Курсовая работа по предмету "Математика"


Классы конечных групп F, замкнутые относительно произведения F-подгрупп, индексы которых не делятся на некоторое простое число



Министерство образования Республики Беларусь

Учреждение образования

"Гомельский государственный университет им. Ф. Скорины"

Математический факультет

Кафедра алгебры и геометрии

Курсовая работа

КЛАССЫ КОНЕЧНЫХ ГРУПП , ЗАМКНУТЫЕ ОТНОСИТЕЛЬНО ПРОИЗВЕДЕНИЯ -ПОДГРУПП, ИНДЕКСЫ КОТОРЫХ НЕ ДЕЛЯТСЯ НА НЕКОТОРОЕ ПРОСТОЕ ЧИСЛО

Исполнитель:

Студентка группы М-53 Вакрилова Л.М.

Научный руководитель:

доктор ф-м наук, профессор Семенчук В.Н.

Гомель 2009

Содержание

Перечень условных обозначений
  • Введение
  • 1 Описание -формаций Шеметкова
  • 2 Описание -формаций Шеметкова
  • 3 Критерий принадлежности групп, факторизуемых подгруппами, индексы которых не делятся на некоторое простое число, наследственно насыщенным формациям
  • Заключение
  • Список использованных источников
  • Перечень условных обозначений

    Рассматриваются только конечные группы. Вся терминология заимствована из [44, 47].

    --- множество всех натуральных чисел;

    --- множество всех простых чисел;

    --- некоторое множество простых чисел, т. е. ;

    --- дополнение к во множестве всех простых чисел; в частности, ;

    примарное число --- любое число вида .

    Буквами обозначаются простые числа.

    Пусть --- группа. Тогда:

    --- порядок группы ;

    --- множество всех простых делителей порядка группы ;

    -группа --- группа , для которой ;

    -группа --- группа , для которой ;

    --- коммутант группы , т. е. подгруппа, порожденная коммутаторами всех элементов группы ;

    --- подгруппа Фиттинга группы , т. е. произведение всех нормальных нильпотентных подгрупп группы ;

    --- наибольшая нормальная -нильпотентная подгруппа группы ;

    --- подгруппа Фраттини группы , т. е. пересечение всех максимальных подгрупп группы ;

    --- наибольшая нормальная -подгруппа группы ;

    --- -холлова подгруппа группы ;

    --- силовская -подгруппа группы ;

    --- дополнение к силовской -подгруппе в группе , т. е. -холлова подгруппа группы ;

    --- нильпотентная длина группы ;

    --- -длина группы ;

    --- минимальное число порождающих элементов группы ;

    --- цоколь группы , т. е. подгруппа, порожденная всеми минимальными нормальными подгруппами группы ;

    --- циклическая группа порядка .

    Если и --- подгруппы группы , то :

    --- является подгруппой группы ;

    --- является собственной подгруппой группы ;

    --- является нормальной подгруппой группы ;

    --- ядро подгруппы в группе , т. е. пересечение всех подгрупп, сопряженных с в ;

    --- нормальное замыкание подгруппы в группе , т. е. подгруппа, порожденная всеми сопряженными с подгруппами группы ;

    --- индекс подгруппы в группе ;

    ;

    --- нормализатор подгруппы в группе ;

    --- централизатор подгруппы в группе ;

    --- взаимный коммутант подгрупп и ;

    --- подгруппа, порожденная подгруппами и .

    Минимальная нормальная подгруппа группы --- неединичная нормальная подгруппа группы , не содержащая собственных неединичных нормальных подгрупп группы ;

    --- является максимальной подгруппой группы .

    Если и --- подгруппы группы , то:

    --- прямое произведение подгрупп и ;

    --- полупрямое произведение нормальной подгруппы и подгруппы ;

    --- и изоморфны;

    --- регулярное сплетение подгрупп и .

    Подгруппы и группы называются перестановочными, если .

    Группу называют:

    -замкнутой, если силовская -подгруппа группы нормальна в ;

    -нильпотентной, если -холлова подгруппа группы нормальна в ;

    -разрешимой, если существует нормальный ряд, факторы которого либо -группы, либо -группы;

    -сверхразрешимой, если каждый ее главный фактор является либо -группой, либо циклической группой; нильпотентной, если все ее силовские подгруппы нормальны; разрешимой, если существует номер такой, что ; сверхразрешимой, если она обладает главным рядом, все индексы которого являются простыми числами.

    Монолитическая группа --- неединичная группа, имеющая единственную минимальную нормальную подгруппу.

    -замкнутая группа --- группа, обладающая нормальной холловской -подгруппой.

    -специальная группа --- группа, обладающая нильпотентной нормальной холловской -подгруппой.

    -разложимая группа --- группа, являющаяся одновременно -специальной и -замкнутой.

    Группа Шмидта --- это конечная ненильпотентная группа, все собственные группы которой нильпотентны.

    Добавлением к подгруппе группы называется такая подгруппа из , что

    .

    Цепь --- это совокупность вложенных друг в друга подгрупп.

    Ряд подгрупп --- это цепь, состоящая из конечного числа членов и проходящая через единицу.

    Ряд подгрупп

    называется:

    субнормальным, если для любого ;

    нормальным, если для любого ;

    главным, если является минимальной нормальной подгруппой в для всех .

    Класс групп --- совокупность групп, содержащая с каждой своей группой и все ей изоморфные группы.

    -группа --- группа, принадлежащая классу групп .

    Формация --- класс групп, замкнутый относительно факторгрупп и подпрямых произведений.

    Если --- класс групп, то:

    --- множество всех простых делителей порядков всех групп из ;

    --- множество всех тех простых чисел , для которых ;

    --- формация, порожденная классом ;

    --- насыщенная формация, порожденная классом ;

    --- класс всех групп , представимых в виде

    где , ;

    ;

    --- класс всех минимальных не -групп, т. е. групп не принадлежащих , но все собственные подгруппы которых принадлежат ;

    --- класс всех -групп из ;

    --- класс всех конечных групп;

    --- класс всех разрешимых конечных групп;

    --- класс всех -групп;

    --- класс всех разрешимых -групп;

    --- класс всех разрешимых -групп;

    --- класс всех нильпотентных групп;

    --- класс всех разрешимых групп с нильпотентной длиной .

