БИОТЕХНОЛОГИЯ
Физиологическая адаптация нового RuMP штамма факультативных метилотрофных бактерий Brevibacterium methylicum к тяжелой воде
@ 2006 О. В. МОСИН
Московская государственная академия тонкой химической технологии им. М.В. Ломоносова, 117571, Москва, просп. Вернадского, 86.
Разработан метод физиологической адаптации нового фенилаланин-продуцирующего RuMP штамма факультативных метилотрофных бактерий Brevibacterium methylicum к максимальным (98 об.%) концентрациям 2Н2О с целью последующего микробиологического синтеза 2Н-меченого фенилаланина. Метод заключается в последовательном рассеве штамма на агаризованных средах М9 с 2 об.% [U -2Н] MetOH со ступенчато возрастающим градиентом концентрации 2Н2O (от 0 до 98 об.% 2Н2О) и последующей селекцией колоний по признаку устойчивости к 2Н2О. В результате применения разработанного подхода для данного штамма метилотрофных бактерий на среде с 98 об.% 2H2О были отобраны отдельные колонии, сохранившие высокие ростовые и биосинтетические параметры. За счет использования адаптированного штамма можно получить 0.95 грамм 2Н-меченого фенилаланина с 1 литра ростовой среды. Показано, что наряду с фенилаланином штамм синтезирует и выделяет в ростовую среду в количестве 5-6 ммоль метаболически связанные с ним аминокислоты: аланин, валин и лейцин/изолейцин. Согласно данным метода масс-спектрометрии EI MS метиловых эфиров N-диметиламинонафталин-5-сульфонильных (Dns) производных аминокислот, 2Н-меченые аминокислоты, полученные микробиологическим синтезом представляли собой смеси молекул с различным количеством включенных атомов дейтерия; уровень дейтерированности молекул определяли из масс-спектров по наиболее распространенному пику молекулярного иона (M)+ каждой аминокислоты - для фенилаланина уровень дейтерированности составил 6; для аланина -3.1; для валина -4.7; для лейцина/изолейцина - 5.1 атома дейтерия.
Для приготовления ростовых сред и адаптации штамма использовали 2H2O (99.9 ат.% 2H) и [U- 2Н] MetOH (97.5 ат.% 2H), полученные из Российского научно-исследовательского центра ИЗОТОП (Санкт-Петербург, РФ). Для создания высокого градиента концентрации 2Н2О в ростовых средах использовали 2Н2О с атомным содержанием дейтерия 99.9%. Фосфатсодержащие соли были дважды перекристаллизованы в абсолютной 2Н2О перед их использованием и высушены в вакууме. Тем не менее, процент дейтерированности ростовых сред после стериллизации влажным паром, измеренный методом ЯМР был ниже на 8-10% изотопной чистоты исходной 2Н2О). По необходимости 2H2O очищали от вредных примесей, перегоняя её над перманганатом калия [11].
Выращивание штамма проводили в минеральной среде M9 [12], приготовленой на основе различных концентраций 2Н2О (см. таблицу) с добавками протонированного лейцина и [U-2H] MetOH при 370 С в колбах Эрленмейера вместимостью 250 мл с наполнением средой до 50 мл в условиях интенсивной аэрации по методике [13]. После 6-7 суток роста клетки отделяли центрифугированием (10000 об/мин, 20 мин). В культуральной жидкости анализировали секретируемые аминокислоты.
Адаптацию штамма к 2Н2О проводили на агаризованных средах М9 (2%-ный агар), содержащих ступенчато возрастающий градиент 2Н2О (от 0 вплоть до 98 об.% 2Н2О). При этом использовали последовательный рассев штамма до отдельных колоний и последующую селекцию колоний, выросших на средах со ступенчатом градиентом 2Н2О. Отобранный штамм хранили в 50%-ном растворе (в 2Н2О) глицерина при -140С.
