Федеральное агентство по образованию.
Государственное образовательное учреждение высшего профессионального образования.
Самарский государственный технический университет.
Кафедра: «Технология органического и нефтехимического синтеза»
Курсовой проект по дисциплине:
«Теория химических процессов органического синтеза»
Алкилирование фенола олефинами
Руководитель: доцент, к. х. н. Нестерова Т.Н.
Самара
2006 г.
1. Термодинамический анализ
При анализе процесса алкилирования фенола олефинами необходимо, прежде всего, определить какие вещества будут образовываться. В молекуле фенола существует два реакционных центра: ароматическое кольцо и гидроксильная группа. При взаимодействии алкена с ОН- группой образуются простые эфиры, которые легко могут перегруппировываться в алкилфенолы. Установлено, что алкилфенолы преимущественно образуются путем прямого алкилирования в ядро. Рассмотрим влияние гидроксильной группы в молекуле фенола на ароматическое кольцо. Заместитель характеризуется большим положительным эффектом сопряжения по сравнению с отрицательным индуктивным эффектом. Он сильно активирует орто- и пара- положения, поэтому 3-алкилфенолы будут находиться в продуктах в очень малых количествах. Процесс может пойти и дальше с образованием моно-, ди- и триалкилфенолов. Т.к. нас интересуют моно- замещенные фенолы то необходимо проводить процесс при небольшом избытке фенола.
Процесс идет через образование из алкена промежуточного карбкатиона, который является легко изомеризующейся и активной частицей. Возможно следующее: позиционная и структурная изомеризация, реакция крекинга, взаимодействие с ненасыщенными углеводородами, олигомеризация. Реакция изомеризации как правило опережает все прочие превращения, поэтому при алкилировании - олефинами получаем всевозможные изомеры. В условиях относительно нежестких протекают реакции только позиционной изомеризации.
Учитывая выше сказанное, отберем вещества, которые вероятнее всего будут находиться в равновесной смеси:
(a)- 2-(2-гидроксифенил)тетрадекан; (b)- 3-(2-гидроксифенил)тетрадекан;
(c)- 4-(2-гидроксифенил)тетрадекан; (d)- 5-(2-гидроксифенил)тетрадекан;
(i)- 6-(2-гидроксифенил)тетрадекан; (f)- 7-(2-гидроксифенил)тетрадекан;
(g)- 2-(4-гидроксифенил)тетрадекан; (h)- 3-(4-гидроксифенил)тетрадекан;
(m)- 4-(4-гидроксифенил)тетрадекан; (n)- 5-(4-гидроксифенил)тетрадекан;
(o)- 6-(4-гидроксифенил)тетрадекан; (p)- 7-(4-гидроксифенил)тетрадекан.
Выберем (n-1) независимых реакций, где n-количество образовавшихся компонентов:
ab; bc; cd; di; if; ag; gh; hm;
mn; no; op;
Запишем константы скоростей реакции:
Kxa=; Kxb=; Kxc=; Kxd=; Kxi=; Kxg=; Kxh=;
Kxm=; Kxn=; Kxo=; Kxp=.
Выразим концентрацию каждого компонента через константы реакций и концентрацию компонента g:
=; =; =; =;
=; =; =; =;
=; =; =
Для систем подчиняющихся закону Рауля можно записать для :
=== =
В свою очередь:
= - =
В термодинамическом анализе для расчета констант реакций необходимы точные данные энтальпии, энтропии, а если процесс идет в жидкой фазе, то критические параметры для расчета давления насыщенного пара, желательно, если это будут экспериментальные данные.