    Если и --- классы групп, то:

    .

    Если --- класс групп и --- группа, то:

    --- пересечение всех нормальных подгрупп из таких, что ;

    --- произведение всех нормальных -подгрупп группы .

    Если и --- формации, то:

    --- произведение формаций;

    --- пересечение всех -абнормальных максимальных подгрупп группы .

    Если --- насыщенная формация, то:

    --- существенная характеристика формации .

    -абнормальной называется максимальная подгруппа группы , если , где --- некоторая непустая формация.

    -гиперцентральной подгруппой в называется разрешимая нормальная подгруппа группы , если обладает субнормальным рядом таким, что

    (1) каждый фактор является главным фактором группы ;

    (2) если порядок фактора есть степень простого числа , то .

    --- -гиперцентр группы ,

    Введение

    Известно, что любая конечная группа вида , где и --- -замкнутые подгруппы и индексы , не делятся на некоторое простое число , является -замкнутой.

    В работе [38] В.Н. Тютянов доказал, что любая конечная группа вида , где и --- -нильпотентные подгруппы и индексы , не делятся на некоторое простое число , является -нильпотентной группой.

    В связи с этим результатом можно сформулировать следующую проблему.

    Проблема. Классифицировать наследственные насыщенные формации , содержащие любую группу , где и принадлежат и содержит некоторую силовскую подгруппу группы .

    В данной главе в классе разрешимых групп для наследственной формации Фиттинга данная проблема решена полностью.

    1. Описание -формаций Шеметкова

    Важную роль при получении основных результатов данной главы сыграли формации Шеметкова, т. е. такие формации , у которых любая минимальная не -группа является либо группой Шмидта, либо группой простого порядка.

    Впервые наследственные насыщенные разрешимые формации Шеметкова были описаны в работе [22]. Затем в работах [9] и [50, 51] были описаны произвольные наследственные насыщенные формации Шеметкова.

    Определение. Формация называется -формацией Шеметкова, если любая минимальная не -группа --- либо группа простого порядка, либо группа Шмидта с нормальной -силовской подгруппой.

    Приведем пример -формаций Шеметкова.

    1.1 Пример. Если --- формация всех -нильпотентных групп, то --- -формация Шеметкова.

    Пусть --- произвольная минимальная не -группа. Известно, что группа является разрешимой. Покажем, что является группой Шмидта с нормальной -силовской подгруппой. Так как не -нильпотентная группа, то . Пусть . Согласно теореме 2.2.5, , где --- единственная минимальная нормальная подгруппа, --- примарная -группа, , где --- максимальный внутренний локальный экран формации . Покажем, что . Действительно, если , то из того факта, что -нильпотентна, а значит и так же -нильпотентна, следует, что -нильпотентна, что невозможно. Известно, что формацию можно представить в виде . Согласно лемме 2.2.20, . Очевидно, что любая минимальная не -группа есть группа простого порядка . Итак, --- группа Шмидта. Пусть . Выше показано, что --- группа Шмидта с нормальной -силовской подгруппой. Теперь, в виду леммы 2.2.2 и леммы 4.1.1, является группой Шмидта с нормальной -силовской подгруппой. А это значит, что --- -формация Шеметкова.

    1.2 Лемма [14-A, 21-A]. Пусть , , --- непустые формации. Тогда .

    Доказательство. Пусть --- произвольная группа из . Тогда . Отсюда следует, что и . А это значит, что .

    Пусть --- произвольная группа из . Отсюда следует, что и . Тогда и . Итак, . А это значит, что . Лемма доказана.

    Пусть --- насыщенная формация, а --- ее максимальный внутренний локальный экран, --- характеристика формации . Обозначим через --- множество простых чисел из таких, что , где --- простое число из .

    1.3 Лемма. Пусть --- насыщенная формация, --- ее максимальный внутренний локальный экран. Тогда

    Доказательство. Известно, что для любой насыщенной формации справедливо следующее равенство

    Отсюда следует, что

    По лемме 5.1.2,

    Лемма доказана.

    1.4 Теорема [14-A, 21-A]. Пусть --- наследственная насыщенная формация. Тогда следующие утверждения эквивалентны:

    1) --- -формация Шеметкова;

    2) , где и .

    Доказательство. Покажем, что из 1) следует 2). Из леммы 5.1.3 следует, что любую насыщенную формацию можно представить в виде

    где --- максимальный внутренний локальный экран формации . Покажем, что если --- -формация Шеметкова, то

    Действительно, очевидно, что

    Покажем обратное включение. Пусть --- группа наименьшего порядка из

    Так как --- наследственная формация, то .

    Так как --- насыщенная формация, то . Нетрудно показать, что имеет единственную минимальную нормальную подгруппу и . Согласно условию, либо группа простого порядка, либо группа Шмидта с нормальной -силовской подгруппой.

    Пусть . Так как , то . Отсюда следует, что . Противоречие.

    Пусть --- группа Шмидта и , где . Очевидно, что . Тогда из следует, что . А это значит, что . Так как , то . Но тогда . Так как --- полный экран, то . Так как --- внутренний экран, то . Получили противоречие.

    Покажем, что из 2) следует 1).

    Пусть . Согласно условию, --- разрешимая группа. Пусть . Очевидно, что имеет единственную минимальную нормальную подгруппу , причем --- -группа и . Согласно теореме 2.2.5, , где , --- полный локальный экран формации . Согласно лемме 2.2.20, . А это значит, что , где . Отсюда нетрудно заметить, что --- группа Шмидта. Согласно лемме 2.2.21, --- либо группа Шмидта с нормальной -силовской подгруппой, либо группа простого порядка. Теорема доказана.

