22
Министерство образования, науки, молодёжи и спорта
Теоретический лицей Петру Мовилэ
Кафедра
"Способность, труд, талант"
Курсовая работа по химии на тему:
"Колебательные химические реакции"
Выполнила: ученица 12А класса
Болюбаш Ирина
Преподаватель: Снидченко М.А.
* г. Кишинёв 2007 *
Содержание:
1. Введение:
а) Окислительно-восстановительные реакции
б) Колебательные химические реакции
2. История открытия колебательных реакций:
а) Исследования концентрационных колебаний до открытия
реакции Б. П. Белоусова
3. Теоретическая часть:
а) Математическая модель А. Лоткой
б) Изучение механизма колебательных реакций
4. Экспериментальная часть
5. Заключение
6. Приложение:
а) Рецепты некоторых колебательных реакций
б) Иллюстрации к проделанным опытам
7. Литература
Введение.
Химия - наука экспериментальная. И поэтому эксперимент как метод научного исследования давно и прочно занимает ведущее место среди методов естественных наук. Эксперимент - важнейший путь осуществления связи теории с практикой при обучении химии, превращения знаний в убеждения. Поэтому раскрытие познавательного значения каждого опыта - основное требование к химическому эксперименту.
Под экспериментом (от лат. «experiтeпtuт» - «испытание») понимают наблюдение исследуемого явления при определенных условиях, позволяющих следить за ходом этого явления и повторять его при соблюдении этих условий. Химический эксперимент занимает важное место в обучении химии, так как через наблюдения и опыты познаётся многообразие природы веществ, накапливаются факты для сравнений, обобщений, выводов.
Проводя опыты и наблюдая за химическими превращениями в различных условиях, мы убеждается, что сложными химическими процессами можно управлять, что в явлениях нет ничего таинственного, они подчиняются естественным законам, познание которых обеспечивает возможность широкого использования химических превращений в практической деятельности человека.
Однако результаты некоторых химических опытов неожиданны и не вписываются в традиционные представления о свойствах веществ или закономерностях протекания химических реакций. Такие химические превращения были названы, проблемным экспериментом.
Еще в пору античности философы полагали, что любое познание начинается с удивления. Удивление, вызванное новым, ведёт к развитию любознательности (чувствительности к проблемам в окружающем мире) с последующим формированием устойчивого интереса к чему-нибудь. Удивление и, следующая за ней, тяга к познанию - вот благодатная почва для изучения проблемного эксперимента, формирования диалектического и системного мышления, раскрытия творческого потенциала.
Такое же состояние может быть вызвано ярким, впечатляющим химическим экспериментом (проблемным экспериментом). В химии причинами проблемных экспериментов, чаще всего, являются окислительно-восстановительные реакции.
Окислительно-восстановительные реакции
Существуют многочисленные критерии классификации химических реакций. Один из важнейших - признак изменения степеней окисления элементов. В зависимости от того, изменяются степени окисления элементов или сохраняются, химические реакции могут быть разделены на окислительно-восстановительные и проходящие без изменения степеней окисления.
Реакции, протекающие с изменением степеней окисления элементов (окислительно-восстановительные), широко известны. Они играют большую роль в технике и природе, лежат в основе обмена веществ в живых организмах, с ними связаны процессы окисления, гниения, брожения, фотосинтеза. Процессы окисления (и восстановления) идут при сгорании топлива, коррозии металлов, электролизе, с их помощью получают металлы, аммиак, щелочи и многие другие ценные продукты. Поэтому изучение окислительно-восстановительных реакций предусмотрено школьными курсами неорганической и органической химии.
Напомним основные положения, связанные с концепцией окислительно-восстановительные реакций.
Степень окисления соответствует заряду, который возник бы на атоме данного элемента в химическом соединении, если предположить, что все электронные пары, посредством которых данный атом связан с другими, полностью смещены к атомам элементов с большей электроотрицательностью.
Окислитель - вещество, содержащее атомы или ионы, принимающие электроны: Xm (окислитель) + ne- = X(m-n) , где m - степень окисления элемента в исходном веществе, n - число электронов.
Восстановитель - вещество, содержащее атомы или ионы, отдающие электроны: Ym (восстановитель) - ne- = Y(m+n) .
Окисление - процесс отдачи электронов атомом, молекулой или ионом, при этом степень окисления элемента повышается.
Восстановление - процесс приёма электронов атомом, молекулой или ионом, при этом степень окисления элемента понижается.
