сравнения.
6 +9 и 9 + 6; 81:9и81:3; 10 : 2 и ( 4+6 ): 2;
10*8 и 8*10; 82 - 1 и 76 + 0, 24 - 8 и 22 - 8,
22+ 7 и 22+ 14; 20*0 и 44*1; 22 + 14 и 22 + (10 + 4 );
После анализа сравнения каждой пары выражений, распределяют их на следующие группы:
1 группа 2 группа 3 группа 4 группа
6 + 9 и 9 + 6 10*8 и 8*10; 22 + 7 и 22 + 14; 20*0и44*1;
22+14 и 22+( 10+4); 81:9и81:3; 82 - 1 и 76 + 0;
10:2и(4+6):2; 24 - 8 и 22 - 8;
Сравнение выражений группы основано на знании свойств арифметических действий. Сравнение выражений 2 группы основано на нахождении значения каждого выражения и их сравнения. Сравнение выражений 3 группы основано на знание зависимости изменения результатов действия от изменения одного из компонентов. Сравнение выражений 4 группы основано на знании частных случаев выполнения арифметических действий с числами 1и 0.
На такой же теоретической основе можно провести сравнение выражений с буквенными значениями. Задание такого вида можно рассматривать как обобщение возможных способов сравнения. Например, нужно сравнить такие пары выражений:
а + в и в + а;
с-8 и с - 1; в+13 и в-13;
16-а и 28-а;
72 : к и 36 : к;
8* а и 18* а;
Решение уравнений
Можно предлагать уравнения в привычном виде. Например: а+12 = 21; в-8 = 17..
Здесь можно провести игру "Принеси ответ". Урок проводится в заранее выбранном учителем месте, где ученики могут собрать разнообразный природный материал (шишки, желуди, каштаны, листья, мелкая галька и т.д.). Ученики разбиваются на несколько команд, каждая из которых получает свое задание на сбор какого-нибудь из возможных природных материалов в соответствии с решением того или иного уравнения. Собранные группы предметов сравниваются, принесшие неверное количество отдают фант или выбывают из игры. (Побочным результатом урока является появление большого количества раздаточного природного материала, который учитель использует в дальнейшей работе на уроках в классе).
Решение задач
В устном счете можно предлагать задачи простые на смекалку и на развитие логического мышления. Вычисления в этих задачах должны быть нетрудоемкими, чтобы не отнимали много времени на уроке, но заставляли думать. При этом развиваются такие приемы логического мышления и синтез, аналогия, сравнение, классификация, обобщение, необходимые для интеллектуального роста каждого ребенка. Сравнение - это сопоставление предметов и явлений с целью найти сходство и различие между ними. Анализ -это мысленное расчленение предмета или явления на образующие его части, выделение в нем отдельных частей, признаков и свойств. Синтез - это мысленное соединение отдельных элементов, частей и признаков в единое целое. Анализ и синтез неразрывно связаны, находятся в единстве друг с другом в процессе познания. Анализ и синтез - важнейшие мыслительные операции.
Абстракция - это мысленное выделение существенных свойств и признаков предметов или явлений при одновременном отвлечении от несущественных. Абстракция лежит в основе обобщения. Обобщение -мысленное объединение предметов и явлений в группы по тем общим и существенным признакам, которые выделяются в процессе абстрагирования. Процессам абстрагирования и обобщения противоположен процесс конкретизации. Конкретизация - мыслительный переход от общего к единичному, которое соответствует этому общему. В учебной деятельности конкретизировать - значит привести пример.
В процессе обучения в школе совершенствуется и способность школьников формулировать суждения и производить умозаключения. Суждения школьников развиваются от простых форм к сложным постепенно, по мере овладения знаниями. Первоклассник в большинстве случаен судит о том или ином факте односторонне, опираясь на единичный внешний признак или свой ограниченный опыт. Его суждения, как правило, выражаются в категорической утвердительной форме. Высказывать предположения, выражать и, тем более, оценивать вероятность, возможность наличия того или иного признака, той или иной причины ребенок еще не может.
Умение рассуждать, обосновывать и доказывать то или иное положение более или менее уверенно и правильно тоже приходит постепенно и в результате специальной организации учебной деятельности.