    1.5 Теорема [14-A, 21-A]. Пусть --- наследственная насыщенная -формация Шеметкова. Тогда содержит любую -разрешимую группу , где и --- -подгруппы и индексы , не делятся на .

    Доказательство. Доказательство проведем от противного. Тогда нетрудно доказать, что имеет единственную минимальную нормальную подгруппу , причем и . Так как --- -разрешимая группа, то либо --- -группа, либо -группа. Если --- -группа, то из того, что следует, что . Противоречие.

    Пусть --- -группа. Согласно условию, и . Так как и , то . Отсюда следует, что . Аналогичным образом получаем, что . Отсюда и группа . А это значит, что . Получили противоречие. Теорема доказана.

    В работе [33] было доказано, что любая наследственная насыщенная формация Шеметкова замкнута относительно произведения -субнормальных -подгрупп. Для наследственных насыщенных -формаций Шеметкова справедлива следующая теорема.

    1.6 Теорема [14-A, 21-A]. Пусть --- наследственная насыщенная -формация Шеметкова. Тогда содержит любую группу , где и --- -подгруппы, индексы , не делятся на и либо , либо -субнормальны в .

    Доказательство. Пусть --- наследственная насыщенная -формация Шеметкова. Тогда, согласно теореме 5.1.4, она имеет следующее строение:

    где --- некоторое множество простых чисел, содержащее простое число .

    Пусть --- группа наименьшего порядка, не принадлежащая , такая, что , где и --- -подгруппы, индексы , не делятся на и -субнормальна в .

    Нетрудно показать, что имеет единственную минимальную нормальную подгруппу .

    Так как --- насыщенная формация, то .

    Пусть --- абелева группа и --- -группа. Если , то из того факта, что , следует, что . Противоречие.

    Если --- -группа, то, как и в теореме 5.1.5, можно показать, что . Противоречие.

    Пусть --- неабелева группа. В этом случае

    z неабелевых простых групп и .

    Рассмотрим подгруппу . Так как --- собственная -субнормальная подгруппа группы и , то нетрудно показать, что . Рассмотрим подгруппу . По тождеству Дедекинда

    Очевидно, что --- -субнормальная подгруппа . Так как --- наследственная формация и , то . Очевидно, что индексы , не делятся на . Тогда по индукции, . Если , то . Получили противоречие. Значит, . Так как --- нормальная подгруппа из , то --- нормальная подгруппа из . Но тогда

    где --- изоморфные неабелевы простые группы, . Так как и --- наследственная формация, то . Отсюда нетрудно показать, что . Если делится на , то из того, что , следует, что --- нормальная подгруппа группы . Противоречие. Если --- -группа, то ясно, что . Противоречие. Теорема доказана.

    2. Описание -формаций Шеметкова

    Введем следующее определение.

    Определение. Формация называется -формацией Шеметкова, если любая минимальная не -группа --- либо группа Шмидта с ненормальной циклической -силовской подгруппой, либо группа простого порядка.

    Приведем пример -формаций Шеметкова.

    2.1 Пример. В классе конечных разрешимых групп формация всех -замкнутых групп является -формацией Шеметкова.

    Действительно. Пусть --- произвольная минимальная не -группа. Так как не -замкнута, то . Пусть . Согласно теореме 2.2.5, , где --- единственная минимальная нормальная подгруппа из , --- -группа, , где --- максимальный внутренний локальный экран формации . Покажем, что . Действительно, в противном случае, из того факта, что -замкнута и -замкнута, следует, что -замкнута. Получаем противоречие. Известно, что формацию можно представить в виде . Согласно лемме 2.2.20, формация имеет максимальный внутренний локальный экран такой, что . Очевидно, что любая минимальная не -группа есть группа простого порядка . Итак, --- группа Шмидта с ненормальной циклической подгруппой простого порядка . Пусть . Выше показано, что --- группа Шмидта с ненормальной циклической -силовской подгруппой. Согласно лемме 3.1.1, --- группа Шмидта с ненормальной циклической -силовской подгруппой. Итак, --- -формация Шеметкова.

    2.2 Теорема [14-A, 21-A]. Пусть --- наследственная насыщенная формация. Тогда следующие утверждения эквивалентны:

    1) --- -формация Шеметкова;

    2) , где и .

    Доказательство. Покажем, что из 1) следует 2).

    Ясно, что формация является формацией Шеметкова. Тогда, согласно лемме 2.2.22, эта формация имеет следующее строение:

    где --- максимальный внутренний локальный экран . Вначале докажем, что , где --- любое простое число из . Предположим, что это не так. Тогда найдется простое число , но . Обозначим через группу простого порядка . Очевидно, что и . Так как , то существует точный неприводимый -модуль , где --- поле из элементов. Пусть . Покажем, что . Так как точен, то . Так как , то, очевидно, что . Пусть --- произвольная максимальная подгруппа из . Так как и , то нетрудно заметить, что . Итак, . Так как , то это невозможно ввиду того, что --- -формация Шеметкова. Итак, для любого из . Отсюда, в частности, следует, что . Учитывая данные факты, нетрудно показать, что равенство (5.1) принимает следующий вид:

    Используя лемму 5.1.2, равенство (5.2) приводится к виду:

    где --- некоторое множество простых чисел, содержащее число .

    Покажем, что из 2) следует 1).

    Действительно, что --- произвольная минимальная не -группа. Согласно условию, разрешима. Пусть . Согласно теореме 2.2.5, , где --- единственная минимальная нормальная подгруппа, --- -группа и , где --- максимальный внутренний локальный экран формации . Если , то из того факта, что , следует, что . Получили противоречие. Тогда . Согласно лемме 2.2.20, насыщенная формация имеет полный локальный экран такой, что . Очевидно, что . Так как , то очевидно, что . Итак, любая минимальная не -группа с либо группа простого порядка, либо группа Шмидта с ненормальной -силовской подгруппой. Согласно лемме 2.2.21, это же верно, когда . Итак, --- -формация Шеметкова. Теорема доказана.

