4
1. Целью данной курсовой работы является исследование кривой и формы поверхности второго порядка. Закрепление полученных теоретических знаний и практических навыков по изучению и анализу свойств кривых и поверхностей второго порядка.
2. Ознакомление с пакетами программ Microsoft® Word и Microsoft® Excel.
Постановка задачи
I. Для данного уравнения кривой второго порядка:
1. Определить тип данной кривой с помощью инвариантов.
2. Привести уравнение кривой к каноническому виду, применяя преобразования параллельного переноса и поворота координатных осей.
3. Найти фокусы, директрисы и ассимптоты данной кривой (если они есть).
4. Построить каноническую систему координат и данную кривую в общей системе координат.
II. Для данного канонического уравнения поверхности второго порядка:
1. Исследовать форму поверхности методом сечений плоскостями, построить линии, полученные в сечениях;
2. Построить поверхность в канонической системе координат.
Теоретическая часть
Пусть кривая Г задана в декартовой прямоугольной системе координат xOy уравнением:
. (1.1)
Если хотя бы один из коэффициентов отличен от нуля, то кривую Г называют кривой второго порядка.
Теорема 1. Для произвольной кривой второго порядка Г существует такая декартова прямоугольная система координат XOY, что в этой системе кривая Г имеет уравнение одного из следующих канонических видов:
1) , а b > 0 -- эллипс,
2) -- мнимый эллипс,
3) -- две мнимые пересекающиеся прямые
(точка),
4) -- гипербола,
5) -- две пересекающиеся прямые,
6) -- парабола,
7) -- две параллельные прямые,
8) -- две мнимые параллельные прямые,
9) -- две совпадающие прямые.
В этих уравнениях a, b, p -- положительные параметры.
Систему координат XOY назовем канонической системой координат, а систему координат xOy -- общей системой координат.
Классификация кривых второго порядка
В зависимости от значения инварианта принята следующая классификация кривых второго порядка:
· если кривая второго порядка Г называется кривой эллиптического типа.
· если кривая второго порядка Г называется кривой параболического типа.
· если кривая второго порядка Г называется кривой гиперболического типа.
Кривая второго порядка Г называется центральной, если . Кривые эллиптического и гиперболического типа являются центральными кривыми.
Центром кривой второго порядка Г называется такая точка плоскости, по отношению к которой точки этой кривой расположены симметрично парами. Точка является центром кривой второго порядка, определяемой уравнением (1.1), в том и только в том случае, когда ее координаты удовлетворяют уравнениям:
(2.1)
(2.1)
Определитель этой системы равен . Если , то система имеет единственное решение. В этом случае координаты центра могут быть определены по формулам:
, . (2.2)
Из теорем 1 и 2 получается следующая классификация кривых второго порядка с помощью инвариантов:
1) эллипс
2) мнимый эллипс
3) две мнимые пересекающиеся прямые (точка)
4) гипербола
5) две пересекающиеся прямые (2.3)
6) парабола
7) две параллельные прямые
8) две мнимые параллельные прямые
9) две совпадающие прямые
Практическая часть
Дано:
Определить тип кривой с помощью инвариантов в зависимости от в:
Вычислим инварианты:
1. Если , то имеем линии эллиптического типа
Этих в будет эллипс
При
При
2. Если то пишем линии параболического типа, при этом, чтобы была парабола
3. Если , то получаем линии гиперболического типа.
При гипербола
При корней нет, т.е. таких двух пересекающихся прямых, не существует.
Значение |
||||||
Тип кривой |
Мнимая точка |
Точка |
Эллипс |
Парабола |
Гипербола |
Теоретическая часть
Поверхностью второго порядка S называется геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида:
,
где по крайней мере один из коэффициентов отличен от нуля.
Уравнение (3.1) называют общим уравнением поверхности второго порядка S, а систему координат Oxyz называют общей системой координат.
Теорема: Для произвольной поверхности S, заданной общим уравнением существует такая декартова прямоугольная система координат что в этой системе поверхность S имеет уравнение одного из следующих семнадцати канонических видов.
1) -- эллипсоид,
2) -- мнимый эллипсоид,
3) -- однополостный гиперболоид,
4) -- двуполостный гиперболоид,
5) -- конус,
6) -- мнимый конус (точка),
7) -- эллиптический параболоид,
8) -- гиперболический параболоид,
9) -- эллиптический цилиндр,
10) -- мнимый эллиптический цилиндр,
11) -- две мнимые пересекающиеся плоскости (ось
OZ),
12) -- гиперболический цилиндр,
13) -- две пересекающиеся плоскости,
14) -- параболический цилиндр,
15) -- две параллельные плоскости,
16) -- две мнимые параллельные плоскости,
17) -- две совпадающие плоскости (плоскость XOZ).