Развитие мышления, совершенствование умственных операций, способности рассуждать прямым образом зависят от методов обучения. Умение мыслить логически, выполнять умозаключения без наглядной опоры, сопоставлять суждения по определенным правилам - необходимое условие успешного усвоения учебного материала. Широкие возможности в этом плане дает решение задач разными способами, получение из них новых, более сложных задач и их решение в сравнении с решением исходной задачи.
В учебнике имеются задачи, требующие найти сумму нескольких значений одной величины, в которых каждое последующее значение больше или меньше предыдущих значений на несколько единиц. Составление сокращенной записи условия таких задач с их анализом, при котором записываются не только числа, но и выражения, не только укорачивает условие задачи, но и делает более прозрачный путь к ее решению. Шарапова М. Ю. “Работаем по-новому”// Начальная школа 1995 №7 стр. 29.
Решая задачи, которые включают в себя простые задачи, сокращенная запись условия задачи, при которой записываются выражения, учащиеся не только воспроизводят знания связей между числовыми значениями простых задач, но и обогащаются знаниями о новых связях, на основе которых сочетаются простые задачи.
В курс математики начальных классов включены составные задачи, которые имеют несколько числовых значений различных величин и связанных различными зависимостями. В решении таких задач многие учащиеся затрудняются.
Сокращенная запись условия задачи, при которой “прозрачные” связи зависимости между числовыми значениями величин записываются с помощью математических выражений, значительно облегчает разбор и решение задачи. При этом задача разделяется на две части: на “прозрачную” часть и часть, в которой зависимость между числовыми значениями величин дана в завуалированном виде.
При решении многих задач учащиеся допускают ошибки из-за того, что не умеют представить жизненную ситуацию, описанную в задаче, и не умеют осознать отношения между величинами.
Ко всем ли задачам нужна краткая запись? Конечно, нет. В учебниках имеются задачи с небольшими числами, кратко сформулированные, решение которых дети могут легко записать с помощью математического выражения.
Решить задачу Кутьина Е. В. Влияние решения задач разными способами на развитие логического мышления учащихся начальной школы. С. 56-57 - объяснить какие действия нужно выполнить над данными в ней числами, чтобы после вычисления получить число, которое нужно узнать. Решение задачи - упражнение, развивающее мышление. Мало того, решение задач способствует воспитанию терпения, настойчивости, пробуждению интереса к процессу поиска решения, дает возможность испытать глубокое удовлетворение, связанное с удачным решением.
Решение задачи надо начинать с глубокого и всестороннего анализа задачи. Первое, что нужно - расчленить формулировку задачи на условия и требования. Анализ задачи должен быть всегда направлен на ее требования. Результаты анализа фиксируются схематической записью задачи. Часто удобнее использовать разного рода графические схемы, чертежи. Весь этот анализ составляет первый этап процесса решения задачи. Второй этап - схематическая запись задачи. Третий этап - поиск плана решения задачи. Четвертый этап -осуществление решения задачи. Пятый этап - проверка решения задачи. Шестой этап - исследования задачи. Седьмой этап - формулирование ответа. Восьмой этап - анализ решения задачи (установить, нет ли другого более рационального решения задачи и др.) Умение решать задачу, проникать в ее сущность - это главное в умении решения задачи.
В программе для начальной школы сказано о том, что дети должны учиться решать задачи разными способами Что же значит “решить задачу разными способами”?
Задача считается решенной различными способами, если ее решения отличаются связями между данными и искомыми, положенными в основу решения или последовательностью этих связей. Бантова М.А. Решение текстовых арифметических задач.// “Начальная школа” №10-11 1989г. МОСКВА. "Просвещение".
В методике выделяют следующие способы решения:
арифметический;
алгебраический;
графический;
табличный.
Рассмотрим задачу: “10 открыток разложили по 2 в несколько почтовых ящиков. Во сколько ящиков разложили открытки ?”
1. Арифметический способ
Ученики рассуждают: “Всего 10 открыток. В каждый почтовый ящик положили по 2 открытки. Нужно узнать сколько раз по 2 содержится в 10. Для этого надо 10 : 2 = 5 ( ящ.)”
2. Алгебраический способ
“Обозначим за X число ящиков. В каждом ящике было по 2 открытки.
Тогда (2 X) - все открытки. В задаче сказано, что всего 10 открыток. Записываем и решаем уравнение:
2Х=10
Х=10:2
Х=5 (ящ.)”
