Курсовая работа по предмету "Физика и энергетика"


Исследование влияния ультразвука на коррозионно-механическое изнашивание



ИССЛЕДОВАНИЕ ВЛИЯНИИЯ УЛЬТРАЗВУКА НА КОРРОЗИОННО-МЕХАНИЧЕСКОЕ ИЗНАШИВАНИЕ

Как показали исследования [1], влияние ультразвука на коррозионно-механическое изнашивание, представляющее собой коррозионное разрушение поверхности металла при одновременном наложении механических воздействий (удельной нагрузки и скорости скольжения), складывается из целого ряда факторов. Ультразвуковые колебания в силу своих специфических особенностей могут существенно влиять на скорость диффузионных процессов, а также на структуру пассивирующих слоев, препятствующих разрушению металла. В большинстве работ наблюдалась интенсификация диффузионных процессов в железе под действием ультразвука большой мощности [2]. Характер воздействия ультразвука и причины ускорения диффузии под его влиянием еще не объяснены. Авторы работы [3] связывают влияние ультразвука на структуру пассивирующих слоев с нарушением сплошности пленки в следствии воздействия на поверхность пассивного металла образующихся в растворе кавитационных полостей. В научной литературе мало внимания уделялось экспериментальным разработкам по выяснению воздействия ультразвука на коррозионно-механическое разрушение сталей.

В настоящей работе проводится анализ влияния механической нагрузки и акустической эмиссии на скорость коррозионно-механического разрушения стали в водном растворе серной кислоты. Взаимное влияние различных факторов на микроуровне затрудняет изучение коррозионно-механических процессов. Одним из методов, используемых в трении и износе, является рассмотрение влияния отдельных факторов на скорость суммарного процесса.

В наших экспериментах применялась стальная проволока (сталь У8А). Сначала, для снятия поверхностных напряжений и дефектов, возникающих при вытяжке, проволоку отжигали в вакууме (10-3 Торр) при температуре 760ОС в течение двух часов, затем охлаждали ее до комнатной температуры. Непосредственно перед погружением в реактор проволоку выдерживали в течение 5-10 сек в концентрированной азотной кислоте и промывали дистиллированной водой. В качестве водного электролита использовалась серная кислота химически чистая.

Для изучения кинетики взаимодействия стали с водным раствором серной кислоты использовали омический метод, который заключался в измерении электрического сопротивления образца проволоки с помощью электронного вольтметра при его растворении в результате коррозионно-механического разрушения.

Установка для исследования процессов растворения металла (рис.1) состояла из реакционной ячейки специальной конструкции (2), измерительной схемы, обеспечивающей непрерывную регистрацию электросопротивления растворяемого образца и системы возбуждения ультразвуковых колебаний. Реакционная ячейка представляла собой стеклянный сосуд с тремя отверстиями, в котором поддерживалась задаваемая температура с помощью термостата, и была снабжена электромагнитной мешалкой (1), частота вращения которой определялась посредством электронного тахометра ТЭ-7 и варьировалась в пределах от 900 до 1200 об/мин. Механическое нагружение проволоки регистрировалось при помощи динамометра, присоединенного к одному концу проволоки; другой конец прикреплялся к микрометрическому винту. Водный раствор кислоты, предварительно нагретый до температуры эксперимента заливали в реактор при включенной мешалке. Измерительная схема состояла из электронного вольтметра В7-34А (9).

Система возбуждения ультразвуковых колебаний частотой 125 кГц включала генератор синусоидальных сигналов RFT 03 005 (11), усилитель мощности LV-103 RFT (12), осциллограф С1-112А (10) и акустический волновод с пьезокерамическим кристаллом (5).

Выбор частоты объясняется ее обнаружением в спектре акустических колебаний (100-140 кГц).

Экспериментальные исследования состояли из трех частей: расчета энергии активации по уравнению Аррениуса; анализа влияния механических нагрузок на процесс растворения металлических образцов и анализа влияния ультразвука на скорость коррозии стали.