Морфологию клеток исследовали с помощью интерференционно-поляризационного микроскопа МБР-5 (Венгрия).
Бактериальный рост оценивали по величине оптической плотности суспензии клеток, измеренной на спектрофотометре Beckman-DU6 (США) при 540 нм в кварцевой кювете с длиной оптического пути 10 мм.
Тонкослойную хроматографию (ТСХ) аминокислот проводили на пластинках Silufol UV-254 (Чехо-Словакия) в системе растворителей: изо-PrOH-аммиак, (7:3).
Секретируемый фенилаланин определяли на приборе Beckman DU-6 (США) при 540 нм в образцах культуральной жидкости, объёмом 10 мкл после ее обработки 0.1% раствором нингидрина в ацетоне.
Уровни включения дейтерия в молекулы аминокислот определяли методом масс-спектрометрии EI MS в виде метиловых эфиров N-Dns-производных аминокислот на приборе MB-80A (Hitachi, Япония) при ионизирующем напряжении 70эВ, используя прямую дериватизацию лиофилизированных культуральных жидкостей дансилхлоридом и диазометаном [14].
Компоненты среды, об.%H2O 2H2O MetOH [U -2H]MetOH |
лаг-фаза(ч) |
Выход биомассы((%) |
Время генерации(ч) |
Максимальный уровень накопления фенилаланина в ростовой среде(%) |
|||||
(1) |
98 |
0 |
2 |
0 |
20 |
100.0 |
2.2 |
100.0 |
|
(2) |
73.5 |
24.5 |
0 |
2 |
34 |
85.9 |
2.6 |
97.1 |
|
(3) |
49.0 |
49.0 |
0 |
2 |
44 |
60.5 |
3.2 |
98.8 |
|
(4) |
24.5 |
73.5 |
0 |
2 |
49 |
47.2 |
3.8 |
87.6 |
|
(5) |
0 |
98.0 |
0 |
2 |
60 |
30.1 |
4.9 |
37.0 |
Рис.1
Изучение продукции фенилаланина на 2Н2О-содержащих средах.
Во всех экспериментах не зависимо от присутствия 2Н2О в ростовой среде было зафиксировано увеличение продукции фенилаланина на ранней фазе экспоненциального роста, когда выход микробной биомассы был незначителен, в то время как на фазе позднего экспоненциального роста наблюдалось снижение уровня его накопления в ростовой среде (рис. 3). Для того чтобы объяснить эффект снижения уровня накопления фенилаланина были высказаны возможные предположения о морфологической неоднородности микробной популяции, ингибировании биосинтеза фенилаланина конечным продуктом нарушении транспорта фенилаланина через клеточную мембрану. Результаты по микроскопическому исследованию растущей популяции микроорганизмов показали, что данный характер динамики накопления фенилаланина не коррелировал с качественными изменениями клеточной морфологии на поздних стадиях роста, что служило подтверждением морфологической однородности микробной популяции. Скорее всего, накопленный экзогенно в процессе роста фенилаланин ингибировал ферменты собственного пути биосинтеза. Кроме того, не исключена возможность, что при выращивании без рН-статирования может происходить как обратное превращение секретируемого фенилаланина в интермедиаторные соединения его биосинтеза по пути шикимовой кислоты, так и спонтанная ассимиляция фенилаланина клеткой для обеспечения своих собственных метаболических потребностей, что отмечено в других работах [15, 16]. Эффект уменьшения уровня накопления фенилаланина наблюдался при росте как на протонированной, так и на среде с 98 об.% 2Н2О, что затрудняло его исследование (рис. 3). Из-за того, что на среде с 98 об.% 2Н2О ухучшались все ростовые параметры, было сделано предположение, что уменьшение уровня накопления фенилаланина в ростовой среде относится не к изменению транспорта фенилаланина через клеточную мембрану, а к негативному биостатическому эффекту 2Н2О. Данные по исследованию культуральной жидкости методом ТСХ показали, что кроме фенилаланина данный штамм синтезирует и накапливает в ростовой среде незначительные количества (на уровне 5-6 ммоль) метаболически связанных с ним аминокислот (аланин, валин, лейцин/изолейцин), присутствие которых также подтверждалось анализом смеси метиловых эфиров N-DNS-производных аминокислот методом масс-спектрометрии EI MS.
