Курсовая работа по предмету "Биология и естествознание"


Теория возникновения жизни (по Опарину)



5

Теория возникновения жизни

(По Опарину)

Выполнил:

Муллазянова А. В. гр. м101з

Проверил:

к.х. н. доц. Ильвес Г. Н.

Екатеринбург 2009

В настоящее время наиболее широкое признание получила гипотеза о происхождении жизни на Земле, разработанная советским ученым академиком А. И. Опариным. Эта гипотеза исходит из предположения о постепенном возникновении жизни на Земле из неорганических веществ путем длительной абиогенной (небиологической) молекулярной эволюции.

Считают, что Земля и другие планеты Солнечной системы образовались из газово-пылевого облака около 4,5 млрд. лет назад. На первых этапах своего формирования Земля имела высокую температуру. По мере остывания планеты тяжелые элементы перемещались к её центру, а более легкие оставались на поверхности. Атмосфера состояла из свободного водорода и его соединений (pO,CH4,NH3,HCN) и поэтому носила восстановительный характер. Это обстоятельство послужило важной предпосылкой возникновения органических молекул небиологическим путем. Соединения, являющиеся восстановителями, легко вступают в химические реакции, отдавая водород, и при этом сами окисляются. Компоненты атмосферы подверглись воздействию различных источников энергии: жесткому, близкому к рентгеновскому, коротковолновому излучению Солнца, грозовым разрядам, высокой температуры в области грозовых разрядов и в районах активной вулканической деятельности и т. п. В результате этих воздействий химически простые компоненты атмосферы вступали во взаимодействие, изменяясь и усложняясь. Возникали молекулы сахаров, аминокислот, азотистые основания, органические кислоты (уксусная, муравьиная, молочная и др.) и другие простые органические соединения.

Некоторые из этих реакций ученые смогли воспроизвести в лабораторных условиях. В 1935 г. Американский ученый Л. С. Миллер, пропуская электрический разряд через смесь p,pO,CH4 и NH3, получил смесь нескольких аминокислот и органических кислот. В дальнейшем оказалось, что абиогенным путем в отсутствие кислорода могут быть синтезированы многие простые органические соединения, входящие в состав биологических полимеров- белков, нуклеиновых кислот и полисахаридов. В водной среде при определенных условиях из синильной кислоты, аммиака и некоторых других соединений могут возникать аминокислоты. Из азотистых оснований в присутствии неорганических фосфорных соединений образуется аденозинмонофосфат (АМФ), а также аденозиндифосфат (АДФ) и аденозинтрифосфат (АТФ), сахара, аминокислоты.

Возможность абиогенного синтеза органических соединений доказывается тем, что они обнаружены в космическом пространстве. В космосе найдены цианистый водород, формальдегид, муравьиная кислота, метиловый и этиловый спирты и другие вещества. В некоторых метеоритах заключены жирные кислоты, сахара, аминокислоты. Все это свидетельствует о том, что органические соединения могли возникнуть чисто химическим путем в условиях, существовавших на Земле около 4 млрд. лет назад.

Таким образом, условиями для абиогенного возникновения органических соединений можно считать восстановительный характер атмосферы Земли, высокую температуру, грозовые разряды и мощное ультрафиолетовое излучение Солнца, которое тогда еще не задерживалось озоновым экраном.

По мере охлаждения Земли водяной пар, содержавшийся в атмосфере, конденсировался, на поверхность Земли обрушивались дожди, образуя на ней большие водные пространства. В воде были растворены аммиак, диоксид углерода, синильная кислота, метан и более сложные органические соединения, образовавшиеся в атмосфере.

Органические молекулы, такие, как аминокислоты или нуклеотиды, в водной среде могут связываться друг с другом (конденсировать) с образованием полимеров. При этом выделяется вода. Две аминокислоты могут соединиться пептидной связью, а два нуклеотида - фосфодиэфирной связью. Следует отметить, что для синтеза простых соединений требуются более жесткие условия, чем для возникновения сложных. Например, синтез аминокислот происходит при температуре около 1000?? С, а конденсация их в полипептиды- при температуре 160 С.

