Оглавление
Введение
1. Внешние магнитные носители
1.1 Накопители на магнитной ленте
1.2 Накопители прямого доступа
1.3 Принципы работы накопителя на сменных магнитных дисках
1.4 Накопитель на гибких магнитных дисках
1.5 Накопитель на жестком магнитном диске (винчестер)
2. Современные внешние запоминающие устройства
2.1 Устройство чтения компакт-дисков (CD-ROM)
2.2 DVD
2.3 Blu-ray Disc
2.4 Карты памяти
2.5 Другие устройства накопления и хранения информации
Заключение
Список используемых источников
Введение
Внешняя память предназначена для долговременного хранения программ и данных. Устройства внешней памяти (накопители) являются энергонезависимыми, выключение питания не приводит к потере данных. Они могут быть встроены в системный блок или выполнены в виде самостоятельных блоков, связанных с системным через его порты. Одной из определяющих характеристикой внешней памяти является ее объем. Объем внешней памяти можно увеличивать, добавляя новые накопители. Не менее важными характеристиками внешней памяти являются время доступа к информации и скорость обмена информацией. Эти параметры зависят от устройства считывания информации и организации типа доступа к ней.
Актуальность темы исследования обоснована эволюционным переходом к информационному обществу.
Целью предпринятого исследования является исследование организации памяти, возможностей по увеличению ее объемов, скорости обмена информацией.
Для реализации поставленной цели необходимо решить ряд взаимообусловленных задач:
- исследовать основные технологии организации систем долговременного хранения информации.
- провести анализ технических характеристик устройств
Объектом исследования являются внешние запоминающие устройства.
По типу доступа к информации устройства внешней памяти делятся на два класса: устройства прямого (произвольного) доступа и устройства последовательного доступа. При прямом (произвольном) доступе время доступа к информации не зависит от ее места расположения на носителе. При последовательном доступе время доступа зависит от местоположения информации.
Скорость обмена информацией зависит от скорости ее считывания или записи на носитель, что определяется, в свою очередь, скоростью вращения или перемещения этого носителя в устройстве.
Внешняя (долговременная) память - это место хранения данных, не используемых в данный момент в памяти компьютера.
Устройства внешней памяти - это, прежде всего, магнитные устройства для хранения информации.
По способу записи и чтения накопители делятся, в зависимости от вида носителя, на магнитные, оптические и магнитооптические.
Это устройство использовали в качестве носителя информации гибкие магнитные диски - дискеты, которые могут быть 5-ти или 3-х дюймовыми. Дискета - это магнитный диск вроде пластинки, помещенный в картонный конверт. В зависимости от размера дискеты изменяется ее емкость в байтах. Если на стандартную дискету размером 525 дюйма помещается до 720 Кбайт информации, то на дискету 35 дюйма уже 1,44 Мбайта. Дискеты универсальны, подходят на любой компьютер того же класса оснащенный дисководом, могут служить для хранения, накопления, распространения и обработки информации. Дисковод - устройство параллельного доступа, поэтому все файлы одинаково легко доступны. Ранее дискеты применялись в основном для резервирования небольших объемов данных и для распространения информации. В настоящее время не используются. Дискеты морально устарели. Наибольшим распространением из накопителей на гибких магнитных дисках пользовалась дискета 35 дюйма или флоппи-диски (floppy disk).
Диск покрывался сверху специальным магнитным слоем, который обеспечивал хранение данных. Информация записывалась с двух сторон диска по дорожкам, которые представляли собой концентрические окружности. Каждая дорожка разделялась на секторы. Плотность записи данных зависит от плотности нанесения дорожек на поверхность, т. е. числа дорожек на поверхности диска, а также от плотности записи информации вдоль дорожки.
Если при покупке на поверхность диска не нанесены дорожки и секторы, то его нужно было подготовить для записи данных, отформатировать. Для этого в состав системного программного обеспечения включена специальная программа, которая производит форматирование диска.