Для определения энергии активации процесса растворения стали в серной кислоте были проведены эксперименты при различных температурах электролита (50, 60, 70, 80 ОС). Зависимость скорости коррозии ()от температуры выражается уравнением вида [4]:

, (1)

- скорость изучаемого процесса растворения стали, гсм-2мин-1; - предэкспоненциальный множитель зависящий от механических свойств материала; Е - энергия активации; Т - термодинамическая температура, 0К; R - универсальная газовая постоянная, Дж/мольК.

Энергия активации определялась из зависимости константы скорости от температуры. Для этого (1) представляли так:

, (2)

Откладывая на графике (рис.2) экспериментальные значения по оси ординат и 1/Т по оси абсцисс, получаем серию точек, лежащих в пределах точности эксперимента на одной прямой. Тангенс угла наклона этой прямой равен (E/R), деленному на отношение масштабов по оси ординат и оси абсцисс.

Следовательно, E = Rtg, умноженному на отношение масштабов по оси ординат и оси абсцисс. Погрешность при расчетах энергии активации составляла 1,5 ккал/моль.

Для изучения влияния механической нагрузки на коррозионное поведение металла была проведена серия экспериментов в интервале прикладываемых нагрузок от 70 Н до 100 Н. Предварительные эксперименты в более широком диапазоне механических нагрузок показали, что при наложении нагрузок более до 100 Н происходит пластическая деформация проволоки и механохимический эффект монотонно увеличивается. Приложение нагрузок свыше 100 Н приводило к разрыву проволоки. Из данных, представленных в таблице, следует, что при увеличении нагрузки до 100 Н происходит снижение энергии активации на 3,9 ккал/моль, по сравнению с исходной энергией активацией (без нагрузки).

На основании полученных данных было предложено эмпирическое уравнение для расчета зависимости эффективной энергии активации от приложенной нагрузки:

ЕАКТ = ЕОАКТ - Кэ Р, (3)

ЕАКТ - эффективная энергия активации коррозионно-механического изнашивания; ЕОАКТ - энергия активации процесса без механического нагружения; Р - приложенная нагрузка, МПа; Кэ - эмпирический коэффициент, полученный в результате обработки экспериментальных данных. В наших исследованиях коэффициент составил Кэ=0,995 в интервале нагрузок (70 - 100 МПа).

С целью изучения влияния ультразвукового воздействия на скорость коррозии на модельной системе проводились эксперименты без механического нагружения на проволоку. и при одновременном наложении статической нагрузки величиной 70 Н. Из табличных данных следует, что при отдельном влиянии ультразвука на систему скорость коррозии возрастает, но в меньшей степени, чем под влиянием только механической нагрузки. Одновременное воздействие ультразвука и механической нагрузки приводит к увеличению скорости коррозии и снижению энергии активации до 15,7ккал/моль.

Таким образом, исследование кинетических закономерностей коррозионно-механического поведения модельной системы сталь У8А - серная кислота показали, что наложение механической нагрузки и ультразвука повышает скорость коррозионно-механического разрушения металла, причем при одновременном воздействии нагрузки и ультразвука достигается максимальное увеличение скорости коррозионно-механического разрушения и происходит уменьшение энергии активации процесса. Расчет зависимости эффективной энергии активации процесса от приложенной нагрузки с достаточной степенью точности можно проводить по эмпирическому уравнению (3).

ЛИТЕРАТУРА

Алтухов В.К., Маршаков И.Н. Изучение кинетики электрохимических реакций в ультразвуковом поле. // Новые методы исследования коррозии металлов, М.: Наука, 1973. С.183-188.

Абрамов О.В. Электрохимические и электрофизические методы обработки, НИИ МАШ, 1969. N5-6. С.77.

Кукоз Ф.И., Скалозубов М.Ф. // Труды Новочеркасского политехнического института. Работы кафедры физики, 1959. Т. 73. С.137.

Кнорре Д.Г., Крылова Л.Ф., Музыкантов В.С. Физическая химия. М., 1981. 326с.