    2.3 Лемма [14-A, 21-A]. Пусть --- наследственная насыщенная -формация Шеметкова. Формация содержит любую разрешимую группу , где и --- -подгруппы и индексы , не делятся на , только в том случае, когда --- формация -замкнутых групп.

    Доказательство. Пусть --- -формация Шеметкова. Согласно теореме 5.2.2, она имеет следующее строение:

    где . Если , то --- формация -замкнутых групп. Так как индексы , не делятся на , то и содержат силовскую -подгруппу группы . По условию, и -замкнуты. Отсюда следует, что -замкнута. Пусть множество содержит простое число . Покажем, что в этом случае утверждение леммы неверно. Пусть --- группа порядка . Пусть --- простое число, отличное от и . Так как , то существует точный неприводимый -модуль , где --- поле из элементов. Пусть . Так как и имеет единственную минимальную нормальную подгруппу, то согласно лемме 2.2.18, существует точный неприводимый -модуль , где --- поле из элементов. Пусть . Так как , то, как и выше, существует точный неприводимый -модуль , где --- поле из элементов. Пусть .

    Рассмотрим следующие две подгруппы: и . Ясно, что . Подгруппы и -замкнуты, причем индексы , не делятся на . Если бы группа была бы -замкнута, то тогда была бы нормальной подгруппой в группе , что невозможно. Итак, утверждение леммы верно только тогда, когда . Лемма доказана.

    2.4 Лемма [14-A, 21-A]. Пусть --- -разрешимая группа, , где , , индексы , не делятся на . Тогда .

    Доказательство. Доказательство проведем индукцией по порядку . Пусть --- минимальная нормальная подгруппа . Так как --- -разрешимая группа, то либо -группа, либо -группа. Если --- -группа, то . Согласно индукции, . Получили противоречие.

    Пусть --- -группа. Так как , не делятся на , то . Так как --- единственная минимальная нормальная подгруппа группы и , то . Рассмотрим подгруппу . Так как , --- -группа, , то нетрудно показать, что --- -группа. Так как , то --- -замкнутая группа. Аналогичным образом можно доказать, что --- -замкнутая группа. Отсюда следует, что --- -замкнутая группа. А это значит, что . Получим противоречие. Лемма доказана.

    3. Критерий принадлежности групп, факторизуемых подгруппами, индексы которых не делятся на некоторое простое число, наследственно насыщенным формациям

    В данном разделе в классе разрешимых групп получено описание наследственных формаций Фиттинга , содержащих любую разрешимую группу , где и --- -подгруппы и индексы , не делятся на некоторое фиксированное простое число .

    3.1 Лемма [14-A, 21-A]. Пусть --- наследственная насыщенная формация, содержащая любую разрешимую группу , где и --- -подгруппы и индексы , не делятся на некоторое фиксированное простое число . Тогда любая разрешимая минимальная не -группа принадлежит одному из следующих типов:

    1) --- группа простого порядка , где ;

    2) --- группа Шмидта;

    3) , где , где --- максимальный внутренний локальный экран формации , --- простое число отличное от ;

    4) , , , где --- -замкнутая группа, , где --- максимальный внутренний локальный экран формации , --- простое число отличное от .

    Доказательство. Пусть --- произвольная разрешимая минимальная не -группа. Если , то нетрудно показать, что --- группа простого порядка , причем .

    Пусть . Покажем, что --- бипримарная -подгруппа. Действительно, если --- примарная группа, то из насыщенности формации следует, что . Противоречие. Пусть . Так как --- разрешимая группа, то нетрудно показать, что , где , индексы , не делятся на . Согласно условию, . Получили противоречие. Итак, .

    Пусть --- минимальная нормальная подгруппа . Если --- -группа, то . Рассмотрим случай, когда . Покажем, что в этом случае --- группа Шмидта. Вначале докажем, что --- циклическая группа. Действительно, в противном случае , где и --- максимальные подгруппы . Тогда . Так как , не делятся на , , то . Противоречие. Итак, --- циклическая группа, . Пусть . Покажем, что . Предположим противное. Пусть , где . Пусть и --- циклические группы соответственно порядков и . Обозначим через регулярное сплетение . И пусть --- база сплетения, т. е. . Так как некоторая подгруппа группы изоморфна , то . Очевидно, что подгруппы , принадлежат формации .

    Пусть , где . Обозначим через базу сплетения . Тогда

    Легко видеть, что .

    Так как индексы и не делятся на , то . Но , и поэтому

    Полученное противоречие показывает, что . Итак, доказали, что --- группа Шмидта. Согласно лемме 2.2.21, --- группа Шмидта. Следовательно, --- группа типа 2).

    Пусть --- -группа и . Пусть . Тогда, согласно теореме 2.2.5, , где , , --- максимальный внутренний локальный экран формации . Так как , то --- -группа. Пусть . Тогда рассмотрим подгруппу . Так как --- собственная подгруппа , то . Так как , то не делится на . Так как --- разрешимая группа, то . Но тогда в существует максимальная подгруппа такая, что . Рассмотрим подгруппу . Так как --- собственная подгруппа , то . Нетрудно заметить, что не делится на и . Теперь, согласно условию, . Получили противоречие. Итак, доказали, что , то есть --- -замкнутая группа. Итак, -- группа типа 4).

    Пусть теперь --- -группа. Тогда . Покажем, что . Предположим, что . Пусть . Тогда в найдется максимальная подгруппа такая, что . Рассмотрим подгруппу . Так как и --- собственные подгруппы , то они принадлежат . Очевидно, что , не делятся на и . Тогда, согласно условию, . Противоречие. Отсюда следует, что --- -замкнутая, но тогда --- -замкнута. Тот факт, что ( --- максимальный внутренний локальный экран ) следует из теоремы 2.2.5. Итак, --- группа типа 3). Лемма доказана.