Рис.2.
Изучение уровней включения дейтерия в молекулы аминокислот.
В настоящей работе уровни включения дейтерия в молекулы аминокислот определяли методом масс-спектрометрии EI MS в виде метиловых эфиров N-Dns-производных аминокислот, за счет сопоставления молекулярных масс протонированных и 2Н-меченых производных аминокислот.
Полученные микробиологическим синтезом 2Н-меченые аминокислоты представляли собой смеси изотопнозамещённых форм молекул, различающихся количеством атомов водорода, замещённых на дейтерий. Вследствие этого эффекта пики молекулярных ионов метиловых эфиров N-Dns-аминокислот в масс-спектрах были полиморфно расщеплены на кластеры за счет примеси молекул с отношениями m/z, больше или меньше детектируемых прибором величин (М)+ с различным вкладом в суммарный уровень дейтерированности. В качестве примера на рис. 4, б приведен масс-спектр смеси метиловых эфиров N-Dns-производных аминокислот полученных со среды с 98 об.% 2Н2О (масс-спектр приведен относительно контрольных условий (а) на обычной воде). Подсчет уровня дейтерированности молекул аминокислот проводили по величине самого интенсивного пика молекулярного иона (М)+, зарегистрированного самим масс-спектрометром; для фенилаланина - шесть (М+ при m/z 418 вместо М+ при m/z 412 для протонированного метилового эфира N-Dns-фенилаланина), для аланина -3.1 (М+ при m/z 339.5 вместо М+ при m/z 336.4), для валина -4.7 (М+ при m/z 369.2 вместо М+ при m/z 364.5), для лейцина/изолейцина -5.1 атома дейтерия (М+ при m/z 383.6 вместо М+ при m/z 378.5). Таким образом, общее количество дейтерия в молекуле фенилаланина составило 75%, аланине -77.5%, валине -58.8%, лейцине/изолейцине 51%. Уровни дейтерированности 2Н-меченых аминокислот семейства лейцина должны быть ниже остальных вследствие того что лейцин добавляли в ростовую среду в протонированном виде, что подтвердилось экспериментальными данными (см. выше). В то же время биосинтез фенилаланина был косвенно связан с ауксотрофностью по лейцину, поэтому дейтеривая метка в молекуле самого фенилаланина также была несколько разбавлена.
Полученные данные в целом подтверждают устойчивое представление о том, что адаптация к 2H2О является фенотипическим явлением, поскольку адаптированные клетки возвращались к нормальному росту и биосинтезу фенилаланина в протонированных средах после некоторого лаг-периода. В то же время эффект обратимости роста на 2H2O/Н2O- средах теоретически не исключает возможности того, что этот признак стабильно сохраняется при росте в Н2О, но маскируется при переносе клеток на дейтерированную среду. В общих чертах, при переносе клетки в дейтерированную среду она не только постепенно теряет обычную воду за счет насыщения внутриклеточной среды 2H2О, но и происходит очень быстрый изотопный (1Н-2H)-обмен в гидроксильных, карбоксильных, сульфгидрильных и аминогруппах всех биологических макромолекул, включая нуклеиновые кислоты и полипептиды. Затем в процессе роста клетки дейтерий включается в углеродные скелеты макромолекул, образуя связи типа С-2H [17]. В связи с тем, что физико-химические параметры С-2Н связи существенно отличаются от ее протонированного прототипа [18], можно предположить, что клетка реализует лабильные адаптивные механизмы, которые способствуют стабилизации работы макромолекулярных компонентов жизненно-важных систем, которые подверглись дейтерированию. Не исключено, что положительные эффекты, наблюдаемые при адаптации к 2H2О связаны с образованием в 2H2O конформаций 2Н-меченых макромолекул с иными структурно-динамическими свойствами, чем конформаций, образованных с участием водорода, и поэтому имеющих другую активность и биологические свойства, подходящие для работы в 2Н2О. С другой точки зрения пространственная структура 2Н-меченых макромолекул может стабилизироваться в 2H2О за счет вторичного изотопного эффекта дейтерия и действия 2H2О как растворителя (большая структурированность, плотность и вязкость по сравнению с Н2О) [19].