3. Графический способ.
2 2 2 2 2
10
Целесообразно различать либо различные арифметические способы решения задачи, либо различные алгебраические способы. Форма записи различных способов решения задач может быть либо по действиям, либо выражением. Осознание реальной ситуации и использование ее для поиска различных способов решения имеет большое практическое значение. Различные подходы к анализу задачи приводят к разным способам ее решения.
При решении задач разными способами необходимо использовать прием сравнения решений задач. Этот прием позволяет ответить на вопросы: какой способ решения рациональнее, в чем преимущество одного способа перед другим. Каждый новый способ решения позволяет взглянуть на задачу по иному, глубже понять связи и отношения между данным и искомым.
Применение различных способов решения задач в учебном процессе прививает интерес к математике, способствует развитию математического мышления.
Более подробно остановимся на графическом способе решения задач. Чертеж хорошо помогает ребенку осмыслить содержание задачи и зависимость между величинами. Рисование графической схемы заставляет ученика внимательно читать текст задачи, дает возможность искать различные способы решения, позволяет перенести часть умственных действий в действия практические.
В каждом виде изучения вычислений можно использовать игровые формы. Например, такие игры:
ромашка;
магические квадраты;
занимательные рамки;
составим поезд;
лестница;
угадай число;
почтовый ящик;
магазин;
угадай слово;
радисты и др.
Предлагаемые уроки-путешествия, уроки-экскурсии, уроки- игры в основном будут способствовать закреплению и расширению знаний и представлений, полученных на уроках, проходящих в классе с использованием заданий учебника. Исключение составляет материал, связанный с объектами трехмерного пространства, который входит в программу первого класса, но, в силу своей специфики, не отражен на страницах учебника.
Урок-путешествие по теме "Наши встречи с математикой". Урок желательно провести в окрестностях школы, проложив маршрут так, чтобы можно было посетить несколько разных магазинов, пройти мимо домов разной высоты, перейти или хотя бы посмотреть на улицы разной ширины. Во время путешествия дети измеряют отдельные, выбранные учителем, отрезки пути шагами, считают повороты налево и направо. Желательно, чтобы учитель при участии детей составил план пройденного пути. (Учебник часть 1, с. 4-7).
Целью данного урока является ознакомление с понятием натурального числа, и формирование абстрактного мышления - предметы в мире отличаются, но их количество можно выразить через те же самые числа.
Задачи урока: 1) заинтересовать детей математикой; 2) дать понятие натурального числа; 3) дать навыки счета и сравнения чисел между собой.
Урок-игра по теме "Ориентация в пространстве". Урок проводится на свежем воздухе или в помещении, которое позволит назвать большое количество предметов в любом названном учителем направлении - слева, справа, сзади, спереди, вверху, внизу, перед, за. Класс разбивается на 2 команды, которые попеременно называют предметы, расположенные в заданном направлении. Команда, которая не смогла назвать предмет, отдает фант. В конце игры фанты разыгрываются. В процессе игры желательно несколько раз менять местоположение команд, что позволит рассмотреть положение предметов с разных позиций. (Учебник, часть 1, с. 6-8, 11-14).
Целью данного урока является ознакомление с основными координатами пространства.
Задачи урока: 1) развить навыки коллективной работы; 2) дать понятие направления в пространстве; 3) сформировать практические навыки определения направления в пространстве.
Урок-экскурсия "Геометрия вокруг нас". Урок можно провести, следуя потому же маршруту, который был использован на уроке 1, но теперь основное внимание сосредотачивается на форме окружающих предметов, среди которых дети стараются найти похожие, а также на поиске в объемных предметах знакомых плоскостных фигур (кругов, многоугольников разной формы и т.д.). (программный материал, не отраженный в учебнике).
Целью данного урока является ознакомление с понятием формы, и формирование абстрактного мышления - предметы в мире отличаются, но их форму можно свести к определенному набору фигур.
Задачи урока: 1) заинтересовать детей геометрией; 2) дать понятие формы предмета; 3) дать навыки определения форм и сравнения их между собой.