    3.2 Лемма [14-A, 21-A]. Пусть --- тотально насыщенная формация, содержащая любую разрешимую группу , где и --- -подгруппы и индексы , не делятся на некоторое фиксированное простое число . Тогда любая разрешимая минимальная не -группа принадлежит одному из следующих типов:

    1) --- группа простого порядка , где ;

    2) --- группа Шмидта;

    3) --- группа Шмидта;

    4) , где и , где --- группа Шмидта с нормальной -силовской подгруппой, --- простое число отличное от .

    Доказательство. Согласно лемме 5.3.1, любая минимальная не -группа есть группа типа 1) -- 4) из леммы 5.3.1.

    Пусть --- группа типа 3) из леммы 5.3.1. Тогда . Пусть --- максимальный внутренний локальный экран формации . Так как --- тотально насыщенная формация, то --- насыщенная формация. Согласно лемме . Пусть . Так как --- насыщенная формация, то , что невозможно. Итак, . А это значит, что --- группа простого порядка . Но тогда нетрудно заметить, что --- группа Шмидта. Согласно лемме 2.2.21, --- группа Шмидта.

    Пусть --- группа типа 4) из леммы 5.3.1. Тогда

    где . Покажем, что --- группа Шмидта. Так как --- тотально насыщенная формация, то --- насыщенная формация. В виду леммы 2.2.21, при доказательстве утверждений, можем считать, что . Пусть --- максимальный внутренний локальный экран формации . Согласно теореме 2.2.5,

    где .

    Так как --- тотально насыщенная формация, то является насыщенной формацией. Как и выше, нетрудно доказать, что . Отсюда следует, что --- группа Шмидта. Лемма доказана.

    3.3 Теорема [14-A, 21-A]. Пусть --- наследственная разрешимая формация Фиттинга, --- некоторое фиксированное простое число. Тогда и только тогда содержит любую разрешимую группу , где и --- -подгруппы и индексы , не делятся на некоторое простое число , когда есть пересечение некоторых классов групп одного из следующих типов:

    1) класс всех разрешимых -замкнутых групп;

    2) класс всех разрешимых групп с -длиной ;

    3) класс всех разрешимых групп таких, что --- -группа, где --- некоторое множество простых чисел, содержащее простое число .

    Доказательство. Необходимость. Согласно результатам работы [33] является тотально насыщенной формацией. Теперь можно применить результаты леммы 5.3.2.

    Пусть любая минимальная не -группа есть группа типа 1), 2) из леммы 5.3.2. Тогда является -формацией Шеметкова. Согласно теореме 5.1.4 , где --- некоторое множество простых чисел, содержащее простое число .

    Пусть любая минимальная не -группа является группой типа 1), 3). Тогда --- -формация Шеметкова. Согласно теореме 5.2.2, она имеет следующее строение:

    где --- некоторое множество простых чисел, содержащее простое число . Согласно лемме 5.2.3, . А это значит, что .

    Пусть любая минимальная не -группа --- группа типа 1), 4). Пусть --- максимальный внутренний локальный экран формации .

    Известно, что

    Покажем, что для любого простого числа из , отличного от , . Предположим противное. Пусть --- группа наименьшего порядка из . Так как --- наследственная формация, то . Так как --- тотально насыщенная формация, то --- насыщенная формация. Отсюда нетрудно показать, что . Очевидно, что имеет единственную минимальную нормальную подгруппу , причем . Так как --- полный экран, то . А значит, --- -группа, где .

    Согласно лемме 2.2.18, существует точный неприводимый -модуль , где --- поле из элементов. Пусть . Покажем, что . Так как точен, то . Так как , то очевидно, что . Пусть --- произвольная максимальная подгруппа из . Если , то . Отсюда следует, что . А значит, . Пусть . Тогда , где --- некоторая максимальная подгруппа из . Так как , то . Так как , то из полноты экрана следует, что . Так как --- внутренний экран, то . Итак, . Последнее противоречит тому, что --- группа типа 4) из леммы 5.3.2.

    Итак, для любого из . Тогда

    Отсюда нетрудно заметить, что

    Рассмотрим насыщенную формацию . Так как любая минимальная не -группа либо группа простого порядка, либо группа Шмидта с ненормальной циклической -силовской подгруппой, то --- -формация Шеметкова. Согласно теореме 5.2.2,

    где --- некоторое множество простых чисел, содержащее простое число . Следовательно,

    Как и в лемме 5.2.3 можно показать, что . Итак, --- формация из пункта 3).

    Нетрудно показать, что формация , у которой любая минимальная не -группа есть группа одного из типов 1), 2), 3), 4) леммы 5.3.2, есть пересечение некоторых формаций из пунктов 1), 2), 3) данной теоремы.

    Достаточность следует из теоремы 5.1.5 и леммы 5.2.4. Теорема доказана.

    Заключение

    В главе 1 получено описание наследственных насыщенных -формаций Шеметкова, теорема 1.4 , и найден ряд свойств таких формаций, теорема 1.6 .

    В главе 2 получено описание наследственных насыщенных -формаций Шеметкова, теорема 2.2 .

    В главе 3 в классе конечных разрешимых групп получено описание наследственных формаций Фиттинга , замкнутых относительно произведения -подгрупп, индексы которых не делятся на некоторое фиксированное простое число, теорема 3.3 .

    Список использованных источников

    1. Васильев, А.Ф. О максимальной наследственной подформации локальной формации / А.Ф. Васильев // Вопросы алгебры: межведомств. сб. / Мин-во народного обр. БССР, Гомельский гос. ун-т; редкол.: Л.А. Шеметков [и др.]. -- Минск: Университетское, 1990. -- Вып. 5. -- С. 39--45.

    2. Васильев, А.Ф. О решетках подгрупп конечных групп / А.Ф. Васильев, С.Ф. Каморников, В.Н. Семенчук // Бесконечные группы и примыкающие алгебраические системы / Ин-т математики Акад. Украины; редкол.: Н.С. Черников [и др.]. -- Киев, 1993. -- С. 27--54.