Энтальпии и энтропии. Метод Бенсона не даст в нашем случае точные значения. Для примера рассмотрим 2-(4-гидроксифенил)тетрадекан и 3-(4-гидроксифенил)тетрадекан. У этих веществ будут одинаковые вклады: Cb-(O)-1; Cb-(H)-4; Cb-(C)-1; O-(H,Cb)-1; CH-(2C,Cb)-1; CH2-(2C)-11; CH3-(C)-2. Поэтому =0 и =0. Исключение составит реакция (a)(g). =-9,9 кДж/моль за счет орто- взаимодействия в молекуле (a); =-Rln2 кДж/(моль·K) за счет вращения ароматического ядра в молекуле (g).
Давления насыщенного пара. Используя метод Лидерсена или Джобака можно рассчитать критические параметры, а потом и . Но вклады для всех веществ одинаковы, поэтому критические параметры равны, следовательно, равны, их можно не учитывать, =. Давление не оказывает влияние на реакцию. Применение разбавителя скажется отрицательно на скорости реакции.
Зависимость константы скорости реакции от температуры.
Kxa |
Kxb |
Kxc |
Kxd |
Kxi |
Kxg |
Kxh |
Kxm |
Kxn |
Kxo |
||
298 |
1 |
1 |
1 |
1 |
1 |
27,23829 |
1 |
1 |
1 |
1 |
|
350 |
1 |
1 |
1 |
1 |
1 |
15,03934 |
1 |
1 |
1 |
1 |
|
400 |
1 |
1 |
1 |
1 |
1 |
9,827575 |
1 |
1 |
1 |
1 |
|
450 |
1 |
1 |
1 |
1 |
1 |
7,058733 |
1 |
1 |
1 |
1 |
|
500 |
1 |
1 |
1 |
1 |
1 |
5,416903 |
1 |
1 |
1 |
1 |
|
600 |
1 |
1 |
1 |
1 |
1 |
3,641561 |
1 |
1 |
1 |
1 |
|
700 |
1 |
1 |
1 |
1 |
1 |
2,742201 |
1 |
1 |
1 |
1 |
|
800 |
1 |
1 |
1 |
1 |
1 |
2,216706 |
1 |
1 |
1 |
1 |
|
900 |
1 |
1 |
1 |
1 |
1 |
1,878661 |
1 |
1 |
1 |
1 |
|
1000 |
1 |
1 |
1 |
1 |
1 |
1,645737 |
1 |
1 |
1 |
1 |
Сумма мольных долей всех компонентов равна 0,95, т.к. реакцию проводим в избытке фенола.
Зависимость мольной доли компонентов от температуры.
Т, К |
N |
a |
b |
c |
d |
i |
f |
g |
h |
m |
n |
o |
p |
|
298 |
0,95 |
0,0056 |
0,0056 |
0,0056 |
0,0056 |
0,0056 |
0,0056 |
0,1527 |
0,1527 |
0,1527 |
0,1527 |
0,1527 |
0,1527 |
|
350 |
0,95 |
0,0099 |
0,0099 |
0,0099 |
0,0099 |
0,0099 |
0,0099 |
0,1485 |
0,1485 |
0,1485 |
0,1485 |
0,1485 |
0,1485 |
|
400 |
0,95 |
0,0146 |
0,0146 |
0,0146 |
0,0146 |
0,0146 |
0,0146 |
0,1437 |
0,1437 |
0,1437 |
0,1437 |
0,1437 |
0,1437 |
|
450 |
0,95 |
0,0196 |
0,0196 |
0,0196 |
0,0196 |
0,0196 |
0,0196 |
0,1387 |
0,1387 |
0,1387 |
0,1387 |
0,1387 |
0,1387 |
|
500 |
0,95 |
0,0247 |
0,0247 |
0,0247 |
0,0247 |
0,0247 |
0,0247 |
0,1337 |
0,1337 |
0,1337 |
0,1337 |
0,1337 |
0,1337 |
|
600 |
0,95 |
0,0341 |
0,0341 |
0,0341 |
0,0341 |
0,0341 |
0,0341 |
0,1242 |
0,1242 |
0,1242 |
0,1242 |
0,1242 |
0,1242 |
|
700 |
0,95 |
0,0423 |
0,0423 |
0,0423 |
0,0423 |
0,0423 |
0,0423 |
0,1160 |
0,1160 |
0,1160 |
0,1160 |
0,1160 |
0,1160 |
|
800 |
0,96 |
0,0497 |
0,0497 |
0,0497 |
0,0497 |
0,0497 |
0,0497 |
0,1103 |
0,1103 |
0,1103 |
0,1103 |
0,1103 |