Реакция конденсации приводят к образованию линейных полимеров- полипептидов и полинуклеотидов- различной длины и имеющих случайную последовательность мономеров. Полинуклеотиды способны служить матрицей и, таким образом, определять последовательность нуклеотидов в новых полинуклеотидах. Матричные свойства основаны на специфическом, так называемом комплементарном, связывании аденина (A) с урацилом (U) с цитозином (C). Механизмы комплементарного матричного копирования в следующем заняли центральное место в процессах переноса информации в биологических системах. Генетическая информация каждой клетки закодирована в последовательности оснований её полинуклеотидов, и эта информация передается (наследуется) из поколения в поколение с помощью комплементарного спаривания оснований.

Однако реакции эти в отсутствие белков-ферментов идут очень медленно.

Среди случайно образующихся полипептидов есть такие, которые обладают каталитической активностью и могли ускорять процессы матричного синтеза полинуклеотидов. Следовательно, следующим важным шагом предбиологической эволюции было объединение способности нуклеотидов к самовоспроизведению со способностью полипептидов к каталитической активности. Стабильность, устойчивость «удачных» комбинаций аминокислот- полипептидов обеспечивается только сохранением информации о них в нуклеиновых кислотах. В свою очередь, полипептиды или белки, синтезируемые на основе информации, заложенной в молекулах РНК, могут облегчать редупликацию этих молекул. Так путем отбора возник генетической код, или «словарь», устанавливающий соответствие между триплетами нуклеотидов и аминокислотами.

Дальнейшее усложнение обмена веществ могло происходить только в условиях пространственной близости генетического кода и кодируемых им белков, а также изоляции реагирующих компонентов от внешней среды. Действительно, отбор молекул РНК по качеству кодируемого ею белка осуществляется только в том случае, если белок не диффундирует в любом направлении, а сохраняется в каком- либо изолированном пространстве, где и участвует в обменных процессах.

Возможность отделения белоксинтезирующей системы от внешней среды заложена в физико-химических свойствах молекул.

Органические молекулы также окружены водной оболочкой, толщина которой зависит от величины заряда молекулы, концентрации солей в растворе, температуры и прочее. При определенных условиях водная оболочка приобретает четкие границы и отделяется от окружающего раствора. Молекулы, окруженные водной оболочкой, могут объединяться, образуя многомолекулярные комплексы - коацерваты. В первичном океане коацерваты, или коацерватные капли, обладали способностью поглощать различные вещества. В результате этого внутренний состав коацервата претерпевал изменения, что вело либо к распаду, или накоплению веществ, т. е. к росту и к изменению химического состава, повышающего устойчивость коацерватной капли. Судьба капли определялась преобладанием одного из указанных процессов. Академик А. И. Опарин отмечал, что в массе коацерватных капель должен был идти отбор наиболее устойчивых в данных конкретных условиях. Достигнув определенных размеров, материнская коацерватная капля могла распадаться на дочерние. Дочерние коацерваты, структура которых мало отличалась от материнской, продолжали свой рост, а резко отличавшиеся капли распадались. Продолжали существовать только те коацерватные капли, которые, вступая в какие-то элементарные формы обмена со средой, сохраняли относительное постоянство своего состава. В дальнейшем они приобрели способность поглощать из окружающей среды не всякие вещества, а лишь те, которые обеспечивали им устойчивость, а также способность выделять наружу продукты обмена. Постепенно увеличивались различия между химическим составом капли и окружающей средой. В процессе длительного отбора (его называют химической эволюцией) сохранились лишь те капли, которые при распаде на дочерние не утрачивали особенностей своей структуры, т. е. приобрели свойство самовоспроизведения. Эволюция коацерватов завершилась образованием мембраны, отделяющей их от окружающей среды и состоящей из фосфолипидов. Подобные искусственные мембраны, окаймляющие пузырьки размером от 1 до 10 мкм, сейчас без труда создаются в экспериментальных условиях. Образование наружной мембраны предопределило направление дальнейшей химической эволюции по пути развития все более совершенных саморегулирующихся систем вплоть до возникновения первых примитивных клеток. Оказавшись в окруженном мембранной замкнутом пространстве, молекулы РНК эволюционировали, причем признаком, по которому происходил отбор, была не собственная структура РНК, но главным образом свойства кодируемых ими белков.

