1
мы считаем лишенными смысла.
Имея дело с функцией f (x), заданной на множестве E, мы будем символом
E(f>a)
обозначать множество тех x из множества Е, для которых выполнено неравенство f(x)>а.
Аналогичным образом вводятся символы
Е(fіа), Е(f=а), Е(fЈа), Е(а<fЈb)
и т.п. Если множество, на котором задана функция f(x), обозначено какой-либо другой буквой, например А или В, то мы соответственно будем писать
А(f>а), В(f>а)
и т.п.
Определение 1. Функция f(x), заданная на множество Е, называется измеримой, если измеримо это множество Е и если при любом конечном а измеримо множество
Е(f>а).
В связи с тем, что здесь речь идет о множествах, измеримых в смысле Лебега, часто (желая подчеркнуть именно это обстоятельство) говорят об измеримой (L) функции. Если же Е и все множества Е(f>а) измеримы (В), то и f(x) называется измеримой (В) функцией.
Теорема 1. Всякая функция, заданная на множестве меры нуль, измерима.
Это утверждение очевидно.
Теорема 2. Пусть f(x) есть измеримая функция, заданная на множестве Е. Если А есть измеримое подмножество Е, то f(x), рассматриваемая только для xОА, измерима.
Действительно, А(f>а)--=АЧЕ (f>а).
Теорема 3. Пусть f(x) задана на измеримом множестве Е, представимом в форме суммы конечного числа или счетного множества измеримых множеств Еk--:
E=Ч
Если f(x) измерима на каждом из множеств ER., то она измерима и на Е.
В самом деле, E(f>a)= .
Определение 2. Две функции f(x) и g(x), заданные на одном и том же множестве Е, называются эквивалентными, если
mE (f№g)=0
Обозначать эквивалентность функций f(x) и g(x) принято так:
f (x)--~g(x).
Определение 3. Пусть некоторое обстоятельство S имеет место для всех точек какого-нибудь множества Е, кроме точек, входящих в подмножество Е0 множества Е. Если mЕ0 = 0, то говорят, что S имеет место почти везде на множестве Е, или почти для всех точек Е.
В частности, множество исключительных точек Е0 может быть и пустым.
Теперь можно сказать, что две функции, заданные на множестве Е, эквиваленты, если они ровны почти везде на Е.
Теорема 4. Если f(х) есть измеримая функция, заданная на множестве Е, а g(x) ~ f(x), то g(x) также измерима.
Д о к а з а т е л ь с т в о. Пусть А = Е (f №--g), B = E - A. Тогда mA = 0, так что В измеримо. Значит функция f(x) измерима на множестве В. Но на множестве В функции f(x) и g(x) неотличимы, так что g(x) измерима на В. Поскольку g(x) измерима и на А (ибо mA = 0), она измерима на Е = А + В.
Теорема 5. Если для всех точек измеримого множества Е будет f(x) = c, то функция f(x) измерима.
Действительно,
E (f > a) =
Заметим, что в этой теореме с может быть и бесконечным.
Функция f(x), заданная на сегменте [а, b], называется ступенчатой, если [а,b]--разложить точками.
с0 = а< с1<с2<…<сn = b
на конечное число частей, в н у т р и которых (т.е. в интервалах (сk, ck + 1) при k = 0, 1, …., n -1) функция f(x) постоянна. Легко понять, что из теоремы 5 вытекает
Следствие. Ступенчатая функция измерима.
Теорема 6. Если f(x) есть измеримая функция, заданная на множестве Е, то при любом а измеримы множества
E (f і a), E (f = a), E (f Ј a), E (f < a),
Отсюда, между прочим, весьма просто получаются примеры разрывных измеримых функций.
Дальнейшие свойства измеримых функций
Лемма. Если на множестве Е заданы две измеримые функции f(х) и g(х), то множество Е (f >g) измеримо.
Действительно, если мы перенумеруем все рациональные числа r1, r2, r3, …, то легко проверим справедливость соотношения
Е (f > g) = Е (f > rk) Е (g < rk),
откуда и следует лемма.