    3. Васильев, А.Ф. О влиянии примарных -субнормальных подгрупп на строение группы / А.Ф. Васильев // Вопросы алгебры: межведомств. сб. / Мин-во обр. и науки Республики Беларусь, Гомельский гос. ун-т им. Ф. Скорины; редкол.: Л.А. Шеметков [и др.]. -- Гомель, 1995. -- Вып. 8. -- С. 31--39.

    4. Васильева, Т.И. О конечных группах с -достижимыми силовскими подгруппами / Т.И. Васильева, А.И. Прокопенко. -- Гомель, 2006. -- 18 с. -- (Препринт / Гомельский гос. ун-т им. Ф. Скорины; № 4).

    5. Ведерников, В.А. О локальных формациях конечных групп / В.А. Ведерников // Матем. заметки. -- 1989. -- Т. 46, № 3. -- С. 32--37.

    6. Казарин, Л.С. Признаки непростоты факторизуемых групп / Л.С. Казарин // Известия АН СССР. -- 1980. -- Т. 44, № 2. -- С. 288--308.

    7. Казарин, Л.С. О произведении конечных групп / Л.С. Казарин // ДАН СССР. -- 1983. -- Т. 269, № 3. -- С. 528--531.

    8. Каморников, С.Ф. О некоторых свойствах формаций квазинильпотентных групп / С.Ф. Каморников // Матем. заметки. -- 1993. -- Т. 53, № 2. -- С. 71--77.

    9. Каморников, С.Ф. О двух проблемах Л.А. Шеметкова / С.Ф. Каморников // Сибир. мат. журнал. -- 1994. -- Т. 35, № 4. -- С. 801--812.

    10. Коуровская тетрадь (нерешенные вопросы теории групп) // Институт математики СО АН СССР. -- Новосибирск, 1992. -- 172 с.

    11. Коуровская тетрадь (нерешенные вопросы теории групп) // Институт математики СО РАН. -- Новосибирск, 1999. -- 146 с.

    12. Легчекова, Е.В. Конечные группы с заданными слабо квазинормальными подгруппами / Е.В. Легчекова, А.Н. Скиба, О.В. Титов // Доклады НАН Беларуси. -- 2007. -- Т. 51, № 1. -- С. 27--33.

    13. Монахов, В.С. Произведение конечных групп, близких к нильпотентным / В.С. Монахов // Конечные группы. -- 1975. -- С. 70--100.

    14. Монахов, В.С. О произведении двух разрешимых групп с максимальным пересечением факторов / В.С. Монахов // Вопросы алгебры: межведомств. сб. / Мин-во высш. и ср. спец. обр. БССР, Гомельский гос. ун-т; редкол.: Л.А. Шеметков [и др.]. -- Минск: Университетское, 1985. -- Вып. 1. -- С. 54--57.

    15. Мокеева, С.А. Конечные группы с перестановочными -субнормальными (-достижимыми) подгруппами / С.А. Мокеева. -- Гомель, 2003. -- 25 с. -- (Препринт / Гомельский гос. ун-т им. Ф. Скорины; № 56).

    16. Прокопенко, А.И. О конечных группах с -достижимыми силовскими подгруппами / А.И. Прокопенко // Известия Гомельского гос. ун-та им. Ф. Скорины. -- 2004. -- № 6 (27). -- С. 101--103.

    17. Семенчук, В.Н. О минимальных не -группах / В.Н. Семенчук // ДАН БССР. -- 1978. -- № 7. -- С. 596--599.

    18. Семенчук, В.Н. Конечные группы с заданными свойствами подгрупп / В.Н. Семенчук // ДАН БССР. -- 1979. -- № 1. -- С. 11--15.

    19. Семенчук, В.Н. Минимальные не -группы / В.Н. Семенчук // Алгебра и логика. -- 1979. -- Т. 18, № 3. -- С. 348--382.

    20. Семенчук, В.Н. Конечные группы с системой минимальных не -подгрупп / В.Н. Семенчук // Подгрупповое строение конечных групп: Тр. / Ин-т математики АН БССР. -- Минск: Наука и техника, 1981. -- С. 138--149.

    21. Семенчук, В.Н. Минимальные не -группы / В.Н. Семенчук // Исследование нормального и подгруппового строения конечных групп: Тр. / Ин-т математики АН БССР. -- Минск: Наука и техника, 1984. -- С. 170--175.

    22. Семенчук, В.Н. Характеризация локальных формаций по заданным свойствам минимальных не -групп / В.Н. Семенчук, А.Ф. Васильев // Исследование нормального и подгруппового строения конечных групп: Тр. / Ин-т математики АН БССР. -- Минск: Наука и техника, 1984. -- С. 175--181.

    23. Семенчук, В.Н. Описание разрешимых минимальных не -групп для произвольной тотально локальной формации / В.Н. Семенчук // Матем. заметки. -- 1988. -- Т. 43, № 4. -- С. 251--260.

    24. Семенчук, В.Н. О разрешимых минимальных не -группах / В.Н. Семенчук // Вопросы алгебры. -- Минск: Университетское, 1987. -- Вып. 3. -- С. 16--21.

    25. Семенчук, В.Н. Роль минимальных не -групп в теории формаций / В.Н. Семенчук // Матем. заметки. -- 1991. -- Т. 98, № 1. -- С. 110--115.

    26. Семенчук, В.Н. Конечные группы с -абнормальными или -субнормальными подгруппами / В.Н. Семенчук // Матем. заметки. -- 1994. -- Т. 56, № 6. -- С. 111--115.

    27. Семенчук, В.Н. Разрешимые тотально локальные формации / В.Н. Семенчук // Сибир. мат. журн. -- 1995. -- Т. 36, № 4. -- С. 861--872.

    28. Семенчук, В.Н. Разрешимые -радикальные формации / В.Н. Семенчук // Матем. заметки. -- 1996. -- Т. 59, № 2. -- С. 261--266.