Таким образом, нуклеотидная последовательность РНК стала проявляться в свойствах клетки как целого.

Ключевым событием в возникновении клетки послужило объединение матричной функции РНК и каталитической функции пептидов. На каком-то более позднем этапе эволюции ДНК заменила РНК в качестве вещества наследственности.

Появление первых клеточных организмов положило начало биологической эволюции. Это произошло 3- 3,5 млрд. лет назад. Первые живые организмы обладали способностью к самовоспроизведению и другими основными признаками живого, существовали в восстановительной среде и имели анаэробный тип обмена. По своему строению они напоминали современных бактерий.




Не сдавайте скачаную работу преподавателю!
Данную курсовую работу Вы можете использовать для написания своего курсового проекта.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем курсовую работу самостоятельно:
! Как писать курсовую работу Практические советы по написанию семестровых и курсовых работ.
! Схема написания курсовой Из каких частей состоит курсовик. С чего начать и как правильно закончить работу.
! Формулировка проблемы Описываем цель курсовой, что анализируем, разрабатываем, какого результата хотим добиться.
! План курсовой работы Нумерованным списком описывается порядок и структура будующей работы.
! Введение курсовой работы Что пишется в введении, какой объем вводной части?
! Задачи курсовой работы Правильно начинать любую работу с постановки задач, описания того что необходимо сделать.
! Источники информации Какими источниками следует пользоваться. Почему не стоит доверять бесплатно скачанным работа.
! Заключение курсовой работы Подведение итогов проведенных мероприятий, достигнута ли цель, решена ли проблема.
! Оригинальность текстов Каким образом можно повысить оригинальность текстов чтобы пройти проверку антиплагиатом.
! Оформление курсовика Требования и методические рекомендации по оформлению работы по ГОСТ.

Читайте также:
Разновидности курсовых Какие курсовые бывают в чем их особенности и принципиальные отличия.
Отличие курсового проекта от работы Чем принципиально отличается по структуре и подходу разработка курсового проекта.
Типичные недостатки На что чаще всего обращают внимание преподаватели и какие ошибки допускают студенты.
Защита курсовой работы Как подготовиться к защите курсовой работы и как ее провести.
Доклад на защиту Как подготовить доклад чтобы он был не скучным, интересным и информативным для преподавателя.
Оценка курсовой работы Каким образом преподаватели оценивают качества подготовленного курсовика.

Сейчас смотрят :

Курсовая работа Современные формы и системы организации оплаты труда в организации
Курсовая работа Усыновление (удочерение)
Курсовая работа Условия предоставления международного банковского кредита
Курсовая работа Учет и анализ готовой продукции (на примере ЗАО "Рабочий")
Курсовая работа Развитие логического мышления в процессе игровой деятельности младших школьников
Курсовая работа Оценка финансового состояния предприятия
Курсовая работа Оптимизация численности персонала
Курсовая работа Договор аренды предприятия
Курсовая работа Аудит расчетов с персоналом по оплате труда
Курсовая работа Место и проблемы развивающихся стран в мировом хозяйстве
Курсовая работа Стили управления
Курсовая работа Договор международных перевозок
Курсовая работа Производственная и общая структура предприятия
Курсовая работа Учет и анализ наличных и безналичных денежных потоков
Курсовая работа Сертификация по стандартам системы менеджмента качества