Теорема 1. Пусть f(х) и g(х) суть конечные измеримые функции, заданные на множестве Е. Тогда измерима каждая из функций 1) f(х) - g(х), 2) f(х) + g (х), 3) f(х) . g(х), и если g(х) №--_,--то измерима также функция 4).
Д о к а з а т е л ь с т в о. 1) Функция а + g(х) измерима при любом а. Значит (на основании леммы), множество Е (f > а+g ), а так как E(f-g>a)=E(f>a+g), то измерима функция f (х) - g(х).
2) Измеримость суммы f(х) + g(х) следует из того, что
f(х) + g(х) = f(х) - [ - g (х)].
3) Измеримость произведения f(x) .g(x) вытекает из тождества
f(x) .g(x)={[f(x)+g(x)]-[f(x)-g(x)]}
и теоремы 7
4) Наконец, измеримость частного есть следствие тождества
=f(x) ·.
Эта теорема показывает, что действия арифметики, будучи применены к измеримым функциям, не выводят нас за пределы этого класса функций. Следующая теорема устанавливает сходный результат относительно уже не арифметической операции - предельного перехода.
Теорема 2. Пусть на множестве Е задана последовательность измеримых функций f1(x), f2(x), … Если в каждой точке хЕ существует (конечный или бесконечный) предел
F(x)=fn(x),
то функция F(х) измерима.
Д о к а з а т е л ь с т в о. Фиксируем произвольные а и введем в рассмотрение множества
А=Е(f> a + ), В=.
Эти множества, очевидно, измеримы, и для доказательства теоремы достаточно проверить, что
E(F>a) = .
Займемся же проверкой этого тождества.
Пусть хЕ (F>a), тогда F (x0) > a, и найдется такое натуральное m, что F(x0) > a + 1/m. Поскольку же fk (x) F (x0), то найдется такое n, что при kn будет
fk(x0) > a + .
Иначе говоря, х0 А при всех kn, а тогда х0 В и тем более х0. Отсюда следует, что Е (F > a) .
Теперь остается установить обратное включение
E (F > a),
и теорема будет доказана.
Пусть х0. Тогда х0 Впри некоторых фиксированных n и m. Это значит, что х0 А для kn. Иначе говоря для kn будет fk(x0) > a+1/m.
Устремляя k к бесконечности и переходя в последнем неравенстве к пределу, получим, что F(x0)>a, т.е. x0--ОE (F>a). Этим и доказано включение (*). Доказанная теорема допускает следующее обобщение.
Теорема 3. Пусть на множестве E заданы измеримые функции f1(x), f2(x), … и некоторая функция F(x). Если соотношение
(a)
выполняется почти везде на Е, то F(x) измерима.
Д о к а з а т е л ь с т в о. Обозначим через А множество всех точек X--О--Е, в которых соотношение (a)--не имеет места (в этих точках предела может вовсе не существовать). По условию, mA=0 и F(x) измерима на множестве А. По теореме 2 она измерима и на множестве Е - А, а тогда она измерима и на всем множестве Е.
Последовательности измеримых функций. Сходимость по мере.
В этом месте нам придется рассматривать множества вида Е (|f - g| і s), Е (|f - g| < s), где f(x) и g(x) суть функции заданные не множестве Е, а s--некоторое положительное число. При этом точки, в которых обе функции f(x) и g(x) принимают бесконечные значения одного знака, строго говоря, не входят ни в одно из этих множеств, поскольку в этих точках разность f(x) - g(x) лишена смысла. Так как указанное обстоятельство представляет известные неудобства, то мы раз и навсегда условимся эти точки относить к множеству Е (|f - g| і s). При таком соглашении очевидно
Е = Е (|f - g| і s) + Е (|f - g| < s)
и слагаемые правой части не пересекаются.
Теорема 1 (А. Лебег). Пусть на измеримом множестве Е задана последовательность измеримых и почти везде конечных функций f1(x), f2(x), f3(x), …, которая почти во всех точках Е сходится к почти везде конечной функции f(x). Тогда, каково бы ни было s>_,--будет
Д о к а з а т е л ь с т в о. Отметим прежде всего, что в силу теоремы 3, предельная функция f(x) также измерима и, стало быть, измеримы те множества, о которых идет речь.
