Курсовая работа по предмету "Химия"


Молекула Бензола в сильном лазерном поле

Dissociation of Benzene Molecule in a Strong Laser Field M. E. Sukharev General Physics Institute of RAS 117942, Moscow, Russia
Dissociation of benzene molecule in a strong low-frequency linearly polarized laser field is considered theoretically under the conditions of recent experiments. Analogy with the dissociation of diatomic molecules has been found. The dissociation probability of benzene molecule has been derived as a function of time. The three-photon dissociate process is shown to be realized in experiments. Introduction.
The number of articles devoted to the interaction of molecules with a strong laser field increased considerably in recent years. The main features of interaction between diatomic molecules and a laser radiation were considered in a great number of experimental [1-5] and theoretical [6-9] papers. Classical and quantum investigations of spatial alignment of diatomic molecules and their molecular ions in a strong laser field, as well as ionization and dissociation of these molecules and their molecular ions account for physical pictures of all processes.
However, when considering complex organic molecules, we observe physical phenomena to be richer, and they are not thoroughly investigated. Most of results obtained for diatomic molecules can be generalized to the multi-atomic molecules. This short paper contains the results of theoretical derivations for dissociation of benzene molecule C6H6in the field of linearly polarized Ti: Sapphire laser. Data were taken from experimental results by Chin’s group, Ref. [4]. We use the atomic system of units throughout the paper. Theoretical approach.
Let us consider the benzene molecule C6H6 in the field of Ti: Sapphire laser with the wavelength l=400 nm, pulse length t=300 fs and maximum intensity Imax=2ґ1014 W/cm2. According to Ref. [4] first electron is ejected from this neutral molecule and then the dissociation of C6H6+-ion occurs.
The most probable channel for decay of this ion is the separation into the equal parts :
Of course, there is another channel for decay of C6H6+-ion which includes the ejection of the second electron and subsequent Coulomb explosion of the C6H6++-ion. We do not consider the latter process. The channel (1) is seen to be similar to the dissociation of the hydrogen molecular ion considered in Ref. [2]. Indeed, the model scheme of energy levels for C6H6+-ion (see Ref. [4]) reminds the model scheme of energy levels for H2+ [2] containing only two low-lying electronic levels: 1sg (even) and 1su (odd). Therefore we consider the dissociation process of C6H6+-ion analogously to that for H2+-ion (see Fig. 1). The benzene molecular ion has the large reduced mass with respect to division into equal parts. Hence, its wave function is well localized in space (see Fig. 2) and therefore we can applyclassicalmechanics for description of the dissociation process (1). However, the solution of Newton equation with the effective potential (see below) does not produce any dissociation, since laser pulse length is too small for such large inertial system. In addition to, effective potential barrier exists during the whole laser pulse and tunneling of the molecular fragment is impossible due to its large mass ( see Fig. 2). Thus, we should solve the dissociation problem in the frames ofquantum mechanics.
The ground even electronic term of C6H6+-ion is presented here in the form of the well-known Morse potential with parametersb=2k and De=6. 2 эВ, where k is approximated by the elastic constant of C-C coupling in the C6H6-molecule and De is the dissociation potential for the C2-molecule. The interaction of the molecular ion with the laser field is given by expression (see. Ref. [9])
Where the strength envelope of the laser radiation is chosen in the simple Gaussian form F(t)=F0exp(-t2/2t2) and R internuclear separation between the fragments C3H3+ and C3H3, w is the laser frequency and t is the laser pulse length. The valueЅsinwtЅtakes into account the repulsion between the involved ground even electronic term and the first excited odd repulsive electronic term. Thus, the Hamiltonian of the concerned system is The kinetic energy operator being of the form
Where Re is the equilibrium internuclear separation. When calculating we make use of Re=1. 39 A. The time dependent Schrodinger equation with Hamiltonian (3) has been solved numerically by the split-operator method. The wave function has been derived by the iteration procedure according to formula
The initial wave function Y(R, 0) was chosen as the solution of the unperturbed problem for a particle in the ground state of Morse potential.
The dissociation probability has been derived as a function of time according to formula W(t)=||2. In Fig. 3 envelope of laser pulse is depicted and the dissociation probability W(t) is shown in Fig. 4. Results.

