2
О-хлорстирол
Свойства
Величина
Температура кипения
188.7°C
Температура плавления
-63.2°C
Относительная плотность (вода = 1)
1.1
Растворимость в воде
очень плохая
Давление паров, кПа при 25°C
0.13
Относительная плотность пара (воздух = 1)
4.8
Относительная плотность смеси пар/воздух при 20°C (воздух = 1)
1.01
Температура вспышки
58°C
Стадии синтеза о-хлорстирола:
Синтез о-хлорстирола состоит из нескольких последовательных стадий, в процессе синтеза мы получим ацетилен, бензол, стирол и другие органические вещества. Сам процесс синтеза схематически изображен на рисунке (рис. 1).
рис. 1.
Как видно из рисунка 1 синтез о-хлорстирола включат в себя такие последовательные синтезы:
а. Синтез ацетилена из метана;
б. Синтез бензола из ацетилена;
в. Синтез этилбензола из бензола и этилена;
г. Синтез стирола из этилбензола;
д. Синтез о-хлорстирола.
Этапы г) и д) могут быть различными для разных видов производств, их можно менять в зависимости от условий.
В дальнейшем мы рассмотрим последовательно каждый из указанных процессов, условия его проведения, используемые катализаторы, температуры реакции.
а) синтез ацетилена из метана, его условия;
Наиболее распространенным видом углеводородного сырья есть природный газ, который на 95 - 98 % состоит из метана. Современная органическая химия должна выходить из того, что в будущем именно природный газ (метан) станет основным сырьем для органического синтеза.
Уже сейчас широко применяются методы получения ацетилена из природного газа - метана. Для этого применяют электрокрекинг, который проходит по уравнению:
Струю метана пропускают между электродами при температуре 1600° С и быстро охлаждают, чтобы предотвратить разложение ацетилена. Также разработан термоокислительный крекинг (неполное окисление метана кислородом воздуха)
В реакции используют теплоту частичного сгорания ацетилена. Но в данной реакции мы получаем больше продуктов и выделение ацетилена из них более сложно, чем в случае электрокрекинга.
б) синтез бензола;
ацетилен при температуре красного каления вступает в реакцию тримеризации и в результате мы получим бензол. Эту реакцию открил еще в ХІХ веке М. Бертло.
Н. Д. Зелинский и Б. А. Казанский показали, что Даная реакция значительно лучше проходит при более низких температурах и каталитическом воздействии активированного угля:
Даная реакция получения бензола еще не имеет большого распространения из-за существования более дешевых методов получения его, например из отходов коксирования угля и нефтепеработки.
в) синтез этилена из ацетилена;
Для получения стирола необходим этилен, который можно довольно легко получить, выходя из ацетилена и водорода. Ацетилен как ненасыщенный углеводород легко вступает в реакцию присоединения водорода. Реакция каталитическая, катализатором может быть платина или свинец. При использовании платины и большом количестве водорода в смеси, возможно, получение не только этилена, но и этана, тогда как при применении свинцового катализатора реакция будет продолжаться только до получения этилена.
Реакция проводится при температуре около 300°С.
г) синтез стирола из бензола и этилена;
Рассмотрим процесс синтеза этилбензола из бензола. Продуктами этого синтеза будут бензол и этилен, получение которых мы рассмотрели выше. Реакция проходит за уравнением:
Синтез этилбензола алкилированием бензола этиленом осуществляют, применяя катализаторы на основе хлорида алюминия, фторида бора, фосфорной кислоты или цеолитов. Использование низких концентраций катализатора позволяет проводить процесс в жидкой фазе (катализатор суспензирован или растворен). Процесс проводят при и давлении 0,3-1,0 МПа. В оптимальных условиях проведения процесса селективность получения этилбензола 99%. При проведении процесса очень важно не допускать избытка этилена в реакторе, так как это приводит к образованию диэтил- и полиэтилбензолов. Расход АІСІ3 составляет 0,25 г на тонну этилбензола. Алкилирование бензола олефинами - типичная реакция электрофильного замещения.