0,1103 |
|
900 |
0,95 |
0,0550 |
0,0550 |
0,0550 |
0,0550 |
0,0550 |
0,0550 |
0,1033 |
0,1033 |
0,1033 |
0,1033 |
0,1033 |
0,1033 |
|
1000 |
0,95 |
0,0598 |
0,0598 |
0,0598 |
0,0598 |
0,0598 |
0,0598 |
0,0985 |
0,0985 |
0,0985 |
0,0985 |
0,0985 |
0,0985 |
Строим график зависимости «мольная доля - температура» для двух веществ (g) и (a), т.к. параалкилфенолы сольются в одну линию, тоже самое произойдет и с ортоалкилфенолами.
Из графика видно, что при увеличении температуры мольная доля параалкилфенолов уменьшается. Поэтому процесс следует вести при невысоких температурах.
Как правило, параалкилфенолы используется как промежуточный продукт для синтеза неионогенных поверхностно-активных веществ путем их оксиэтилирования:
Чтобы получить продукты с лучшей биохимической разлагаемостью необходим алкил с менее разветвленной цепью.
2. Адиабатический перепад температур в реакторе
(есть ошибка в расчетах энтальпии алкилфенола, реакция экзотермическая)
Рассчитаем тепловой эффект реакции и температуру смеси в конце реакции в адиабатическом реакторе. Предположим, что при алкилировании фенола тетрадеценом-1 образуется 7-(4-гидроксифенил)тетрадекан.
Количества тепла входящее в реактор складывается из тепла вносимого с фенолом и олефином. Расход фенола 1,1 моль/час, расход олефина 1 моль/час.
Qвх = =
== 141911,6 (Дж/час)
Необходимо найти температуру выходящей смеси из реактора, для этого нужно знать температуру входящей смеси. После смешения фенола и олефина их средняя температура будет равна Tвх,ср . Таким образом Qвх равно:
Qвх =
Используя программу Microsoft Excel и функцию «подбор параметров», а так же определенные ранее зависимости теплоемкости от температуры и количество тепла входящего в реактор найдем Tвх,ср.
Tвх,ср = 315,13 К, при этом = 110,45 (Дж/моль), = 328,84(Дж/моль).
Энтальпия реакции из следствия закона Гесса равна:
= - =
= - ( + )
= -229297 + (98386,5 + 227532) = 96621,5 (Дж/моль)
Реакция эндотермическая, протекает с уменьшением количества тепла во всей системе.
Предположим что степень конверсии олефина 100%.
Количество тепла, выходящее со смесью из предконтактной зоны равно:
Qвых = Qвх - Qреакции
Qвых = 141911,6 - 96621,5 = 45290,1 (Дж/час)
Так же количества тепла выходящее со смесью можно рассчитать через Tвых,ср.
Qвых =
Таким образом Tвых,ср=171,26 К.
3. Кинетика процесса
Механизм реакции:
1. Происходит протонирование олефина с образованием карбкатиона:
2. Образуется -комплекс:
3. Образуется -комплекс. Данная стадия является лимитирующей.
4. Отрыв протона от ароматического ядра:
Отделившийся протон может взаимодействовать с олефином, и процесс пойдет заново или с катализатором, тогда реакция прекратиться.