    29. Семенчук, В.Н. Об одной проблеме в теории формаций / В.Н. Семенчук // Весцi АН Беларусi. -- 1996. -- № 3. -- С. 25--29.

    30. Семенчук, В.Н. О разрешимых тотально локальных формациях / В.Н. Семенчук // Вопросы алгебры. -- 1997. -- № 11. -- С. 109--115.

    31. Семенчук, В.Н., Поляков Л.Я. Характеризация минимальных не -групп / В.Н. Семенчук // Известия высших учебных заведений. -- 1998. -- № 4 (431). -- С. 1--4.

    32. Семенчук, В.Н. Классификация локальных наследственных формаций критические группы которых бипримарны / В.Н. Семенчук // Известия Гомельского гос. ун-та им. Ф. Скорины. -- 1999. -- № 1 (15). -- С. 153--162.

    33. Семенчук, В.Н. Сверхрадикальные формации / В.Н. Семенчук, Л.А. Шеметков // Доклады НАН Беларуси. -- 2000. -- Т. 44, № 5. -- С. 24--26.

    34. Семенчук, В.Н. Конечные группы, факторизуемые -достижимыми подгруппами / В.Н. Семенчук, С.А. Мокеева // Известия Гомельского гос. ун-та им. Ф. Скорины. -- 2002. -- № 5 (14). -- С. 47--49.

    35. Скиба, А.Н. Об одном классе локальных формаций конечных групп / А.Н. Скиба // ДАН БССР. -- 1990. -- Т. 34, № 11. -- С. 382--385.

    36. Скиба, А.Н. Алгебра формаций / А.Н. Скиба. -- Минск: Беларуская навука, 1997. -- 240 с.

    37. Старостин, А.И. О минимальных группах, не обладающих данным свойством / А.И. Старостин // Матем. заметки. -- 1968. -- Т. 3, № 1. -- С. 33--37.

    38. Тютянов, В.Н. Факторизации -нильпотентными сомножителями / В.Н. Тютянов // Матем. сб. -- 1996. -- Т. 187, № 9. -- С. 97--102.

    39. Чунихин, С.А. О специальных группах / С.А. Чунихин // Матем. сб. -- 1929. -- Т. 36, № 2. -- С. 135--137.

    40. Чунихин, С.А. О специальных группах / С.А. Чунихин // Матем. сб. -- 1933. -- Т. 40, № 1. -- С. 39--41.

    41. Чунихин, С.А. О группах с наперед заданными подгруппами / С.А. Чунихин // Матем. сб. -- 1938. -- Т. 4 (46), № 3. -- С. 521--530.

    42. Чунихин, С.А. О существовании подгрупп у конечной группы / С.А. Чунихин // Труды семинара по теории групп. -- ГОНТИ, М.--Л. -- 1938. -- С. 106--125.

    43. Чунихин, С.А. Подгруппы конечных групп / С.А. Чунихин. -- Минск: Наука и техника, 1964. -- 158 с.

    44. Шеметков, Л.А. Формации конечных групп / Л.А. Шеметков. -- М.: Наука, 1978. -- 272 с.

    45. Шеметков, Л.А. Экраны произведения формаций / Л.А. Шеметков // ДАН БССР. -- 1981. -- Т. 25, № 8. -- С. 677--680.

    46. Шеметков, Л.А. О произведении формаций / Л.А. Шеметков // ДАН БССР. -- 1984. -- Т. 28, № 2. -- С. 101--103.

    47. Шеметков, Л.А. Формации алгебраических систем / Л.А. Шеметков, А.Н. Скиба. -- М.: Наука, 1989. -- 256 с.

    48. Шмидт, О.Ю. Группы, все подгруппы которых специальные / О.Ю. Шмидт // Матем. сб. -- 1924. -- Т. 31, № 3. -- С. 366--372.

    49. Ballester-Bolinches, A. On the lattice of -subnormal subgroups / A. Ballester-Bolinches, К. Doerk, M.D. Perez-Ramos // J. Algebra. -- 1992. -- Vol. 148, № 2. -- P. 42--52.

    50. Ballester-Bolinches, A. On -critical groups / A. Ballester-Bolinches, M.D. Perez-Ramos // J. Algebra. -- 1995. -- Vol. 174. -- P. 948--958.

    51. Ballester-Bolinches, A. Two questions of L.A. Shemetkov on critical groups / A. Ballester-Bolinches, M.D. Perez-Ramos // J. Algebra. -- 1996. -- Vol. 179. -- P. 905--917.

    52. Ballester-Bolinches, A. Classes of Finite Groups / A. Ballester-Bolinches, L.M. Ezquerro. -- Springer, 2006. -- 385 p.

    53. Bryce, R.A. Fitting formations of finite soluble groups / R.A. Bryce, J. Cossey // Math. Z. -- 1972. -- Bd. 127, № 3. -- S. 217--233.

    54. Carter, R.O. The -normalizers of a finite soluble group / R. Carter, T. Hawkes // J. Algebra. -- 1967. -- Vol. 5, № 2. -- Р. 175--202.

    55. Carter, R. Extreme classes of a finite soluble groups / R. Carter, B. Fisсher, T. Hawkes // J. Algebra. -- 1968. -- Vol. 9, № 3. -- P. 285--313.

    56. Doerk, K. Minimal nicht Uberauflosbare, endliche Gruppen / K. Doerk // Math. Z. -- 1966. -- Vol. 91. -- P. 198--205.

    57. Doerk, K. Finite soluble groups / K. Doerk, T. Hаwkes. -- Berlin -- New York: Walter de Gruyter, 1992. -- 891 p.

    58. Fisman, E. On product of two finite solvable groups / E. Fisman // J. Algebra. -- 1983. -- Vol. 80, № 2. -- P. 517--536.

    59. Gaschutz, W. Zur Theorie der endlichen auflosbaren Gruppen // Math. Z. -- 1963. -- Vol. 80, № 4. -- P. 300--305.

    60. Guo, W. The Theory of Classes of Groups / W. Guo. -- Dordrecht -- Boston -- London: Kluwer Academic Publishers, 2000. -- 257 p.