Урок-путешествие на тему "Зачем людям нужны числа". Урок проводится в окрестностях школы по маршруту, на котором ученики могут увидеть различные объекты, в которых использованы числа (номера домов, маршрутов автобусов и других видов транспорта, шкалы весов, цены товара и т.д.). При проведении урока желательно использовать стихотворение Л.Маш, Г.Граник "Моя самая первая книжка по математике" М., Издательский дом "Дрофа", 1995. (Учебник часть 1, с 20-21
Негаданно-нежданно
Нагрянула беда:
Все числа потерялись,
Исчезли без следа.
Как дом или квартиру
Без номера найти?
И к другу в день рожденья
Вовремя прийти?
Ведь стрелка не покажет Нам время на часах, И сколько весят фрукты, Не видно на весах. Отныне заблудиться. Не стоит и труда: Автобус без маршрута Уходит в никуда.
Целью данного урока является ознакомление с понятием натурального числа, и формирование абстрактного мышления - предметы в мире отличаются, но их количество можно выразить через те же самые числа.
Задачи урока: 1) заинтересовать детей математикой; 2) дать понятие натурального числа; 3) дать навыки счета и сравнения чисел между собой.
Урок-экскурсия на тему "Линии вокруг нас". Урок желательно провести там же, где проходил урок 3, но сосредоточив внимание на поиске линий, как части рассматривавшихся на нем объемных и плоскостных объектов. (Учебник часть 1,с. 19,23,27,29,36,41,43) Шульга Р.П. Решение текстовых задач разными способами - средство повышения интереса к математике. //“Начальная школа” №12 1990г. МОСКВА.
Целью данного урока является ознакомление с понятием линии, и формирование абстрактного мышления - предметы в мире отличаются, но их форму можно свести к определенному набору линий.
Задачи урока: 1) заинтересовать детей геометрией; 2) дать понятие линии; 3) дать навыки определения линий и их направлений.
Урок-игра "Движемся по плану" (завершение работы над ориентацией в пространстве с использованием одного направления). На пришкольном участке или в любом выбранном для проведения урока помещения заранее устраиваются "тайники" с сюрпризами по числу команд, на которые учитель разделит учеников. Для каждой команды заготавливается план движения к одному из тайников с указанием поворотов и длины проходок по прямой между ними в шагах или с использованием любой другой мерки, которая вручается команде (это может быть палочка, кусок шнура и т.д.). Желательно, чтобы на каждом отрезке пути число мерок не превышало 9. Игра завершается, когда все команды найдут свой тайник. Те, кто справился с заданием раньше, могут по просьбе отставших оказывать им помощь. (Команды должны быть примерно равными по возможностям). (Учебник, часть 1, с. 29, 47, 60, 63).
Целью данного урока является закрепление понятия направления, и формирование абстрактного мышления - все многообразие перемещений можно свести к определенному набору направлений.
Задачи урока: 1) заинтересовать детей геометрией; 2) закрепить представление об основных направлениях в пространстве; 3) дать навыки определения направлений и движения по плану в пространстве.
Зеньковский В.В. Психология детства. - М., 1996.
Коваленко В.Г. Дидактические игры на уроках математики. М., 1990
Коннова В. А. “Задания творческого характера на уроках математики”.// Начальная школа 1995 №12 стр. 55.
Крупская Н.К. О дошкольном воспитании. М. 1973г.
Кудрявцев В.Т. Развитое детство и развивающееся образование: Культурно-исторический подход. - Ч.1. - Дубна, 1997. - с.85.
Кутьина Е. В. Влияние решения задач разными способами на развитие логического мышления учащихся начальной школы.
Лэндрет Г.Л. Игровая терапия: Искусство отношений. - М., 1994. - С.47.
Макаренко А.С. Соч.М. 1957г.
Моро М. И. “Математика в 1 - 3 классах” Издательство Москва “Просвещение” 1971.
Маш. Л. Граник Г. "Моя самая первая книжка по математике" М., Издательский дом "Дрофа", 1995. (Учебник часть 1, с 20-21)
Подластый И.П. Педагогика начальной школы - М. 2001 - с.199
Психолого-педагогические особенности проведения дидактических игр. Под.ред. Акшиной А., Акшиной Т., Жарковой Т. М., 1990
Селиванов В.А. Основы общей педагогики: Теория и методика воспитания: Учеб. пособие для студ. Высш. Пед. Учеб. заведений / Под ред. В.П.Сластенина. - 2-е изд., испр. - М.: Издательский центр “Академия,2002.