В качестве катализаторов - протонных кислот - в промышленности чаще всего применяют серную кислоту. Она является наиболее активной среди других доступных и дешевых кислот, но в то же время катализирует и побочные реакции, приводя дополнительно к сульфированию фенола и сульфированию олефина и образуя фенолсульфокислоты HOC6H4SO2OH и моноалкилсульфаты ROSO2OH, которые также участвуют в катализе процесса. С серной кислотой алкилирование н-олифинами происходит при 100-120єС. Другим катализатором, не вызывающим побочных реакций сульфирования и более мягким по своему действию, является п-толуолсульфокислота CH3C6H4SO2OH. Однако она имеет меньшую активность и большую стоимость, чем H2SO4.
С этими катализаторами алкилирование фенола протекает как гомогенная реакция по следующему уравнению:
=
Из уравнения видно, что при увеличении концентрации одного из веществ скорость реакции линейно возрастет. В производстве работают при сравнительно небольшом избытке фенола по отношению к олефину и даже при их эквимольном количестве. Если в качестве катализатора берут H2SO4, то она применяется в количестве 3-10%(масс.). Увеличение температуры положительно скажется на скорости реакции, т.к. процесс эндотермический.
4. Технология процесса
Для алкилирования фенолов применяют периодический процесс. Реакцию проводят в аппарате с мешалкой и рубашкой для обогрева паром или охлаждения водой. В него загружают фенол и катализатор, нагревают их до 90 єС, после чего при перемешивании и охлаждении подают жидкий тетрадецен-1 при температуре 25 єС(температура плавления -12,7 єС). Делают именно так потому что, если загрузить сначала катализатор с олефином, то там могут пойти реакции олиго- и полимеризации. Во второй половине реакции, наоборот, необходимо подогревать реакционную массу. Общая продолжительность операции составляет 2-4 часа. После этого реакционную массу нейтрализуют в смесителе 5%-ной щелочью, взятой в эквивалентном количестве к кислоте-катализатору, нагревая смесь острым паром. Нейтрализованный органический слой сырых алкилфенолов отделяют от водяного раствора солей и направляют на вакуум перегонку, когда отгоняется вода, остатки олефина и не превращенный фенол.
Задание №1
При окислительном аммонолизе пропилена получена реакционная масса следующего состава (% масс.): - пропилен - 18,94, нитрил акриловой кислоты - 54,85, ацетонитрил - 13,00, ацетальдегид - 1,15, пропионовый альдегид - 5,07, синильная кислота - 4,99, формальдегид - 0,80, СО2 - 1,20. Вычислить степень конверсии реагентов, селективность процесса по каждому из продуктов реакции в расчете на каждый реагент и выход на пропущенное сырье каждого из продуктов реакции в расчете на один реагент.
Решение: наиболее вероятная схема превращений при окислительном аммонолизе:
Составим таблицу распределения мол. долей исх. вещества:
Компонент |
% масс. |
М |
G |
Кол-во мол. исх. в-ва |
|||
пропилен |
аммиак |
кислород |
|||||
пропилен |
18.94 |
42.08 |
0.4501 |
b1 = 0.4501 |
0 |
0 |
|
акрилонитрил |
54.85 |
53.06 |
1.0337 |
b2 =1.0337 |
d1 =1.0337 |
0 |
|
ацетонитрил |
13.00 |
41.05 |
0.3167 |
b3 =0.3167 |
d2 =0.3167 |
0 |
|
ацетальдегид |
1.15 |
44.05 |
0.0261 |
b4 =0.0261 |
0 |
e1 =0.0261 |
|
пропионовый альдегид |
5.07 |
58.08 |
0.0873 |
b5 =0.0873 |
0 |
e2 = 0.0873 |
|
синильная кислота |
4.99 |
27.03 |
0.1846 |
b6 =0.1846 |
d3 =0.1846 |
|
|
формальдегид |
0.80 |
30.03 |
0.0266 |
b7 =0.0266 |
0 |
e3 = 0.0266 |
|
углекислый газ |
1.20 |
44.01 |
0.0273 |
b8 =0.0273 |
0 |
e4 = 0.0273 |
Степень конверсии пропилена определяется по формуле:
Степень конверсии аммиака: и кислорода .