Окисление и восстановление - процессы сопряжённые, число электронов, отданных восстановителем в процесс его окисления, всегда равно числу электронов, принятых окислителем в процессе его восстановления.
История открытия колебательных реакций.
Открытие колебательной химической реакции И. П. Белоусов сделал при попытке создать простую химическую модель некоторых стадий системы ключевых биохимический превращений карбоновых кислот в клетке. Однако первого сообщения о его открытии напечатано не было. Рецензент химического журнала усомнился в принципиальной возможности описанной в статье реакции. Большинство химиков в те годы полагали, что чисто химических колебаний не бывает, хотя существование колебательных реакций предсказал в 1910 г. А. Лоткой на основе математической теории периодических процессов.
Вторая попытка опубликования результатов исследования была предпринята учёным в 1957 г., и опять он получил отказ, несмотря на появившиеся тогда работы бельгийского физика и физикохимика И. Р. Пригожина. В этих работах была показана возможность и вероятность колебательных химических реакций.
Лишь в 1959 г. Был напечатан краткий реферат об открытии Б. П. Белоусовым периодически действующей колебательной химической реакции в малоизвестном издании "Сборник рефератов по радиационной медицине".
А всё дело в том, что когда Б. П. Белоусов сделал своё открытие, периодические изменения концентрации реагентов казались нарушением законов термодинамики. В самом деле, как может реакция идти то в прямом, то в противоположном направлениях? Невозможно представить себе, чтобы всё огромное число молекул в сосуде было то в одном, то в другом состоянии (то все «синие», то все «красные»…).
Направление реакции определяется химическим (термодинамическим) потенциалом - реакции осуществляются в направлении более вероятных состояний, в направлении уменьшения свободной энергии системы. Когда реакция в данном направлении завершается, это значит, что её потенциал исчерпан, достигается термодинамическое равновесие, и без затраты энергии, самопроизвольно, процесс в обратную сторону пойти не может. А тут… реакция идёт то в одном, то в другом направлении.
Однако никакого нарушения законов в этой реакции не было. Происходили колебания - периодические изменения - концентраций промежуточных продуктов, а не исходных реагентов или конечных продуктов. СО2 не превращается в этой реакции в лимонную кислоту, это в самом деле невозможно. Рецензенты не учли, что пока система далека от равновесия, в ней вполне могут происходить многие замечательные вещи. Детальные траектории системы от начального состояния к конечному могут быть очень сложными. Лишь в последние десятилетия этими проблемами стала заниматься термодинамика систем, далёких от равновесия. Эта новая наука стала основой новой науки - синергетики (теория самоорганизации).
Реакцию Белоусова, как отмечено выше, детально изучил А. М. Жаботинский и его коллеги. Они заменили лимонную кислоту малоновой. Окисление малоновой кислоты не сопровождается образованием пузырьков СО2, поэтому изменение окраски раствора можно без помех регистрировать фотоэлектрическими приборами. В дальнейшем оказалось, что ферроин и без церия служит катализатором этой реакции. Б. П. Белоусов уже в первых опытах заметил ещё одно замечательное свойство своей реакции: при прекращении перемешивания изменение окраски в растворе распространяется волнами. Это распространение химических колебаний в пространстве стало особенно наглядным, когда в 1970 г. А. М. Жаботинский и А. Н. Заикин налили реакционную смесь тонким слоем в чашку Петри. В чашке образуются причудливые фигуры - концентрические окружности, спирали, «вихри», распространяющиеся со скоростью около 1 мм/мин. Химические волны имеют ряд необычных свойств. Так, при столкновении они гасятся и не могут проходить сквозь друг друга.
Исследования концентрационных
колебаний до открытия реакции Б. П. Белоусовым
Но как гласит история, открытие Б. П. Белоусова было отнюдь не первым в мировой науке. Оказалось, что одна из первых публикаций по химическим колебаниям относится к 1828 г. В ней Т.Фехнер изложил результаты исследования колебаний электрохимической реакции. Наиболее интересна работа М. Розеншельда, относящаяся к 1834 г. Ее автор совершенно случайно заметил, что небольшая колба, содержащая немного фосфора, в темноте испускает довольно интенсивный свет. В самом факте свечения фосфора не было ничего удивительного, но то, что это свечение регулярно повторялось каждую седьмую секунду, было интересно. Сорок лет спустя эти эксперименты с «мерцающей колбой» продолжил француз М.Жубер (1874). Ему удалось в пробирке наблюдать периодическое образование «светящихся облаков». Еще через двадцать лет также немецкий ученый А.Центнершвер исследовал влияние давления воздуха на периодические вспышки фосфора. В его экспериментах период вспышек начинался с 20 с и уменьшался с понижением давления.