К недостаткам относятся маленькая емкость, что делает практически невозможным долгосрочное хранение больших объемов информации, и не очень высокая надежность самих дискет.
1.5 Накопитель на жестком магнитном диске (НЖМД - винчестер). История развития накопителей на жестком магнитном диске
- 1956 -- продажа первого коммерческого жёсткого диска, IBM 350 RAMAC, 5 Мб. Он весил около тонны, занимал два ящика -- каждый размером с большой холодильник, а общий объем памяти 50 вращавшихся в нем покрытых чистым железом тонких дисков диаметром с большую пиццу составлял 5 мегабайт
- 1980 -- первый 5,25-дюймовый Winchester, Shugart ST-506, 5 Мб
- 1986-- Стандарт SCSI
- 1991 -- Максимальная ёмкость 100 Мб
- 1995 -- Максимальная ёмкость 2 Гб
- 1997 -- Максимальная ёмкость 10 Гб
- 1998 -- Стандарты UDMA/33 и ATAPI
- 1999 -- IBM выпускает Microdrive ёмкостью 170 и 340 Мб
- 2002 -- Взят барьер адресного пространства выше 137 Гб (проблема 48-bit LBA)
- 2003 -- Появление SATA
- 2005 -- Максимальная ёмкость 500 Гб
- 2005 -- Стандарт Serial ATA 3G
- 2005 -- Появление SAS (Serial Attached SCSI)
- 2006 -- Применение перпендикулярного метода записи в коммерческих накопителях
- 2006 -- Появление «гибридных» жёстких дисков, содержащих дополнительный блок флэш-памяти
- 2007 -- Hitachi представляет накопитель ёмкостью 1 Тб
- 2008 - WD VelociRaptor 300GB: самый быстрый HDD с интерфейсом SATA
- 2009 - Hitachi к 2009 году создаст HDD объемом 4 терабайта
Накопи?тель на жёстких магни?тных ди?сках, жёсткий диск, хард, харддиск, HDD, HMDD или винче?стер, (англ. Hard (Magnetic) Disk Drive, HDD, HMDD) -- энергонезависимое, перезаписываемое компьютерное запоминающее устройство. Является основным накопителем данных практически во всех современных компьютерах.
В отличие от «гибкого» диска (дискеты), информация в НЖМД записывается на жёсткие (алюминиевые или стеклянные) пластины, покрытые слоем ферромагнитного материала, чаще всего двуокиси хрома. В некоторых НЖМД используется одна пластина, в других -- несколько на одной оси. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образуемого у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров (в современных дисках 5-10 нм), а отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков, головки находятся у шпинделя или за пределами диска в безопасной зоне, где исключён их нештатный контакт с поверхностью дисков.
Ёмкость современных устройств достигает 1000 Гб. В отличие от принятой в информатике (случайно) системе приставок, обозначающих кратную 1024 величину, производителями при обозначении ёмкости жёстких дисков используются кратные 1000 величины. Так, напр., «настоящая» ёмкость жёсткого диска, маркированного как «200 Гб», составляет 186,2 ГиБ. Кроме того, часть производителей указывают неформатированную ёмкость (вместе со служебной информацией), что делает ещё большим «зазор» между заявленными «200 Гб» и реальными 160 ГиБ.
Физический размер (форм-фактор) -- почти все современные накопители для персональных компьютеров и серверов имеют размер либо 3,5, либо 2,5 дюйма. Последние чаще применяются в ноутбуках. Получили распространение форматы -- 1,8 дюйма, 1,3 дюйма и 0,85 дюйма. Прекращено производство накопителей в формфакторе 5,25 дюймов.
Время произвольного доступа -- от 3 до 15 мс, как правило, минимальным временем обладают серверные диски (например, у Hitachi Ultrastar 15K147 -- 3,7 мс), самым большим из актуальных -- диски для портативных устройств (Seagate Momentus 5400.3 -- 12,5).