The quantity W(t) is seen from Fig. 4 increase exponentially with time and it is equal to 0. 11 after the end of laser pulse. It should be noted that the dissociation process can not be considered as a tunneling of a fragment through the effective potential barrier (see Fi. 2). Indeed, the tunneling probability is on the order of magnitude of
Where Veffis substituted for maximum value of the field strength and the integral is derived over the classically forbidden region under the effective potential barrier. The tunneling effect is seen to be negligibly small due to large reduced mass of the molecular fragmentm>>1. The Keldysh parameter g=w(2mE)1/2/F>>1. Thus, the dissociation is the pure multiphoton process. The frequency of laser field isw µ 2. 7 эВ, while the dissociation potential is De=6 eV. Hence, three-photonprocess of dissociation takes place. The dissociation rate of three-photon process is proportional tom-1/2. The total dissociation probability is obtained by means of multiplying of this rate by the pulse lengtht. Therefore the probability of three-photon process can be large, unlike the tunneling probability. This is the explanation of large dissociation probability W»0. 11 obtained in the calculations. Conclusions.
Derivations given above of dissociation of benzene molecule show that approximately 11% of all C3H3+-ions decay on fragments C3H3 and C3H3+under the conditions of Ref. [4]. The absorption of three photons occurs in this process.
Author is grateful to N. B. Delone, V. P. Krainov, M. V. Fedorov and S. P. Goreslavsky for stimulating discussions of this problem. This work was supported by Russian Foundation Investigations (grant N 96-02-18299). References
Peter Dietrich, Donna T. Strickland, Michel Laberge and Paul B. Corkum, Phys. Rev. A, 47, N3, 2305 (1993). M. Ivanov, T. Siedeman, P. Corkum, Phys. Rev. A, 54, N2, 1541 (1996). F. A. Ilkov, T. D. G. Walsh, S. Turgeon and S. L. Chin, Phys. Rev. A, 51, N4, R2695 (1995). F. A. Ilkov, T. D. G. Walsh, S. Turgeon and S. L. Chin, Chem. Phys. Lett247 (1995).
S. L. Chin, Y. Liang, J. E. Decker, F. A. Ilkov, M. V. Amosov, J. Phys. B: At. Mol. Opt. Phys. 25 (1992), L249. A. Talebpour, S. Larochelle and S. L. Chin, in press.
D. Normand, S. Dobosz, M. Lezius, P. D’Oliveira and M. Schmidt: in Multiphoton Processes, 1996, Conf. , Garmish-Partenkirchen, Germany, Inst. Phys. Ser. No 154 (IOPP, Bristol 1997), p. 287.
A. Giusti-Suzor, F. H. Mies, L. F. DiMauro, E. Charon and B. Yang, J. Phys. B: At. Mol. Opt. Phys. 28 (1995) 309-339.
P. Dietrich, M. Yu. Ivanov, F. A. Ilkov and P. B. Corkum, Phys. Rev. Lett. 76, 1996. S. Chelkowski, Tao Zuo, A. D. Bandrauk, Phys. Rev. A, 46, N9, R5342 (1992) M. E. Sukharev, V. P. Krainov, JETP, 83, 457, 1996. M. E. Sukharev, V. P. Krainov, Laser Physics, 7, No3, 803, 1997. M. E. Sukharev, V. P. Krainov, JETP, 113, No2, 573, 1998. M. E. Sukharev, V. P. Krainov, JOSA B, in press. Figure captions
Fig. 1. Scheme of dissociation for benzene molecular ion C6H6+. Fig. 2. The Morse potential (a), the effective potential (b) for maximum value of the field strength (a. u. ), and the square of the wave function of the ground state for benzene molecular ion (c) as functions of the nuclear separation R (a. u. ) between the fragments C3H3 and C3H3+.
Fig. 3. Envelope of laser pulse as a function of time (fs). Fig. 4. The dissociation probability of benzene molecular ion C6H6+ as a function of time (fs). Fig. 1 Morse potential (a) (a. u. ), effective potential for max. field (b) (a. u),
square of the wave function of the ground state for benzene molecular ion (c) R, a. u. Fig. 2 t, fs Fig. 3 W(t) t, fs Fig. 4


Не сдавайте скачаную работу преподавателю!
Данную курсовую работу Вы можете использовать для написания своего курсового проекта.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем курсовую работу самостоятельно:
! Как писать курсовую работу Практические советы по написанию семестровых и курсовых работ.
! Схема написания курсовой Из каких частей состоит курсовик. С чего начать и как правильно закончить работу.
! Формулировка проблемы Описываем цель курсовой, что анализируем, разрабатываем, какого результата хотим добиться.
! План курсовой работы Нумерованным списком описывается порядок и структура будующей работы.
! Введение курсовой работы Что пишется в введении, какой объем вводной части?
! Задачи курсовой работы Правильно начинать любую работу с постановки задач, описания того что необходимо сделать.
! Источники информации Какими источниками следует пользоваться. Почему не стоит доверять бесплатно скачанным работа.
! Заключение курсовой работы Подведение итогов проведенных мероприятий, достигнута ли цель, решена ли проблема.
! Оригинальность текстов Каким образом можно повысить оригинальность текстов чтобы пройти проверку антиплагиатом.
! Оформление курсовика Требования и методические рекомендации по оформлению работы по ГОСТ.

Читайте также:
Разновидности курсовых Какие курсовые бывают в чем их особенности и принципиальные отличия.
Отличие курсового проекта от работы Чем принципиально отличается по структуре и подходу разработка курсового проекта.
Типичные недостатки На что чаще всего обращают внимание преподаватели и какие ошибки допускают студенты.
Защита курсовой работы Как подготовиться к защите курсовой работы и как ее провести.
Доклад на защиту Как подготовить доклад чтобы он был не скучным, интересным и информативным для преподавателя.
Оценка курсовой работы Каким образом преподаватели оценивают качества подготовленного курсовика.

Сейчас смотрят :

Курсовая работа Сущность финансового механизма на предприятии в современных условиях
Курсовая работа Порядок и условия заключения брака
Курсовая работа Электроснабжение на предприятии
Курсовая работа Аудит расчетов с покупателями и заказчиками на примере ОАО "Икар"
Курсовая работа Бюджетная система РФ
Курсовая работа Предпринимательство в РФ: сущность, виды и субъекты
Курсовая работа Посредничество в международной деятельности
Курсовая работа Конкурентоспроможність продукції на зовнішньому ринку та шляхи її підвищення на прикладі ВАТ "Київхліб"
Курсовая работа Инвестиционная стратегия и анализ инвестиционных проектов
Курсовая работа Бизнес-план инвестиционного проекта "Производство медицинской техники"
Курсовая работа Исследования групповых форм работы на уроках истории
Курсовая работа Экономика предприятия ресторанно-гостиничного бизнеса на примере ресторана "Персона"
Курсовая работа Уголовно-правовая характеристика преступлений против половой свободы
Курсовая работа Влияние стиля педагогического общения на взаимоотношения дошкольников
Курсовая работа Двойные звезды