В современной химической технологии используют также процесс производства стирола выходя из пропилена и этилбензола:
В результате этой реакции кроме стирола получают и довольно ценный оксид пропилена, который используют в других химических производствах. Рассматриваются также и возможности получения стирола в одностадийном процессе путем окислительного алкилирования бензола в присутствии ацетата палладия при 80°С и давлении 2,15 МПа:
д) синтез стирола из этилбензола.
Для получения стирола проводят дегидратацию этилбензола. Она проходит согласно уравнения реакции:
Процесс проводят в присутствии катализатора. Наибольшее применение нашли катализаторы на основе оксида железа. Оптимальная температура при работе на этих катализаторах - , равновесный выход стирола не превышает 40-50 %. Для более полного превращения этилбензола в стирол понижают парциальное давление паров этилбензола, разбавляя его водяным паром (массовое отношение водяной пар : этилбензол 2,5 - 3 : 1).
е) хлорирование стирола.
Группу -СН=СН2 в молекуле стирола можно отнести к заместителям первого рода. Они имеют электронодонорные свойства.
При хлорировании стирола в отсутствии катализаторов галоген присоединится к боковой цепи согласно правила Бельштейна.
Если надо ввести галоген в ароматическое ядро, то используют катализаторы. Катализаторами выступают: FeCl3, AlCl3, SbCl3, SbCl5. роль катализатора заключается в создании положительного иона галогена, который осуществляет электрофильное замещение в бензольном ядре. В присутствии FeCl3 хлорирование идет по схеме:
FeCl3 + СІ2 =
В данной реакции мы получим не только о-хлорстирол, но и п-хлорстирол, который изомерен первому. Выход данных продуктов реакции будет равен между собой и составит 50%.
Установки для проведения синтеза о-хлорстирола и его промежуточных продуктов.
Рассмотрим процесс алкилирования бензола и получение этилбензола.
Рис. 2. Принципиальная схем алкилирования бензола на твердых катализаторах:
1 - теплообменник;
2 - реактор;
3 - холодильник;
4 - газосепаратор;
5, 6, 7 - ректификаторы,
а - бензол;
б - оборотный бензол;
в - олефин;
г -смесь бензола и олефина;
д - неконденсирующиеся газы;
в - жидкий алкилат;
ж - моноалкилбензол;
з - диалкилбензолы;
и - кубовый остаток.
Технологическая схема алкилирования бензола на твердом гетерогенном катализаторе, например цеолите, довольно несложна (рис. 2) [4, 5]. По этой схеме непрореагировавшие бензол и диэтилбензол возвращаются на алкилирование, а кубовый остаток может служить топливом и вместе с отходящими газами обеспечивает потребности установки в топливе (на 60%). В процессе отсутствуют отходы, катализатор не вызывает коррозии и не загрязняет окружающей среды.
Однако, пока что во всем мире наиболее широко в качестве катализаторов применяют комплексные соединения хлорида алюминия с ароматическими углеводородами, несмотря на такие их существенные недостатки, как необходимость осушки сырья, образование хлористого водорода и хлорида натрия при промывке и нейтрализации алкилата, коррозия аппаратуры и необходимость очистки сточных вод. Использование в большей мере хлорида алюминия вызвано и тем, что он является катализатором не только алкилирования, но и диспропорционирования, что снижает выход неизбежно образующихся при алкилировании ди- и полиалкилпроизводных. На практике используют жидкий катализаторный комплекс - хлорид алюминия в диэтилбензоле или в полиалкилбензольных фракциях, получаемых при алкилировании. Действие хлорида алюминия усиливается сокатализаторами, в качестве которых используют хлороводород или небольшие количества воды. Однако, чтобы избежать разложения катализатора, бензол тщательно сушат перед подачей на алкилирование.
Принципиальная схема процесса с использование катализаторных комплексов приведена на рисунке 3.
Рис. 3. Принципиальная схема получения этилбензола при использовании катализаторного комплекса.
1 - колонна обезвоживания,
2 - сепаратор,
3 - реактор;
4 - газосепаратор,
5 - сепаратор для отделения катализаторного комплекса;
6 - блок приготовления свежего катализаторного комплекса;
7 - система промывки алкилата;
8, 9,10 - ректификационные агрегаты;
а - исходный бензол;
б - азеотропная смесь вода + бензол;
в - вода;
г - обезвоженный бензол;
д -газы;
е - циркулирующий катализаторный комплекс;
ж - этилен;
з - хлорид алюминия;
и - свежий катализаторный комплекс;
к - оборотный бензол;
л - этилбензол;
м - диэтилбензол;
н - кубовый остаток;
о - вода на промывку;
п - сточные воды.