Особенно яркая страница в истории химических колебаний связана с так называемыми кольцами Лизеганга. В 1896 г. немецкий химик Р.Лизеганг, экспериментируя с фотохимикатами, обнаружил, что если капнуть ляписом на стеклянную пластину, покрытую желатиной, содержащей хромпик, то продукт реакции, выпадая в осадок, располагается на пластинке концентрическими окружностями. Лизеганг увлекся этим явлением и почти полвека занимался его исследованием. Нашлось и практическое его применение. В прикладном искусстве кольца Лизеганга использовали для украшения различных изделий с имитацией яшмы, малахита, агата и т. п. Сам Лизеганг предложил технологию изготовления искусственного жемчуга.
Перечень подобных примеров можно продолжить. Вслед за указанными были открыты колебательные реакции на границе раздела двух фаз. Из них наиболее известны реакции на границе металл-раствор, получившие специфические названия - «железный нерв» и «ртутное сердце». Первая из них - реакция растворения железа (проволоки) в азотной кислоте - получила свое название из-за внешнего сходства с динамикой возбужденного нерва, замеченного В.Ф.Оствальдом. Вторая, вернее один из ее вариантов, - реакция разложения Н2О2 на поверхности металлической ртути. В реакции происходит периодическое образование и растворение пленки оксида на поверхности ртути. Колебания поверхностного натяжения ртути обусловливают ритмические пульсации капли, напоминающие биение сердца. Но все эти реакции не привлекали особенного внимания химиков, поскольку представления о ходе химической реакции были еще достаточно смутными.
Лишь во второй половине XIX в. возникли термодинамика и химическая кинетика, положившие начало специфическому интересу к колебательнымреакциям и методам их анализа.
Гипобромная кислота, в свою очередь, реагирует с бромид-ионом, образуя свободный бром:
HOBr + Br-- + H+ = Br2 + H2O (А3)
Малоновая кислота бромируется свободным бромом:
Br2 + CH2(COOH)2 = BrCH(COOH)2 + Br-- + H+ (А4)
В результате всех этих реакций малоновая кислота бромируется свободным бромом:
BrO-3 + 2Br-- + 3CH2(COOH)2 + 3H+ = 3BrCH(COOH)2 + 3H2O (А)
Химический смысл этой группы реакций двойной: уничтожение бромид-иона и синтез броммалоновой кислоты.
Реакции группы Б возможны лишь при отсутствии (малой концентрации) бромид-иона. При взаимодействии бромат-иона с бромистой кислотой образуется радикал BrO2.
BrO-3 + HBrO2 + H+ > 2BrO2 + H2O (Б1)
BrO2 реагирует с церием (III), окисляя его до церия (IV), а сам восстанавливается до бромистой кислоты:
BrO2 + Ce3+ + H+ > HВrO2 + Ce4+ (Б2)
Бромистая кислота распадается на бромат-ион и гипобромистую кислоту:
2HBrO2 > BrO-3 +HOBr + H+ (Б3)
Гипобромистая кислота бромирует малоновую кислоту:
HOBr + CH2(COOH)2 > BrCH(COOH)2 + H2O (Б4)
В итоге реакций группы Б образуется броммалоновая кислота и четырехвалентный церий.
Колебания концентраций основных компонентов реакции: бромистой кислоты и феррина - в фазовом пространстве представляются в виде замкнутой линии (предельного цикла).
BrO-3 + 4Ce3+ + CH2(COOH)2 + 5H+ > BrCH(COOH)2 + 4Ce4+ + 3H2O (Б)
Образовавшийся в этих реакциях церий (IV) (реакции группы В):
6Ce4+ + CH2(COOH)2 + 2H2O > 6Ce3+ + HCOOH + 2CO2 +6H+ (В1)
4Ce4+ + BrCH(COOH)2 + 2H2O > Br-- + 4Ce3+ + HCOOH + 2CO2 + 5H+ (В2)
Химический смысл этой группы реакций: образование бромид-иона, идущее тем интенсивнее, чем выше концентрация броммалоновой кислоты. Увеличение концентрации бромид-иона приводит к прекращению (резкому замедлению) окисления церия (III) в церий (IV). В исследованиях последнего времени церий обычно заменяют ферроином.