Положим
А = Е(|f| = + Ґ), An = E(|fn| = + Ґ),------------B--=--E--(fn не ® f)
.
Очевидно,
Мы будем, следуя Г.М.Фихтенгольцу, обозначать сходимость по мере символом
fn(x) Ю f(x).
С помощью понятия сходимости по мере можно формулировать теорему Леберга так.
Теорема 1*. Если последовательность функций сходится почти везде, то она сходится и по мере к той же предельной функции.
Следующий пример показывает, что эта теорема необратима.
П р и м е р . Определим на полусегменте [0, 1) для каждого натурального k группу из k функций: f1(k) (x), f2(k) (x), …, fk(k) (x), полагая
В частности, f1(1) (x) є 1 на [0, 1). Нумеруя все построенные функции подряд одним значком, мы получим последовательность
j1 (x) = f1(1) (x), j2 (x) = f1(2) (x), j3 (x) = f2(2) (x), j4 (x) = f1(3) (x), …
Легко видеть, что последовательность функций jn (x) сходится по мере к нулю. В самом деле, если jn (x) = fi(k) (x), то при любом s>0 будет
и мера этого множества, равная 1/k, стремится к нулю с возрастанием n.
Вместе с тем, соотношение jn (x)®0 не выполняется ни в одной точке промежутка [0, 1). Действительно, если так что fi(k) (x0) = 1. Иначе говоря, как далеко мы не продвинемся вдоль ряда чисел j1 (x0), j2 (x0), j3 (x0), …, мы всегда будем встречать в этом ряду числа, равные 1, что и доказывает наше утверждение.
Таким образом, понятие сходимости по мере есть понятие, существенно более общее, чем понятие сходимости почти везде и тем более, чем понятие сходимости везде.
Естественно спросить, в какой степени соотношение
fn(x)--Ю--f(x)
определяет функцию f(x), т.е. единственна ли предельная функция при сходимости по мере.
Теоремы 2 и 3 позволяют ответь на этот вопрос.
Теорема 2. Если последовательность функций fn(x) сходится по мере к функции f(x), то эта же последовательность сходится по мере ко всякой функции g(x), эквивалентной функции f(x).
Д о к а з а т е л ь с т в о. При любом s-->--_--будет
E( кfn - g к і s ) М E( f--№ g) + E( зfn - f з і s),
откуда (поскольку mE (f № g) = 0)
mE (кfn - g кі s) Ј mE(зfn - f зі s),
что и доказывает теорему.
Теорема 3. Если последовательность функций fn(x) сходится по мере к двум функциям f(x) и g(x), то эти предельные функции эквивалентны.
Д о к а з а т е л ь с т в о. Легко проверить, что при s-->--_--будет
(*)
ибо точка, не входящая в правую часть этого соотношения, и подавно не может входить и в левую часть. Но соотношения
fn--Ю--f, fn Ю--g
показывают, что мера правой части (*) стремится к нулю с возрастанием n, откуда ясно, что mE (кfn - g кі s) = 0.
Теперь мы можем построить требуемую последовательность индексов
n1 < n2 < n3 < ... (*)
следующим образом: обозначим через n1 натуральное число, для которого
mE(Ѕfn1-fЅіs1)<h1.
Такое число обязательно существует, ибо
mE(Ѕfn-fЅіs1)®_ при n®Ґ.
Затем через n2 обозначим то натуральное число, для которого
mE(Ѕfn2-fЅіs2)h2, n2>n1.
Вообще через nk мы обозначаем такое число, что
mE(Ѕfnk-fЅіsk)<--hk, nk>nk-1.
Последовательность (*), таким образом, построена.
Теперь установим, что почти везде на множестве E будет
(**)
Действительно, пусть
, .
Так как R1ЙR2ЙR3Й..., то (теорема 12)
mRi®mQ
C другой стороны, очевидно, что так что mRi®0 и, стало быть, mQ=0.
Остается проверить, что соотношение (**) имеет место для всех x из множества E - Q.
Пусть x0 О E - Q. Тогда x0 Rio. Иначе говоря, при k і i0
x0E(|fnk-f|іsk),
и, следовательно,
|fnk(x0) - f(x0)|<sk, (k і i0)
и, поскольку sk®_,--ясно, что fnk(x0)--®f(x0).