При получении этилбензола алкилирование ведут с избытком бензола (200 - 300% от стехиометрического), чтобы уменьшить образование ди- и полиалкилбензолов. И все же содержание последних оказывается значительным. Диалкилпроизводные подвергаются переалкилированию в реакторе алкилирования. Но можно непосредственно использовать их в качестве товарных продуктов.
В процессе алкилирования бензола с хлоридом алюминия циркулируют значительные объемы жидкого катализаторного комплекса. Причем в реакционной массе две жидкие фазы: катализаторный комплекс и смесь бензола и алкилбензолов. В результате возможность подъема температуры процесса ограничена, так как при температурах выше 130 °С комплекс дезактивируется и разрушается (3, 6).
Более интересно гомогенное алкилирование в присутствии хлорида алюминия. В этом случае количество катализатора определяется его растворимостью в бензоле, а давление процесса подирается таким, чтобы олефин находился в жидкой фазе.
Реактор работает в адиабатическом режиме, и на выходе из него температура достигает 200 °С. При этом резко уменьшился выход побочных продуктов, а выход этилбензола стал близок к количественному.
По такой технологии работает установка мощностью 760 тыс. т/год. Ее особенностью является высокий выход продуктов алкилирования (99%) и более низкие удельные затраты хлорида алюминия (в два раза) по сравнению с обычным процессом. В схеме отсутствует рецикл катализатора. Последний выделяется при нейтрализации в виде гидроксида алюминия и используется на установках очистки сточных вод в качестве осадителя. Большая единичная мощность установки в сочетании с высокой температурой в реакторе создает благоприятные условия для утилизации тепла реакции, в результате 90% потребности в тепловой энергии установка покрывает за счет использования названного тепла.
Рассмотрим технологическую схему получения стирола.
Ряс. 2. Принципиальная схеме получения стирола:
1 - контактный аппарат;
2 - теплообменник;
3 - подогреватель;
4 - холодильник;
5 - газосепаратор;
6 сепаратор воды;
7 - смеситель;
8, 9, 10 - ректификационные агрегаты;
а - бензол;
б -. водяной пер;
в - водородсодержащие газы;
г - вода;
д - ингибитор;
е - оборотный бензол;
ж - «печное масло»;
л - стирол-сырец;
ы - товарный стирол;
к - кубовый остаток.
Этилбензольная шихта подогревается в теплообменнике до 70-95 за счет теплоты химически загрязненного конденсата и подается в испаритель вместе с небольшим количеством водяного пара. Из испарителя пары шихты с температурой 160 поступают в перегреватель, где перегреваются до 500-550 за счет теплоты перегретого водяного пара, выходящего из межступенчатого подогревателя реактора. Из перегревателя пары шихты направляются на дегидрирование в реактор. Теплота, необходимая для реакции, подводиться с водяным паром, перегретым в печи до 700-750.
Пароэтилбензольная смесь на входе в реактор имеет температуру 560-630. За счет эндотермической реакции после первого реактора температура контактного газа снижается до 570. Контактный газ из реактора поступает в межступенчатый подогреватель, где подогревается до 580-630, и затем направляется во второй реактор. Контактный газ из реактора с температурой 570 поступает в котел-утилизатор. Охлажденный до 180-200 контактный газ из котла-утилизатора направляется в пенный аппарат, где происходит дальнейшее охлаждение контактного газа и отмывка его от механических примесей.
Охлажденный контактный газ поступает на конденсацию. Конденсация осуществляется последовательно в нескольких конденсаторах. Полученные конденсаты стекают в отстойную емкость, где происходит расслаивание на водный и углеводородные слои. Верхний углеводородный слой, называемый печным маслом, самотеком поступает в сборник, где заправляется ингибитором гидрохиноном, и направляется на ректификацию. Нижний водный слой - химически загрязненный конденсат - собирается в емкость и насосом подается на отмывку контактного газа в пенный аппарат, откуда конденсат после охлаждения в теплообменнике направляется на очистку от механических примесей. Несконденсировавшийся газ после конденсаторов компримируется и поступает в линию топливного газа.