Надёжность определяется как среднее время наработки на отказ (Mean Time Between Failures, MTBF). Технология SMART (S.M.A.R.T. (англ. Self Monitoring Analysing and Reporting Technology) -- технология оценки состояния жёсткого диска встроенной аппаратурой самодиагностики, а также механизм предсказания времени выхода его из строя.)
Количество операций ввода-вывода в секунду -- у современных дисков это около 50 оп./сек при произвольном доступе к накопителю и около 100 оп./сек при последовательном доступе.
Уровень шума -- шум, который производит механика накопителя при его работе. Указывается в децибеллах. Тихими накопителями считаются устройства с уровнем шума около 26 дБ и ниже. Шум состоит из шума вращения шпинделя (в том числе аэродинамического) и шума позиционирования.
Сопротивляемость ударам (англ. G-shock rating) -- сопротивляемость накопителя резким скачкам давления или ударам, измеряется в единицах допустимой перегрузки во включённом и выключенном состоянии.
Скорость передачи данных (англ. Transfer Rate):
· Внутренняя зона диска: от 44,2 до 74,5 Мб/с
· Внешняя зона диска: от 60,0 до 111,4 Мб/с
Жёсткий диск состоит из следующих основных узлов: корпус из прочного сплава, собственно жесткие диски (пластины) с магнитным покрытием, блок головок с устройством позиционирования, электропривод шпинделя и блок электроники.
Вопреки расхожему мнению, жесткие диски не герметичны, внутренняя полость жесткого диска сообщается с атмосферой через фильтр, способный задерживать очень мелкие (несколько мкм) частицы. Это необходимо для поддержания постоянного давления внутри диска при колебаниях температуры корпуса.
Пылинки, оказавшиеся при сборке в жёстком диске и попавшие на поверхность диска, при вращении сносятся на ещё один фильтр -- пылеуловитель.
В ранних жёстких дисках управляющая логика была вынесена на MFM или RLL контроллер компьютера, а плата электроники содержала только модули аналоговой обработки и управление шпиндельным двигателем, позиционером и коммутатором головок. Увеличение скоростей передачи данных вынудило разработчиков уменьшить до предела длину аналогового тракта, и в современных жёстких дисках блок электроники обычно содержит: управляющий блок, постоянное запоминающее устройство (ПЗУ), буферную память, интерфейсный блок и блок цифровой обработки сигнала.
Интерфейсный блок обеспечивает сопряжение электроники жесткого диска с остальной системой.
Блок ПЗУ хранит управляющие программы для блоков управления и цифровой обработки сигнала, а также служебную информацию винчестера.
Буферная память сглаживает разницу скоростей интерфейсной части и накопителя (используется быстродействующая статическая память). Увеличение размера буферной памяти позволяет увеличить скорость работы накопителя.
Интерфейс -- набор, состоящий из линий связи, сигналов, посылаемых по этим линиям, технических средств, поддерживающих эти линии, и правил обмена. Современные накопители могут использовать интерфейсы АТА (AT Attachment, он же IDE -- Integrated Drive Electronic, он же Parallel ATA), (EIDE), Serial; ATA, SCSI (Small Computer System Interface), SAS, FireWire, USB, SDIO и Fibre Channel.
Проблема увеличения объема диска
Для того, чтобы при сохранении физического размера диска (еще лучше - его уменьшения) на него записывать больше информации необходимо увеличивать плотность записи данных на диск.
С 1997 года в среднем производители жестких дисков увеличивали плотность записи вдвое каждый год.
До сих пор покрытие дисков состояло из сплава кобальта, платины, хрома и бора. Это ферромагнитный сплав, который состоит из частиц, способных под воздействием внешнего магнитного поля записывающей головки менять свои магнитные свойства, например, магнитные полюса. Для увеличения плотности записи эти частицы должны становиться мельче, а магнитный слой - тоньше. Но физическая природа этих частиц не позволяет уменьшать их размер бесконечно, т.к. на магнитные свойства малых частиц уже влияет не только магнитное поле, но и температура - при нагревании диска с него может теряться информация.