    61. Guo, W. X-semipermutable subgroups of finite groups / W. Guo, K.P. Shum, A.N. Skiba // J. Algebra. -- 2007. -- Vol. 315. -- P. 31--41.

    62. Hall, P. A note on soluble groups / P. Hall // Proc. London Math. Soc. -- 1928. -- Vol. 3. -- P. 98--105.

    63. Hall, P. On the Sylow systems of a soluble group / P. Hall // Proc. London Math. Soc. -- 1937. -- Vol. 43. -- P. 316--323.

    64. Hawkes, T. On Fitting formations / T. Hawkes // Math. Z. -- 1970. -- Vol. 117. -- P. 177--182.

    65. Huppert, B. Normalteiler und maximal Untergruppen endlichen Gruppen / B. Huppert // Math. Z. -- 1954. -- Vol. 60. -- P. 409--434.

    66. Ito, N. Note on (LN)-groups of finite order / N. Ito // Kodai Math. Seminar Report. -- 1951. -- Vol. 1--2. -- P. 1--6.

    67. Kazarin, L.S. Product of two solvable subgroups / L.S. Kazarin // Comm. Algebra. -- 1986. -- Vol. 14, № 6. -- P. 1001--1066.

    68. Kegel, O.H. Produkte nilpotenter Gruppen // Arch. Math. -- 1961. -- Vol. 12, № 2. -- P. 90--93.

    69. Kegel, O.H. Untergruppenverbande endlicher Gruppen, die Subnormalteilerverband echt enthalten / O.H. Kegel // Arch. Math. -- 1978. -- Bd. 30, № 3. -- S. 225--228.

    70. Miller, G.A. Nonabelian groups in which every subgroup is abelian / G.A. Miller, H.C. Moreno // Trans. Amer. Math. Soc. -- 1903. -- Vol. 4. -- P. 398--404.

    71. Semenchuk, V.N. Finite groups with permutable -subnormal and -accessible subgroups / V.N. Semenchuk, S.A. Mokeeva // 4th International Algebraic Conference in Ukraine. Abstracts, August 4--9. -- 2003. -- P. 153--154.

    72. Thompson, J.G. Nonsolvable finite groups all of whose local subgroups are solvable / J.G. Thompson // Bull. Amer. Math. Soc. -- 1968. -- Vol. 74. -- P. 383--437.

    73. Wielandt, H. Eine Verallgemeinerung der invarianten Untergruppen // H. Wielandt // Math. Z. -- 1939. -- Bd. 45. -- S. 209--244.

    74. Wielandt, H. Uber den Normalisator der subnormalen Untergruppen // H. Wielandt // Math. Z. -- 1958. -- Bd. 69, № 8. -- S. 463--465.

    75. Wielandt, H. Uber das Produkt von nilpotenten Gruppen / H. Wielandt // Illinois Journ. -- 1958. -- Vol. 2, № 4B. -- P. 611--618.




    Не сдавайте скачаную работу преподавателю!
    Данную курсовую работу Вы можете использовать для написания своего курсового проекта.

    Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

    Пишем курсовую работу самостоятельно:
    ! Как писать курсовую работу Практические советы по написанию семестровых и курсовых работ.
    ! Схема написания курсовой Из каких частей состоит курсовик. С чего начать и как правильно закончить работу.
    ! Формулировка проблемы Описываем цель курсовой, что анализируем, разрабатываем, какого результата хотим добиться.
    ! План курсовой работы Нумерованным списком описывается порядок и структура будующей работы.
    ! Введение курсовой работы Что пишется в введении, какой объем вводной части?
    ! Задачи курсовой работы Правильно начинать любую работу с постановки задач, описания того что необходимо сделать.
    ! Источники информации Какими источниками следует пользоваться. Почему не стоит доверять бесплатно скачанным работа.
    ! Заключение курсовой работы Подведение итогов проведенных мероприятий, достигнута ли цель, решена ли проблема.
    ! Оригинальность текстов Каким образом можно повысить оригинальность текстов чтобы пройти проверку антиплагиатом.
    ! Оформление курсовика Требования и методические рекомендации по оформлению работы по ГОСТ.

    Читайте также:
    Разновидности курсовых Какие курсовые бывают в чем их особенности и принципиальные отличия.
    Отличие курсового проекта от работы Чем принципиально отличается по структуре и подходу разработка курсового проекта.
    Типичные недостатки На что чаще всего обращают внимание преподаватели и какие ошибки допускают студенты.
    Защита курсовой работы Как подготовиться к защите курсовой работы и как ее провести.
    Доклад на защиту Как подготовить доклад чтобы он был не скучным, интересным и информативным для преподавателя.
    Оценка курсовой работы Каким образом преподаватели оценивают качества подготовленного курсовика.

    Сейчас смотрят :

    Курсовая работа Органы государственного финансового контроля, их роль в управлении финансами
    Курсовая работа Производство кирпича
    Курсовая работа Сбор, утилизация и захоронение твердых и жидких сельскохозяйственных отходов
    Курсовая работа Управление системой распределения продукции (на примере ООО "Электротехмаркет")
    Курсовая работа Организационная структура управления предприятием ресторанно-гостиничного бизнеса и методы ее оптимизации
    Курсовая работа Договор купли-продажи: понятие, предмет и содержание
    Курсовая работа Амнистия и помилование
    Курсовая работа Проблемы и перспективы развития въездного туризма на примере Ленинградской области
    Курсовая работа Основы программирования в среде Delphi 7.0
    Курсовая работа Учет и анализ доходов и расходов организации
    Курсовая работа Конкурентоспособность товара
    Курсовая работа Курсовая работа по кормопроизводству
    Курсовая работа `Картофельная запеканка `
    Курсовая работа Понятие и типы денежных систем. Денежная система Республики Беларусь
    Курсовая работа Особенности бюджетного финансирования