Основным процессом получения стирола в промышленности остается каталитическое дегидрирование. Увеличению равновесного выхода стирола благо-приятствует повышение температуры и понижение давления. По-этому дегидрирование ведут при температуре около 600°С, ис-пользуя разрежение или подачу острого пара. Выход стирола за проход составляет 25-35%. Катализатором служат смеси окси-дов железа и хрома, продотированные, например, карбонатом ка-лия. Ректификация стирола-сырца проводится в вакууме при до-бавлении ингибиторов полимеризации. Принципиальная схема процесса представлена на рис. 2. Сравнительно небольшая разни-ца температур кипения стирола и этилбензола требует примене-ния высокоэффективных ректификационных колонн.
Лучшие современные предприятия по производству стирола характеризуются следующими расходными показателями на 1 т стирола:
Этилен, т .... 0,307
Бензол, т 0,820
Пар (Р=О,53 МПа) . .1,70
Электроэнергия, кВт-ч 65
Топливо, ГДж . . .6,35
Перспективным методом производства стирола является окис-лительное дегидрирование этилбензола диоксидом серы - необра-тимый процесс, малочувствительный к примесям, содержащимся в этилбензоле, и позволяющий получить стирол с высоким выхо-дом. Перспективен и процесс сопряженного окислительного дегидрирования, по которому получают стирол и оксид пропилена [ 4, с. 206 -207]. По этой технологии сооружен ряд крупных производств, в частности в Нидерландах.
Очистка и идентификация полученного вещества.
В промышленности для выделения о-хлорстирола из смеси изомеров (п-хлорстирол) используют ректификационные колонны (рис. 2) с большим числом тарелок: 300 - 450.
Рис. 2.
На рисунке приведена схема очистки и выделения о-хлорстирола из смеси изомеров.
1, 2, 3 - ректификационные колонны,
а) сырье на разделение.
б) головная фракция,
в) о-хлорстирол.
г) другие продукты.
Ректификацию проводят на трех последовательно расположенных колоннах с числом тарелок в каждой 130 - 150. Капитальные затраты по сравнению с работой на одной колонне аналогичной суммарной эффективности безусловно выше, но эксплуатационные расходы ниже.
Кратность орошения при выделении о-хлорстирола составляет 60 - 100, отбор от потенциала находится на уровне 70 - 90%.
Полученный о-хлорстирол можно идентифицировать по продуктам сгорания, среди которых должен находится хлороводород, а также по реакциям присущим стиролу, то есть окислению, присоединению водорода и галогенов в боковую цепь.
Техника безопасности при получении и хранении о-хлорстирола.
При получении о-хлорстирола используют многие органические вещества, многие из которых сильно токсичны (бензол) или огнеопасны, например, метан, этилен. Также используются высокие давления и температуры в химических реакторах. Поэтому надо соблюдать все необходимые по меры безопасности, рабочие должны пройти необходимый инструктаж и иметь необходимые допуски к работе с высокими давлениями и токсичными и легкогорючими веществами.
О-хлорстирол является органическим веществом и производным бензола. Поэтому он, как и другие органические вещества горюч. При горении выделяют раздражающие или токсичные пары (или газы). Поэтому важно не допускать открытого огня и искр. Тушить горящий о-хлорстирол можно порошком, разбрызгиванием воды, пеной, двуокисью углерода.
При температуре выше 58°C могут образоваться взрывоопасныe смеси состоящие из паров о-хлорстирола и воздуха.
В случае пожара надо сохранять бочки с веществом охлажденными, обливая их водой или пенными растворами.
При температурах выше 58° C применять закрытую систему вентиляции, защищенное от взрыва электрооборудование.
О-хлорстирол является умеренно токсичным, поэтому при работе с ним надо соблюдать осторожность, не допускать попадания капель вещества на незащищенные участки кожи. Следует также соблюдать осторожность и не допускать вдыхания паров вещества.