Эту проблему пытались решать двумя способами - создавали технологии обработки и улучшения качества сигнала, полученного магнитными головками и создавали сплавы более устойчивые к внешним воздействиям на частицы. Но такие сплавы требуют более мощные головки записи, что приводит к увеличению энергозатрат и нагреванию диска.
2. Современные внешние запоминающие устройства
Из-за того, что плотность записи существенно возросла, а длина волны стала меньше, изменились и требования к защитному слою - для DVD он составляет 0,6 мм против 1,2 мм у обычных CD. Естественно, что диск такой толщины будет значительно более хрупким, по сравнению с классической болванкой.
Поэтому еще 0,6 мм обычно заливаются пластиком с двух сторон, чтобы получились те же 1,2 мм. Но самое главное преимущество такого защитного слоя в том, что благодаря его малому размеру на одном компакте стало возможным записывать информацию с двух сторон, то есть удваивать его емкость, при этом оставляя размеры практически прежними.
Емкость DVD
Существует пять разновидностей DVD-дисков:
1. DVD5 - однослойный односторонний диск, 4,7 Гб, или два часа видео;
2. DVD9 - двухслойный односторонний диск, 8,5 Гб, или четыре часа видео;
3. DVD10 - однослойный двухсторонний диск, 9,4 Гб, или 4,5 часа видео;
4. DVD14 - двухсторонний диск, два слоя на одной и один на другой стороне, 13,24 Гб, или 6,5 часов видео;
5. DVD18 - двухслойный двухсторонний диск, 17 Гб, или более восьми часов видео.
Последний вариант, DVD18, из-за слишком дорогой и сложной технологии производства в природе встречается очень редко. Самые популярные стандарты - DVD5 и DVD9.
Возможности
Ситуация с DVD-носителями сейчас напоминает аналогичную с CD, на которых долгое время тоже хранили только музыку. Сейчас можно встретить не только фильмы, но и музыку (так называемые DVD-Audio) и сборники софта (в основном, демонстрационные версии, которые занимают на болванке совсем небольшой кусочек места и выпускаются на DVD только из соображений престижа). Естественно, что основной областью использования является кинопродукция.
Разработчикам софта и игр пока что не нужны все возможности DVD, но в скором будущем ситуация будет меняться.
Механические повреждения
К механическим повреждениям диски CD и DVD одинаково чувствительны. Однако из-за гораздо более высокой плотности записи потери на DVD-диске будут более значительными (плотность данных намного больше).
Защита от копирования
Кроме региональной защиты, есть еще одна - все содержимое DVD-диска шифруется, чтобы его нельзя было воспроизвести после копирования. А ключ состоит из двух частей: первая часть - это ключ, хранящийся на самом диске (всего их хранится около 400, и только один является подходящим), а вторая находится в памяти своего проигрывателя
И сейчас есть программы, которые позволяют расшифровывать содержимое DVD. Есть и программы, позволяющие сразу создавать образ диска для его дальнейшего копирования.
2.3 Blu-ray Disc
Однослойный диск Blu-ray (BD) может хранить 23.3, 25, 27 или 33 Гб, двухслойный диск может вместить 46,6, 50, или 54 Гб. Также в разработке находятся диски вместимостью 100 Гб и 200 Гб с использованием соответственно четырёх и шести слоёв. В дополнение к стандартным дискам размером 120 мм, выпущены варианты дисков размером 80 мм для использования в цифровых фото- и видеокамерах. Планируется, что их объём будет достигать 15 Гб для двухслойного варианта.
Физический размер |
Однослойная вместимость |
Двухслойная вместимость |
|
120 мм |
23.3/25/27 Гб |
46.6/50/54 Гб |
|
80 мм |
7.8 Гб |
15.6 Гб |
Технические детали
Лазер и оптика
В технологии Blu-ray для чтения и записи используется сине-фиолетовый лазер с длиной волны 405 нм. Обычные DVD и CD используют красный и инфракрасный лазеры с длиной волны 650 нм и 780 нм соответственно.