Приложение

Рис. 1. Схема экспериментальной установки: 1 - электромагнитная мешалка; 2 - проволочный образец; 3 - термостатируемая реакционная ячейка; 4 - термометр; 5 - акустический волновод с пьезокерамическим кристаллом; 6 - реакционная среда; 7 - зажим тестера механических испытаний; 8 - пробка из кислотостойкой резины; 9 - вольтметр; 10 - осциллограф; 11 - генератор; 12 - усилитель.

Рис.2. Зависимость скорости коррозии стали в серной кислоте от температуры: 1- без нагрузки; 2 - нагрузка 70Н; 3 - нагрузка 100Н; 4 - без нагрузки плюс ультразвук; 5 - нагрузка 70Н плюс ультразвук

Таблица.

Энергетические характеристики процесса

Воздействие на образец

Стационарная скорость,гсм-2мин-1

Е АКТ

ккал/моль

Предэкспо-нента.

температура эксперимента, ОС

50

60

70

80

-

0,444

1,134

2,734

6,008

21

1,2109

70 Н

0,707

1,672

3,247

7,242

17,4

4,4107

100 Н

0,939

2,011

3,469

8,762

16;9

3,7107

Ультразвук

0,629

1,662

2,998

6,795

17,4

4,6107

70 Н и ультразвук

1,106

2,457

5,267

10,028

15,7

2,4107




Не сдавайте скачаную работу преподавателю!
Данную курсовую работу Вы можете использовать для написания своего курсового проекта.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем курсовую работу самостоятельно:
! Как писать курсовую работу Практические советы по написанию семестровых и курсовых работ.
! Схема написания курсовой Из каких частей состоит курсовик. С чего начать и как правильно закончить работу.
! Формулировка проблемы Описываем цель курсовой, что анализируем, разрабатываем, какого результата хотим добиться.
! План курсовой работы Нумерованным списком описывается порядок и структура будующей работы.
! Введение курсовой работы Что пишется в введении, какой объем вводной части?
! Задачи курсовой работы Правильно начинать любую работу с постановки задач, описания того что необходимо сделать.
! Источники информации Какими источниками следует пользоваться. Почему не стоит доверять бесплатно скачанным работа.
! Заключение курсовой работы Подведение итогов проведенных мероприятий, достигнута ли цель, решена ли проблема.
! Оригинальность текстов Каким образом можно повысить оригинальность текстов чтобы пройти проверку антиплагиатом.
! Оформление курсовика Требования и методические рекомендации по оформлению работы по ГОСТ.

Читайте также:
Разновидности курсовых Какие курсовые бывают в чем их особенности и принципиальные отличия.
Отличие курсового проекта от работы Чем принципиально отличается по структуре и подходу разработка курсового проекта.
Типичные недостатки На что чаще всего обращают внимание преподаватели и какие ошибки допускают студенты.
Защита курсовой работы Как подготовиться к защите курсовой работы и как ее провести.
Доклад на защиту Как подготовить доклад чтобы он был не скучным, интересным и информативным для преподавателя.
Оценка курсовой работы Каким образом преподаватели оценивают качества подготовленного курсовика.

Сейчас смотрят :

Курсовая работа Моделирование систем массового обслуживания
Курсовая работа Организация энергетического хозяйства в ЗАО "ЗКПД4 Инвест"
Курсовая работа Исследование правового статуса защитника в уголовном судопроизводстве
Курсовая работа Организационные структуры управления на примере ГУП "Зилаирское ЖКХ"
Курсовая работа Безопасность и защита населения при авариях на радиационно-опасных объектах
Курсовая работа Стратегия управления персоналом в ООО "АЛЮСТЭМ"
Курсовая работа Психологические особенности общения младших школьников
Курсовая работа Представительство в гражданском праве
Курсовая работа Этапы формирования кредитной политики банка
Курсовая работа Себестоимость, прибыль и рентабельность в системе качественных показателей эффективности деятельности предприятия
Курсовая работа Анализ производства муки
Курсовая работа Совершенствование организации заработной платы
Курсовая работа Программа диагностики познавательных психических процессов детей младшего школьного возраста
Курсовая работа Причины мирового экономического кризиса и пути выхода из него
Курсовая работа Особенности работы социального педагога с семьями группы риска в микрорайоне