Селективность по пропилену рассчитывается по формуле: , по аммиаку: , по кислороду: . Результаты расчетов приведены в табл. 1.
Таблица 1
Компонент |
Селективность |
|||
по пропилену |
по аммиаку |
по О2 |
||
акрилонитрил |
0.6072 |
0.6734 |
0 |
|
ацетонитрил |
0.1860 |
0.2063 |
0 |
|
ацетальдегид |
0.0153 |
0 |
0.1560 |
|
пропионовый альдегид |
0.0513 |
0 |
0.5218 |
|
синильная кислота |
0.1085 |
0.1203 |
0 |
|
формальдегид |
0.0157 |
0 |
0.1592 |
|
углекислый газ |
0.0160 |
0 |
0.1630 |
Проверка: , .
Выход на пропущенное сырье в расчете на пропилен рассчитывается по формуле: . Результаты представлены в табл. 2:
Таблица 2
Компонент |
зi |
|
акрилонитрил |
0.4802 |
|
ацетонитрил |
0.1471 |
|
ацетальдегид |
0.0121 |
|
пропионовый альдегид |
0.0406 |
|
синильная кислота |
0.0858 |
|
формальдегид |
0.0124 |
|
углекислый газ |
0.0127 |
Задание 2.
Для изомеризации н-пентана в изопентан вычислить перепад температур в зоне реакции при адиабатическом ведении процесса. Процесс протекает при давлении 1 атм. В реактор подается 10 т/час н-пентана при 650К и 25 молей водорода на 1 моль пентана при 900К. Степень конверсии н-пентана 10, 20, 50, 70%. Селективность процесса 100%. Потери тепла в окружающую среду составляют 3% от прихода тепла в реактор. Провести графическую и аналитическую зависимости адиабатического перепада температур от степени конверсии н-пентана. Аргументировать технологические приемы, используемые при осуществлении промышленной изомеризации углеводородов.
Решение: Схема реакции представлена на рис. 1:
Рис. 1. Изомеризация н-пентана.
Схема реактора представлена на рис. 2.
Рис. 2. Схема теплового баланса реактора.
Тепло, входящее в реактор, определяется по формуле:
, (1) здесь:
,
,
- определено для Т = 650К из полиномного уравнения, полученного по табличным данным;
определено для Твх из полиномного уравнения для Ср н-пентана с помощью функции «Поиск решения» программы «Microsoft Excel»;
- для 900К определено по табличным данным;
- определено для Твх из полиномного уравнения для Ср воды с помощью функции «Поиск решения» программы «Microsoft Excel»;
, ,
С помощью функции «Поиск решения» программы «Microsoft Excel» методом наименьших квадратов определено значение Твх = 685К.
Энтальпия реакции при данной Твх:
Теплота реакции определяется величиной энтальпии реакции, массового расхода реагента, степенью конверсии реагента.
Рассмотрим пример, когда степень конверсии .
,
Согласно уравнению теплового баланса:
.
Здесь: ,
- определено для Твых из полиномного уравнения с помощью функции «Поиск решения» программы «Microsoft Excel»;
,
- определено для Твых из полиномного уравнения для Ср н-пентана с помощью функции «Поиск решения» программы «Microsoft Excel»;
,
- определено для Твых из полиномного уравнения для Ср и-пентана с помощью функции «Поиск решения» программы «Microsoft Excel»;
С помощью функции «Поиск решения» программы «Microsoft Excel» методом наименьших квадратов определено значение Твых = 687К.
Аналогично определяем значения Твых для различных значений степени конверсии. Полученные значения представлены в таблице 3.