Теорема доказана.
Теорема Лебега дала повод к установлению понятия сходимости по мере. С другой стороны, с помощью этой же теоремы можно установить весьма важную теорему Д.Ф.Егорова.
Теорема 5 (Д.Ф.Егоров). Пусть на измеримом множестве Е задана последовательность измеримых и почти везде конечных функций f1(x), f2(x), f3(x), …, почти везде сходящаяся к измеримой и почти везде конечной функции f (x):
В таком случае, для любого d>0 существует такое измеримое множество ЕdЕ, что:
mEs-->mE - d;
2) на множестве Ed стремление(*) происходит равномерно.--
Д о к а з а т е л ь с т в о. При доказательстве теоремы Лебега было установлено, что при любом s-->_--будет
(1)
где .
откуда и будет следовать теорема.
Если x О Еd--, то хe. Значит в частности, xRni(si).
Иначе говоря, при k і--ni
x ОE(|fk - f|і--si),
так что
|fk(x) - f(x)| <si (k і--ni)
и тем более
|fk(x) - f(x)| < e (k і--ni).
Структура измеримых функций
При изучении какой-нибудь функции сам собою встает вопрос о точном или приближенном представлении ее с помощью функций более простой природы.
Таковы, например, алгебраические вопросы о разложении многочлена на множители или рациональные дроби на простейшие. Таков же вопрос о разложении непрерывной функции в степенной или тригонометрический ряд и т.п.
В этой части мы устанавливаем различные теоремы о приближении измеримых функций функциями непрерывными, т.е. решаем сходный вопрос для измеримых функций. Эти теоремы позволяют нам найти основное структурное свойство измеримой функции выражаемой теоремой 4.
Теорема 1. Пусть на множестве Е задана измеримая, почти везде конечная функция f(x). Каково бы ни было e > 0, существует измеримая ограниченная функция g(x), такая, что mE(f№g)<--e.
Ввиду того, что значения линейной функции в каком-нибудь интервале лежат между ее значениями на концах этого интервала, ясно, что и limy(xn)=y(x0).
Итак, непрерывность функции y(x) доказана.
Из самого ее построения видно, что она совпадает с j(x) на множестве F.
Наконец по известной теореме Вейерштрасса, среди значений непрерывной на сегменте функции |y(x)| есть наибольшее - max |y(x)|. Легко видеть, что этот максимум достигается именно в точке, принадлежащей множеству F, ибо на дополнительных интервалах функция y(x) линейна. Поэтому max |y(x)| = max |j(x)|.
Лемма доказана полностью.
Теорема 2 (Э. Борель). Пусть на сегменте [a, b] задана измеримая и почти везде конечная функция f(x). Каковы бы ни были числа s >0 и e >0 существует непрерывная на [a, b] функция y(x), для которой
mE(|f-y| і s) <e
Если при этом |f(x)|--Ј K, то можно и y(x) выбрать так, что |y(x)|--Ј K.
Д о к а з а т е л ь с т в о. Предположим сначала, что |f(x)|--Ј K, т.е. что функция f(x) ограничена.
Фиксируя произвольные s >0 и e >0, найдем столь большое натуральное m, что K/m<s, и построим множества
(i = 1 - m, 2 - m, …, m - 1)
Эти множества измеримы, попарно не пересекаются и
Построим для каждого i замкнутое множество Fi М Ei с мерой и положим .
Ясно, что , откуда m[a, b] - mF<e.
Зададим теперь на множестве F функцию j(x), полагая
при xОFi (i = 1 - m, …, m).
В силу леммы 1 эта функция непрерывна на множестве F, |j(x)|--Ј K и, наконец, при xОF будет |f(x) - j(x)| < s.
Остается применить лемму 2. Это приводит к непрерывной функции y(x), совпадающей на множестве F с функцией j(x), причем |j(x)|іK. Поскольку E--( | f - y--| і--s--)--М--[a , b] - F , ясно, что функция y(x) требуемая.
Итак, для ограниченной функции теорема доказана.