Такое уменьшение позволило сузить дорожку вдвое по сравнению с обычным DVD-диском -- до 0,32 микрон -- и увеличить плотность записи данных.
Более короткая длина волны сине-фиолетового лазера позволяет хранить больше информации на 12 см дисках того же размера, что и у CD/DVD, скорость считывания до 432 Мбит/c.
Из-за того, что на дисках Blu-Ray данные расположены слишком близко к поверхности, первые версии дисков были крайне чувствительны к царапинам и прочим внешним механическим воздействиям из-за чего они были заключены в пластиковые картриджи. Этот недостаток вызывал большие сомнения относительно того, сможет ли формат Blu-ray противостоять стандарту HD DVD-- своему основному конкуренту. HD DVD помимо своей более низкой стоимости может нормально существовать без картриджей, также как форматы DVD и CD, что делает его более понятным для покупателей, а также более интересным для производителей и дистрибьюторов, которые могут быть обеспокоены дополнительными затратами из-за картриджей.
В формате Blu-ray применен экспериментальный элемент защиты под названием BD+, который позволяет динамически изменять схему шифрования. Стоит шифрованию быть сломанным производители могут обновить схему шифрования, и все последующие копии будут защищены уже новой схемой. Таким образом, единичный взлом шифра не позволит скомпрометировать всю спецификацию на весь период её жизни. Все Blu-ray проигрыватели смогут выдавать полноценный видеосигнал только через защищённый шифрованием интерфейс.
2.4 Карты памяти
Наиболее распространенные типы карт памяти:
CompactFlash (CF), MultiMeda Card, SD Card, Memory Stick, SmartMedia, xD-Picture Card, PC-Card (PCMCIA или ATA-Flash). Существуют и другие портативные форм-факторы флэш-памяти, однако встречаются они намного реже перечисленных.
Флэш-карты бывают двух типов: с параллельным (parallel) и с последовательным (serial) интерфейсом.
Параллельный:
· PC-Card (PCMCIA или ATA-Flash)
· CompactFlash (CF)
· SmartMedia (SSFDC)
Последовательный:
· MultiMedia Card (MMC)
· SD-Card (Secure Digital - Card)
· Sony Memory Stick
Самым старым и самым большим по размеру следует признать PC Card (ранее этот тип карт назывался PCMCIA [Personal Computer Memory Card International Association]). Карта снабжена ATA контроллером. Благодаря этому обеспечивается эмуляция обычного жесткого диска. В настоящее время флэш-память этого типа используется редко. PC Card бывает объемом до 2GB. Существует три типа PC Card ATA (I, II и III). Все они отличаются толщиной (3,3 5,0 и 10,5 мм соответственно). Все три типа обратно совместимы между собой (в более толстом разъеме всегда можно использовать более тонкую карту, поскольку толщина разъема у всех типов одинакова - 3,3 мм). Питание карт - 3,3В и 5В. ATA-flash как правило относится к форм фактору PCMCIA Type I.
Тип |
Длина |
Ширина |
Толщина |
Использование |
|
Type I |
85,6 мм |
54 мм |
3,3 мм |
Память (SRAM, DRAM, Flash и т. д) |
|
Type II |
85,6 мм |
54 мм |
5 мм |
Память, устройства ввода-вывода (модемы, сетевые карты и т. д) |
|
Type III |
85,6 мм |
54 мм |
10,5 мм |
Устройства хранения данных, жёсткие диски |
Конструкция карт CompactFlash обеспечивает эмуляцию жёсткого диска с АТА интерфейсом. Разъёмы Compact Flash расположены на торце карты, электрически и функционально повторяя назначение контактов PCMCIA. Карты Compact Flash поддерживают два напряжения: 3.3В и 5В, любая карта
SmartMedia (SSFDC - Solid State Floppy Disk Card) 8 из 22-х контактов карты используются для передачи данных, остальные используются для питания микросхемы, управления и несут на себе другие вспомогательные функции.