Таблица 3
б |
Твых |
|
0,1 |
662 |
|
0,2 |
663 |
|
0,5 |
667 |
|
0,7 |
669 |
Графическая зависимость перепада температур на входе и выходе от степени конверсии представлена на рисунке 3.
Рис. 3. Зависимость адиабатического перепада температур от степени конверсии.
При увеличении степени конверсии перепад температур в зоне реакции линейно уменьшается.
! | Как писать курсовую работу Практические советы по написанию семестровых и курсовых работ. |
! | Схема написания курсовой Из каких частей состоит курсовик. С чего начать и как правильно закончить работу. |
! | Формулировка проблемы Описываем цель курсовой, что анализируем, разрабатываем, какого результата хотим добиться. |
! | План курсовой работы Нумерованным списком описывается порядок и структура будующей работы. |
! | Введение курсовой работы Что пишется в введении, какой объем вводной части? |
! | Задачи курсовой работы Правильно начинать любую работу с постановки задач, описания того что необходимо сделать. |
! | Источники информации Какими источниками следует пользоваться. Почему не стоит доверять бесплатно скачанным работа. |
! | Заключение курсовой работы Подведение итогов проведенных мероприятий, достигнута ли цель, решена ли проблема. |
! | Оригинальность текстов Каким образом можно повысить оригинальность текстов чтобы пройти проверку антиплагиатом. |
! | Оформление курсовика Требования и методические рекомендации по оформлению работы по ГОСТ. |
→ | Разновидности курсовых Какие курсовые бывают в чем их особенности и принципиальные отличия. |
→ | Отличие курсового проекта от работы Чем принципиально отличается по структуре и подходу разработка курсового проекта. |
→ | Типичные недостатки На что чаще всего обращают внимание преподаватели и какие ошибки допускают студенты. |
→ | Защита курсовой работы Как подготовиться к защите курсовой работы и как ее провести. |
→ | Доклад на защиту Как подготовить доклад чтобы он был не скучным, интересным и информативным для преподавателя. |
→ | Оценка курсовой работы Каким образом преподаватели оценивают качества подготовленного курсовика. |
Курсовая работа | Деятельность Движения Харе Кришна в свете трансформационных процессов современности |
Курсовая работа | Маркетинговая деятельность предприятия (на примере ООО СФ "Контакт Плюс") |
Курсовая работа | Политический маркетинг |
Курсовая работа | Создание и внедрение мембранного аппарата |
Курсовая работа | Социальные услуги |
Курсовая работа | Педагогические условия нравственного воспитания младших школьников |
Курсовая работа | Деятельность социального педагога по решению проблемы злоупотребления алкоголем среди школьников |
Курсовая работа | Карибский кризис |
Курсовая работа | Сахарный диабет |
Курсовая работа | Разработка оптимизированных систем аспирации процессов переработки и дробления руд в цехе среднего и мелкого дробления Стойленского ГОКа |
Курсовая работа | Управление конфликтами в организации |
Курсовая работа | Анализ эффективного использования материальных ресурсов |
Курсовая работа | Организация управления малым предприятием |
Курсовая работа | Финансовое планирование на предприятии |
Курсовая работа | Педагогические условия организации самостоятельной работы учащихся |
Курсовая работа | Банкротство (несостоятельность) юридических лиц |
Курсовая работа | Анализ производства продукции растениеводства |
Курсовая работа | Оценка производственных мощностей предприятия |
Курсовая работа | Реструктуризация предприятия |
Курсовая работа | Институциональное направление в экономике |
Курсовая работа | ОТВЕТСТВЕННОСТЬ ЗА КРАЖУ ПО УК РФ |
Курсовая работа | Стратегическое управление организацией на примере ОАО "РЖД" |
Курсовая работа | Анализ финансового состояния предприятия |
Курсовая работа | Негосударственные пенсионные фонды в РФ. Современное состояние. Перспективы развития |
Курсовая работа | Организация и развитие складского хозяйства оптового предприятия |