Из этой (неполной) последовательности этапов реакции Белоусова-Жаботинского видно, сколь сложна эта система. Так, достаточно учитывать изменение концентрации всего трех основных промежуточных компонентов реакции HВrO2 (бромистой кислоты), Br-- и ферроина (или церия).
Первый шаг в реакции - в результате автокаталитической реакции образуется бромистая кислота (быстрый, подобный взрыву процесс), ферроин трансформируется в ферриин (окисленную форму ферроина).
Второй шаг - в результате взаимодействия с органическим компонентом феррин начинает медленно трансформироваться обратно в ферроин, и одновременно начинает образовываться бромид-ион.
Третий шаг - бромид-ион является эффективным ингибитором автокаталитической реакции (1-й шаг). Как следствие, прекращается образование бромистой кислоты, и она быстро распадается.
Четвертый шаг - процесс распада ферриина, начатый на 2-м шаге, завершается; бромид-ион удаляется из системы. В результате система возвращается к состоянию, в котором находилась до 1-го шага, и процесс повторяется периодически. Существует несколько математических моделей (систем дифференциальных уравнений), описывающих эту реакцию, колебания концентрации ее реагентов и закономерности распространения концентрационных волн.
Экспериментальная часть:
Реакция взаимодействия лимонной кислоты с броматом калия:
Реактивы:
1. KMnO4 (перманганат калия).
2. KВrO3 (калий бромноватокислый или бромат калия).
3. H2SO4 (концентрированная).
4. Лимонная кислота.
5. Дистиллированная вода.
Ход работы: Навеску лимонной кислоты - 2 г растворили в 6 мл H2O. В полученный раствор добавили навеску калия бромноватокислого - 0,2 г и долили 0,7 мл концентрированной серной кислоты. Затем внесли 0,04 г перманганата калия и довели объем полученного раствора до 10 мл дистиллированной водой. Тщательно перемешали до полного растворения реактивов.
Наблюдения: Сразу после добавления KMnO4 раствор приобрёл фиолетовую окраску и начал «кипеть». Через 25 с, при бурном кипении, цвет раствора стал меняться на коричневый. С течением реакции раствор постепенно светлеет - вплоть до светло-желтого цвета. Через 3 мин 45 с начинается резкое потемнение раствора (похоже на диффузию жидкости высокой плотности), и через 40 с раствор снова становится полностью коричневым. Далее все повторяется с периодом 4,5 мин - 5 мин. Через довольно большой промежуток времени реакция начинает замедляться, затем и прекращается вовсе (раствор жёлтого цвета).
Рецепты некоторых колебательных реакций
Рецепт 1: Необходимо приготовить растворы перечисленных далее веществ из расчета их конечных концентраций: малоновая кислота 0,2 М; бромат натрия 0,3 М; серная кислота 0,3 М; ферроин 0,005 М. Ферроин можно заменить сульфатом двухвалентного марганца или трехвалентного церия, но при этом интенсивность окраски будет существенно слабее. Около 5 мл раствора всех компонентов нужно налить в чашку Петри так, чтобы толщина слоя жидкости была 0,5-1 мм. Через 3-8 мин (переходный период) можно наблюдать колебания и химические волны.
Рецепт 2: В плоскую прозрачную кювету слоями (1 мл) налить следующие растворы:
- KВrO3 (0,2 моль/л)
- малоновую кислоту (0,3 моль/л)
- ферроин (0,003 моль/л)
- H2SO4 (0,3 моль/л)
Кювету поставить на лист белой бумаги. Темп реакции можно изменить, добавляя щелочь или кислоту.
Рецепт 3: Необходимы растворы:
- лимонной кислоты (40 г в 160 мл H2O)
- H2SO4 (1:3).
А также навески:
- KBrO3 (16 г)
- Ce2(SO4)3 (3-3,5 г)
Раствор лимонной кислоты нагреть до 40°-50° С, затем высыпать навеску KВrO3. Стакан поставить на лист белой бумаги и внести навеску Ce2(SO4)3 и несколько мл H2SO4. Сразу начинает происходить чередование цветов: желтый > бесцветный > желтый, с периодом 1-2 мин.
Рецепт 4: Необходимы растворы:
- H2O2 (50 мл 30%)
- KIO3 (7,17 г в 50мл H2O)
- HСlO4 (30 мл разбавленного раствора)
- малоновая кислота (3 г в 50 мл H2O). И навески:
- MnSO4 (1г) и немного крахмала.