Для рабочих зон химических предприятий приняты следующие нормативы содержания 0-хлорстирола в воздухе:
TLV(предельная пороговая концентрация, США) : 50 ppm
TWA (среднесменная концентрация, США); 75 ppm
Российские нормативы: максимально разовая ПДК в воздухе рабочей зоны 50мг/м3. Класс опасности: 4
Согласно полученным данным вещество может всасываться в организм при вдыхании паров. Опасное загрязнение воздуха будет достигаться довольно медленно при испарении этого вещества при 20°C. При кратковременном воздействии на организм вещество раздражает глаза и кожу.
Ароматические углеводные токсичны, имеют наркотическое действие, но некоторые могут вызвать возбуждение, судороги. Поступают в организм преимущественно через легкие, на слизистую оболочку и кожу действуют раздражающе. Высокие концентрации ароматических углеводородов, в частности, бензола, могут вызвать потерю сознания, и даже смерть на протяжении нескольких минут. При отравлении высокими концентрациями бензола слизистые оболочки становятся вишнево-красного цвета, а лицо - земленисто- синюшнього цвета. Меньшие концентрации вызывают возбуждение, галлюцинации, а потом сонливость, общую слабость, дурноту, рвоту, потерю сознания. Появляются подергивания, которые переходят в судороги. Повреждаются кроветворные органы.
Вдыхание паров о-хлорстирола приводит к головокружению, чувству слабости, жалобам на головной боль, потере сознания, синюшности лица, возможны перебои в работе сердца. При отравлении необходимо вывести пострадавшего на чистый воздух или в хорошо вентилируемое помещение. Вызвать медицинскую помощь. В случае ослабления или остановки дыхания - искусственная вентиляция легких, покой, согревание тела, горчичники на руки и ноги, оксигенотерапия. Внутривенно вводят глюкозу (30 - 40 мл 40 % раствора), проводят витаминотерапию (цианокобаламин - до 1000 мкг, 5 % раствор тиамина хлорида и пиридоксин гидрохлорида - до 3 мл внутривенно. При возбуждении назначают успокоительные средства, а также средства, которые нормализуют дыхание и деятельность сердечно-сосудистой системы. При отравлении через рот промывают желудок, дают адсорбенты (активированный уголь), солевое слабительное. Рвотные средства противопоказаны.
Для недопущения отравлений использовать средства защиты органов дыхания, респираторы и противогазы. При больших концентрациях - противогаз с принудительной подачей воздуха. При небольших концентрациях - противогаз марки А или М. Спецодежа хлопчатобумажная с хлорвиниловым покрытием. При работе использовать безискровой инструмент и такие же фонари.
При попадании о-хлорстирола на открытую кожу наступает покраснение последней. Для лечения и профилактики дальнейшего отравления пораженные участки промыть теплой водой с мылом. Для профилактики использовать в работе с веществом защитную одежду или хотя бы защитные перчатки и очки, особо следует опасаться попадания вещества на слизистые оболочки глаз и ротовой полости. Для лечения используется промывание большим количеством воды в течение нескольких минут (снять контактные линзы, если это не трудно), затем доставить к врачу.
Хранение вещества допускается только в защищенном от огня месте. Хранить в хорошо проветриваемом помещении. На холоде. Хранение допускается только в стабилизированном состоянии.
При ликвидации утечек надо немедленно удалить все источники огня. В помещении создать хорошо вентилированную атмосферу и не допускать возникновения опасных концентраций 0-хлорстирола. Поскольку это может привести в возможности взрыва паро - воздушной смеси. Собрать подтекающую жидкость в герметичные контейнеры. Засыпать оставшуюся жидкость песком или инертным абсорбентом, собрать и удалить его в безопасное место. При работе необходимо использовать дополнительную личную защиту: фильтрующий респиратор для органических газов и паров, а также спецодежду.
Выводы.
В работе было детально рассмотрено производство такого вещества как о-хлорстирол из метана. Мы рассмотрели основные этапы его получения, особенности производства и технологические схемы.