Ситаров В.А. Дидактика М. 2002
Сластенин В.А. и др. Педагогика: Учеб. пособие для студ. Высш. Пед. Учеб. заведений/ Под ред. В.П. Сластенина. - М.: Издательский центр “Академия”, 2002.
Чилинрова Л., Спиридонова Б. Играя, учимся математике. М., 1993
Шарапова М. Ю. “Работаем по-новому”// Начальная школа 1995 №7 стр. 29.
Шпунтов А.И. Роль учебно-познавательных и воспитательных задач на уроках обучения грамоте// Начальная школа. - 1993.
Шульга Р.П. Решение текстовых задач разными способами - средство повышения интереса к математике. //“Начальная школа” №12 1990г. МОСКВА. "Просвещение".
! | Как писать курсовую работу Практические советы по написанию семестровых и курсовых работ. |
! | Схема написания курсовой Из каких частей состоит курсовик. С чего начать и как правильно закончить работу. |
! | Формулировка проблемы Описываем цель курсовой, что анализируем, разрабатываем, какого результата хотим добиться. |
! | План курсовой работы Нумерованным списком описывается порядок и структура будующей работы. |
! | Введение курсовой работы Что пишется в введении, какой объем вводной части? |
! | Задачи курсовой работы Правильно начинать любую работу с постановки задач, описания того что необходимо сделать. |
! | Источники информации Какими источниками следует пользоваться. Почему не стоит доверять бесплатно скачанным работа. |
! | Заключение курсовой работы Подведение итогов проведенных мероприятий, достигнута ли цель, решена ли проблема. |
! | Оригинальность текстов Каким образом можно повысить оригинальность текстов чтобы пройти проверку антиплагиатом. |
! | Оформление курсовика Требования и методические рекомендации по оформлению работы по ГОСТ. |
→ | Разновидности курсовых Какие курсовые бывают в чем их особенности и принципиальные отличия. |
→ | Отличие курсового проекта от работы Чем принципиально отличается по структуре и подходу разработка курсового проекта. |
→ | Типичные недостатки На что чаще всего обращают внимание преподаватели и какие ошибки допускают студенты. |
→ | Защита курсовой работы Как подготовиться к защите курсовой работы и как ее провести. |
→ | Доклад на защиту Как подготовить доклад чтобы он был не скучным, интересным и информативным для преподавателя. |
→ | Оценка курсовой работы Каким образом преподаватели оценивают качества подготовленного курсовика. |
Курсовая работа | Деятельность Движения Харе Кришна в свете трансформационных процессов современности |
Курсовая работа | Маркетинговая деятельность предприятия (на примере ООО СФ "Контакт Плюс") |
Курсовая работа | Политический маркетинг |
Курсовая работа | Создание и внедрение мембранного аппарата |
Курсовая работа | Социальные услуги |
Курсовая работа | Педагогические условия нравственного воспитания младших школьников |
Курсовая работа | Деятельность социального педагога по решению проблемы злоупотребления алкоголем среди школьников |
Курсовая работа | Карибский кризис |
Курсовая работа | Сахарный диабет |
Курсовая работа | Разработка оптимизированных систем аспирации процессов переработки и дробления руд в цехе среднего и мелкого дробления Стойленского ГОКа |
Курсовая работа | Туберкулез |
Курсовая работа | Инвестиционная деятельность коммерческих банков |
Курсовая работа | Учет материально-производственных запасов |
Курсовая работа | Доказывание в гражданском процессе |
Курсовая работа | Инновационная деятельность предприятия |
Курсовая работа | Microsoft Excel, его функции и возможности |
Курсовая работа | Методы исследования сенсорных систем |
Курсовая работа | Стимулирование труда персонала |
Курсовая работа | Поведение фирмы в условиях совершенной конкуренции |
Курсовая работа | Суд присяжных: особенности судопроизводства |
Курсовая работа | Дидактические игры как средство развития познавательного интереса на уроках обучения грамоте |
Курсовая работа | Организация процесса управления кредитным риском в коммерческом банке |
Курсовая работа | Исследование самооценки и уровня притязаний современной молодежи |
Курсовая работа | Разработка бизнес-плана на примере ООО "Макин и компания" |
Курсовая работа | Организационная культура |