Все слить в один стакан (200-250 мл), добавить навески, размешать стеклянной палочкой. Происходит чередование цвета: бесцветный > жёлтый > голубой.
Список литературы.
1. Алиев Р. , Шноль С. Э. «Колебательные химические реакции». Кинетика и катализ. 1998. № 3. С. 130-133.
2. Шноль С. Э. Знание - Сила. 1994. № 3. С. 62-71.
3. Жаботинский А. М. Концентрационные автоколебания. М.: Наука, 1974.
4. Гарел Д., Гарел О. Колебательные химические реакции / Пер. с англ. М.:
Мир, 1986.
5. Дубнищева Т. Я. Концепции современного естествознания. Новоси-
бирск: ЮКЭА, 1997, С. 683 - 697.
6. Концепции современного естествознания. Под ред. В. Н. Лавриненко,
В. П. Ратникова, М.: ЮНИТИ-ДАНА, 1999, С. 78 - 87.
7. Вавилин Б.В. "Автоколебания в жидкофазных химических системах".
Природа, 2000, № 5, С. 19 - 25.
! | Как писать курсовую работу Практические советы по написанию семестровых и курсовых работ. |
! | Схема написания курсовой Из каких частей состоит курсовик. С чего начать и как правильно закончить работу. |
! | Формулировка проблемы Описываем цель курсовой, что анализируем, разрабатываем, какого результата хотим добиться. |
! | План курсовой работы Нумерованным списком описывается порядок и структура будующей работы. |
! | Введение курсовой работы Что пишется в введении, какой объем вводной части? |
! | Задачи курсовой работы Правильно начинать любую работу с постановки задач, описания того что необходимо сделать. |
! | Источники информации Какими источниками следует пользоваться. Почему не стоит доверять бесплатно скачанным работа. |
! | Заключение курсовой работы Подведение итогов проведенных мероприятий, достигнута ли цель, решена ли проблема. |
! | Оригинальность текстов Каким образом можно повысить оригинальность текстов чтобы пройти проверку антиплагиатом. |
! | Оформление курсовика Требования и методические рекомендации по оформлению работы по ГОСТ. |
→ | Разновидности курсовых Какие курсовые бывают в чем их особенности и принципиальные отличия. |
→ | Отличие курсового проекта от работы Чем принципиально отличается по структуре и подходу разработка курсового проекта. |
→ | Типичные недостатки На что чаще всего обращают внимание преподаватели и какие ошибки допускают студенты. |
→ | Защита курсовой работы Как подготовиться к защите курсовой работы и как ее провести. |
→ | Доклад на защиту Как подготовить доклад чтобы он был не скучным, интересным и информативным для преподавателя. |
→ | Оценка курсовой работы Каким образом преподаватели оценивают качества подготовленного курсовика. |
Курсовая работа | Деятельность Движения Харе Кришна в свете трансформационных процессов современности |
Курсовая работа | Маркетинговая деятельность предприятия (на примере ООО СФ "Контакт Плюс") |
Курсовая работа | Политический маркетинг |
Курсовая работа | Создание и внедрение мембранного аппарата |
Курсовая работа | Социальные услуги |
Курсовая работа | Педагогические условия нравственного воспитания младших школьников |
Курсовая работа | Деятельность социального педагога по решению проблемы злоупотребления алкоголем среди школьников |
Курсовая работа | Карибский кризис |
Курсовая работа | Сахарный диабет |
Курсовая работа | Разработка оптимизированных систем аспирации процессов переработки и дробления руд в цехе среднего и мелкого дробления Стойленского ГОКа |
Курсовая работа | Производные финансовые инструменты и их функциональная роль в экономике |
Курсовая работа | Социальное страхование |
Курсовая работа | Государственное регулирование внешнеторговой деятельности |
Курсовая работа | Процедура банкротства в целях финансового оздоровления предприятия |
Курсовая работа | Залог как мера пресечения |
Курсовая работа | Налог на доходы физических лиц |
Курсовая работа | Потребительское поведение |
Курсовая работа | Правовые основы социальной защиты беспризорных и безнадзорных детей на примере Подразделения по делам несовершеннолетних г. Тында |
Курсовая работа | Антимонопольная политика государства |
Курсовая работа | Окрашивание волос - способ "Мелирование" |
Курсовая работа | Валютная система Российской Федерации |
Курсовая работа | Экономическая теория налогообложения и налоговая политика государства |
Курсовая работа | Уголовное преследование |
Курсовая работа | Анализ эффективности использования основных фондов |
Курсовая работа | Кредитование физических лиц |