В выше перечисленных уравнениях a, b, c, p --- положительные параметры. Систему координат называют канонической.
Исследование формы поверхности второго порядка методом сечения плоскостями
Если дано каноническое уравнение поверхности S, то представление о поверхности можно получить по форме линий пересечения ее плоскостями:
Z = h -- параллельными координатной плоскости XOY,
X = h -- параллельными координатной плоскости YOZ,
Y = h -- параллельными координатной плоскости XOZ.
Практическая часть
Дано:
;
Это эллипсоид в прямоугольной декартовой системе координат Oxyz, где оси OX, OY, OZ -- оси симметрии.
1. Рассмотрим линии плоскостями =h (h=const):
(1)
Плоскость Z=h параллельна плоскости Oxy.
Уравнения проекций на Oxy имеют вид:
Если , то , и тогда поделим обе части уравнения на , получим:
Это уравнение эллипсов с полуосями , ; увеличивающиеся с уменьшением , центр эллипса (0;0;h)
При различных h имеем:
Если , тогда и значит линии удовлетворяющих уравнению(1) нет.
2. Рассмотрим полученные в сечениях эллипсоида плоскостями X=h:
(2)
Уравнение проекций на YOZ.
Это уравнение эллипсов с полуосями , ;
Если , то a=3, b=2, и
Если , тогда мы получаем семейство эллипсов:
, ;
, ;
Если , тогда -- это уравнение точки с координатами (h;0;0).
Если , тогда и значит линии удовлетворяющих уравнению (2) нет.
3. Рассмотрим полученные в сечениях эллипсоида плоскостями Y=h:
(3)
Уравнения эллипсов, проекций на YOZ и имеют центры (0;h;0).
Полуоси ,
Если , тогда , уравнение точек с координатами (0;h;0).
Если , тогда мы получаем семейство эллипсов:
, ;
, ;
Если , тогда и значит линии удовлетворяющих уравнению (3) нет.
Построим однополостный гиперболоид
в канонической системе координат проанализировав уравнение поверхности и результаты исследования методом сечения ее плоскостями.
! | Как писать курсовую работу Практические советы по написанию семестровых и курсовых работ. |
! | Схема написания курсовой Из каких частей состоит курсовик. С чего начать и как правильно закончить работу. |
! | Формулировка проблемы Описываем цель курсовой, что анализируем, разрабатываем, какого результата хотим добиться. |
! | План курсовой работы Нумерованным списком описывается порядок и структура будующей работы. |
! | Введение курсовой работы Что пишется в введении, какой объем вводной части? |
! | Задачи курсовой работы Правильно начинать любую работу с постановки задач, описания того что необходимо сделать. |
! | Источники информации Какими источниками следует пользоваться. Почему не стоит доверять бесплатно скачанным работа. |
! | Заключение курсовой работы Подведение итогов проведенных мероприятий, достигнута ли цель, решена ли проблема. |
! | Оригинальность текстов Каким образом можно повысить оригинальность текстов чтобы пройти проверку антиплагиатом. |
! | Оформление курсовика Требования и методические рекомендации по оформлению работы по ГОСТ. |
→ | Разновидности курсовых Какие курсовые бывают в чем их особенности и принципиальные отличия. |
→ | Отличие курсового проекта от работы Чем принципиально отличается по структуре и подходу разработка курсового проекта. |
→ | Типичные недостатки На что чаще всего обращают внимание преподаватели и какие ошибки допускают студенты. |
→ | Защита курсовой работы Как подготовиться к защите курсовой работы и как ее провести. |
→ | Доклад на защиту Как подготовить доклад чтобы он был не скучным, интересным и информативным для преподавателя. |
→ | Оценка курсовой работы Каким образом преподаватели оценивают качества подготовленного курсовика. |
Курсовая работа | Деятельность Движения Харе Кришна в свете трансформационных процессов современности |
Курсовая работа | Маркетинговая деятельность предприятия (на примере ООО СФ "Контакт Плюс") |
Курсовая работа | Политический маркетинг |
Курсовая работа | Создание и внедрение мембранного аппарата |
Курсовая работа | Социальные услуги |
Курсовая работа | Педагогические условия нравственного воспитания младших школьников |
Курсовая работа | Деятельность социального педагога по решению проблемы злоупотребления алкоголем среди школьников |
Курсовая работа | Карибский кризис |
Курсовая работа | Сахарный диабет |
Курсовая работа | Разработка оптимизированных систем аспирации процессов переработки и дробления руд в цехе среднего и мелкого дробления Стойленского ГОКа |