Как видно получение о-хлорстирола из метана - это довольно сложный и многостадийный химический процесс. И надо отметить что в наше время бензол чаще получают не из метана, а из каменноугольной смолы при коксировании угля или из продуктов каталитического риформинга нефти при ее переработке. Получение бензола из метана возможно и в некоторых странах (США, Германия) существуют опытные установки по его получению, но они не настолько экономически выгодны для массового использования. Пока что бензола и его производных для промышленного использования хватает и при использовании старых методов получения.
Возрастание производства пластиков, синтетических волокон и каучуков (особенно с улучшенными свойствами, кислотоустойчивых материалов для химической промышленности) в будущем может привести к необходимости расширить сырьевую базу для получения бензола, тогда-то производство последнего из метана природного газа и станет востребованным. Тогда - то и будет практически осуществлен тот путь получения о-хлорстирола, который найдет свое применение в производстве новых марок кислото- и морозоустойчивых каучуков, искусственных волокон и пластмасс.
Список использованной литературы.
1. Глинка Н. Л. Общая химия. - Л.: Химия, 1988. - 702 с.
2. Рабинович В. А., Хавин З. Я. Краткий химический справочник. - Л.: Химия, 1978. - 331 с.
3. Химия: Справочное издание/ под ред. В. Шретер, К.-Х, Лаутеншлегер, Х. Бибрак и др.: Пер. с нем. - М.: Химия, 1989.- 648 с.
4. Химическая энциклопедия в 5 т. / под ред. И. Л. Кнунянца. - М.: Советская энциклопедия, 1990.
5. Лебедев Н.Н. Химия и технология основного органического и нефтехимического синтеза. - М.: Химия, 1988.
6. Ошанина О.В., Брук Л.Г., Темкин О.Н. Альтернативные методы получения продуктов основного органического синтеза. - М.:МИТХТ, 2002.
! | Как писать курсовую работу Практические советы по написанию семестровых и курсовых работ. |
! | Схема написания курсовой Из каких частей состоит курсовик. С чего начать и как правильно закончить работу. |
! | Формулировка проблемы Описываем цель курсовой, что анализируем, разрабатываем, какого результата хотим добиться. |
! | План курсовой работы Нумерованным списком описывается порядок и структура будующей работы. |
! | Введение курсовой работы Что пишется в введении, какой объем вводной части? |
! | Задачи курсовой работы Правильно начинать любую работу с постановки задач, описания того что необходимо сделать. |
! | Источники информации Какими источниками следует пользоваться. Почему не стоит доверять бесплатно скачанным работа. |
! | Заключение курсовой работы Подведение итогов проведенных мероприятий, достигнута ли цель, решена ли проблема. |
! | Оригинальность текстов Каким образом можно повысить оригинальность текстов чтобы пройти проверку антиплагиатом. |
! | Оформление курсовика Требования и методические рекомендации по оформлению работы по ГОСТ. |
→ | Разновидности курсовых Какие курсовые бывают в чем их особенности и принципиальные отличия. |
→ | Отличие курсового проекта от работы Чем принципиально отличается по структуре и подходу разработка курсового проекта. |
→ | Типичные недостатки На что чаще всего обращают внимание преподаватели и какие ошибки допускают студенты. |
→ | Защита курсовой работы Как подготовиться к защите курсовой работы и как ее провести. |
→ | Доклад на защиту Как подготовить доклад чтобы он был не скучным, интересным и информативным для преподавателя. |
→ | Оценка курсовой работы Каким образом преподаватели оценивают качества подготовленного курсовика. |
Курсовая работа | Деятельность Движения Харе Кришна в свете трансформационных процессов современности |
Курсовая работа | Маркетинговая деятельность предприятия (на примере ООО СФ "Контакт Плюс") |
Курсовая работа | Политический маркетинг |
Курсовая работа | Создание и внедрение мембранного аппарата |
Курсовая работа | Социальные услуги |
Курсовая работа | Педагогические условия нравственного воспитания младших школьников |
Курсовая работа | Деятельность социального педагога по решению проблемы злоупотребления алкоголем среди школьников |
Курсовая работа | Карибский кризис |
Курсовая работа | Сахарный диабет |
Курсовая работа | Разработка оптимизированных систем аспирации процессов переработки и дробления руд в цехе среднего и мелкого дробления Стойленского ГОКа |