Допустим теперь, что f (x) не ограничена. Тогда, пользуясь теоремой 1, можно построить такую ограниченную функцию g(x), что mE (f № g) <--e/2.
Применяя уже доказанную часть теоремы к функции g(x), мы найдем такую непрерывную функцию y(x), что
Так что функция y(x) решает задачу.
Следствие. Для всякой измеримой и почти везде конечной функции f(x), заданной на сегменте [a, b], существует последовательность непрерывных функций yn(x), сходящаяся по мере к функции f(x).
В самом деле, взяв две стремящиеся к нулю последовательности
s1>s2>s3>…, sn®0,
e1>e2>e3>…, en®0,
построим для каждого n такую непрерывную функцию yn(x), что
mE(|f-yn|іsn)<--en
Действительно, какое бы s > 0 ни взять, для n і n0 будет sn<s,--а для таких n
откуда и следует наше утверждение.
Применив к последовательности {yn(x)} теорему Ф. Рисса мы приходим к последовательности непрерывных функций {ynk(x)}, которая сходится к функции f(x) почти везде.
Иначе говоря установлена
Теорема 3 (М.Фреше). Для всякой измеримой и почти везде конечной функции f(x), заданной на сегменте [a, b], существует последовательность непрерывных функций, сходящаяся к f(x) почти везде.
С помощью этой теоремы легко устанавливается весьма замечательная и важная
Теорема 4 (Н. Н. Лузин). Пусть f(x) измеримая и почти везде конечная функция, заданная на [a, b]. Каково бы ни было d > 0, существует такая непрерывна функция j(x), что
mE(f № j) < d
Если, в частности, |f(x)|--Ј K, то и |j(x)|--Ј K.
! | Как писать курсовую работу Практические советы по написанию семестровых и курсовых работ. |
! | Схема написания курсовой Из каких частей состоит курсовик. С чего начать и как правильно закончить работу. |
! | Формулировка проблемы Описываем цель курсовой, что анализируем, разрабатываем, какого результата хотим добиться. |
! | План курсовой работы Нумерованным списком описывается порядок и структура будующей работы. |
! | Введение курсовой работы Что пишется в введении, какой объем вводной части? |
! | Задачи курсовой работы Правильно начинать любую работу с постановки задач, описания того что необходимо сделать. |
! | Источники информации Какими источниками следует пользоваться. Почему не стоит доверять бесплатно скачанным работа. |
! | Заключение курсовой работы Подведение итогов проведенных мероприятий, достигнута ли цель, решена ли проблема. |
! | Оригинальность текстов Каким образом можно повысить оригинальность текстов чтобы пройти проверку антиплагиатом. |
! | Оформление курсовика Требования и методические рекомендации по оформлению работы по ГОСТ. |
→ | Разновидности курсовых Какие курсовые бывают в чем их особенности и принципиальные отличия. |
→ | Отличие курсового проекта от работы Чем принципиально отличается по структуре и подходу разработка курсового проекта. |
→ | Типичные недостатки На что чаще всего обращают внимание преподаватели и какие ошибки допускают студенты. |
→ | Защита курсовой работы Как подготовиться к защите курсовой работы и как ее провести. |
→ | Доклад на защиту Как подготовить доклад чтобы он был не скучным, интересным и информативным для преподавателя. |
→ | Оценка курсовой работы Каким образом преподаватели оценивают качества подготовленного курсовика. |
Курсовая работа | Деятельность Движения Харе Кришна в свете трансформационных процессов современности |
Курсовая работа | Маркетинговая деятельность предприятия (на примере ООО СФ "Контакт Плюс") |
Курсовая работа | Политический маркетинг |
Курсовая работа | Создание и внедрение мембранного аппарата |
Курсовая работа | Социальные услуги |
Курсовая работа | Педагогические условия нравственного воспитания младших школьников |
Курсовая работа | Деятельность социального педагога по решению проблемы злоупотребления алкоголем среди школьников |
Курсовая работа | Карибский кризис |
Курсовая работа | Сахарный диабет |
Курсовая работа | Разработка оптимизированных систем аспирации процессов переработки и дробления руд в цехе среднего и мелкого дробления Стойленского ГОКа |