Суммируя полученные для изученного штамма данные, можно сделать вывод об адаптивной стабилизации посредством постепенного привыкания к 2Н2О и как следствие этого улучшения ростовых и биосинтетических параметров. Выбор метилотрофных бактерий в качестве модельных объектов для данных исследований представляется наиболее целесообразным, так как метилотрофы как организмы, реализующие RuMP и сериновый пути ассимиляции MetOH, эволюционно просты и достаточно лабильны в генетическом аспекте и тем самым быстрее реагируют и приспосабливаются к изменчивым факторам среды. В настоящее время аналогичные подходы по адаптации других штаммов метилотрофных бактерий к 2Н2О активно изучаются.
! | Как писать курсовую работу Практические советы по написанию семестровых и курсовых работ. |
! | Схема написания курсовой Из каких частей состоит курсовик. С чего начать и как правильно закончить работу. |
! | Формулировка проблемы Описываем цель курсовой, что анализируем, разрабатываем, какого результата хотим добиться. |
! | План курсовой работы Нумерованным списком описывается порядок и структура будующей работы. |
! | Введение курсовой работы Что пишется в введении, какой объем вводной части? |
! | Задачи курсовой работы Правильно начинать любую работу с постановки задач, описания того что необходимо сделать. |
! | Источники информации Какими источниками следует пользоваться. Почему не стоит доверять бесплатно скачанным работа. |
! | Заключение курсовой работы Подведение итогов проведенных мероприятий, достигнута ли цель, решена ли проблема. |
! | Оригинальность текстов Каким образом можно повысить оригинальность текстов чтобы пройти проверку антиплагиатом. |
! | Оформление курсовика Требования и методические рекомендации по оформлению работы по ГОСТ. |
→ | Разновидности курсовых Какие курсовые бывают в чем их особенности и принципиальные отличия. |
→ | Отличие курсового проекта от работы Чем принципиально отличается по структуре и подходу разработка курсового проекта. |
→ | Типичные недостатки На что чаще всего обращают внимание преподаватели и какие ошибки допускают студенты. |
→ | Защита курсовой работы Как подготовиться к защите курсовой работы и как ее провести. |
→ | Доклад на защиту Как подготовить доклад чтобы он был не скучным, интересным и информативным для преподавателя. |
→ | Оценка курсовой работы Каким образом преподаватели оценивают качества подготовленного курсовика. |
Курсовая работа | Деятельность Движения Харе Кришна в свете трансформационных процессов современности |
Курсовая работа | Маркетинговая деятельность предприятия (на примере ООО СФ "Контакт Плюс") |
Курсовая работа | Политический маркетинг |
Курсовая работа | Создание и внедрение мембранного аппарата |
Курсовая работа | Социальные услуги |
Курсовая работа | Педагогические условия нравственного воспитания младших школьников |
Курсовая работа | Деятельность социального педагога по решению проблемы злоупотребления алкоголем среди школьников |
Курсовая работа | Карибский кризис |
Курсовая работа | Сахарный диабет |
Курсовая работа | Разработка оптимизированных систем аспирации процессов переработки и дробления руд в цехе среднего и мелкого дробления Стойленского ГОКа |