Толщина карты всего лишь 0,76мм.
SmartMedia - единственный формат флэш-карт, не имеющий встроенного контроллера.
На карте имеется специальное углубление (в форме кружочка). Если в это место приклеить соответствующей формы токопроводящий стикер, то карта будет защищена от записи.
По сравнению с другими картами флэш-памяти, в которых используется полупроводниковая память, размещённая на печатной плате вместе с контроллером и другими компонентами, SmartMedia устроена очень просто. xD-Picture Card - XD следует расшифровывать как eXtreme Digital. Теоретически емкость карт xD может достигать 8ГБ.
Сообщается, что скорость записи данных на xD будет достигать 3 Мбайт/с, а скорость чтения - 5 Мбайт/с.
Размеры карты: 20 х 25 х 1,7 мм. Контакты у XD расположены, так же как и у SmartMedia, на лицевой части карты. Карта разработана в качестве замены SmartMedia и продается по сравнимой со SmartMedia цене (возможно, из-за отсутствия встроенного контроллера), благо чипы для xD-Picture Card производятся Toshiba. Теоретический предел емкости - 8GB.
Карты MMC содержат 7 контактов, реально из которых используется 6, а седьмой формально считается зарезервированным на будущее. По стандарту MMC способна работать на частотах до 20МГц. Карточка состоит из пластиковой оболочки и печатной платы, на которой расположена микросхема памяти, микроконтроллер и разведены контакты.
MultiMedia Card работает с напряжением 2.0В - 3.6В, однако спецификацией предусматриваются карты с пониженным энергопотреблением - Low Voltage MMC (напряжение 1.6В - 3.6В).
Стандарт SPI определяет только разводку, а не весь протокол передачи данных. По этой причине в MMC SPI используется подмножество команд протокола MMC. Режим SPI предназначен для использования в устройствах, которые используют небольшое количество карт памяти (обычно одну). преимущество использования режима SPI состоит в возможности использования уже готовых решений, уменьшая затраты на разработку до минимума. Недостаток состоит в потере производительности на SPI системах, по сравнению с MMC.
SD-Card работает с напряжением 2,0В - 3,6В, однако спецификацией предусматриваются SDLV-карты (SD Low Voltage) с пониженным энергопотреблением (напряжение 1,6В - 3,6В), кроме того, спецификацией предусмотрены карты толщиной 1,4мм, без переключателя защиты от записи.
Фактически карточки SD являются дальнейшим развитием стандарта MMC. Флэш-карты SD обратно совместимы с MMC (в устройство с разъемом SD можно вставить MMC, но не наоборот).
Особенных технических инноваций в MemoryStick не заметно, разве что переключатель защиты от записи (Write Protection Switch) выполнен действительно грамотно, да контакты хорошо упрятали.
На питание у MemoryStick отведено 4 из 10 контактов, еще 2 контакта зарезервированы, один контакт используется для передачи данных и команд, один для синхронизации, один для сигнализации состояния шины (может находиться в 4-х состояниях), а один для определения того, вставлена карта, или нет. Карта работает в полудуплексном режиме. Максимальная частота, на которой может работать карта - 20МГц.
Зарезервированные контакты (по непроверенным данным) используются в устройствах на базе интерфейса MemoryStick.
Кроме вышеперечисленных форм-факторов флэш-памяти, флэш так же бывает в виде модулей SIMM и DIMM. Такие модули часто используются в факсимильных аппаратах, принтерах, и т.п.
Часто можно встретить флэш-память в виде устройств, заменяющих обычные жёсткие диски (Disk On Module (DOM)-накопители). Такие накопители имеют стандартный интерфейс IDE и используются в устройствах, работающих в экстремальных условиях (повышенная тряска, пыль и т.п.) - там, где обычные жесткие диски, по тем, или иным причинам применять не желательно.
Для переноса данных удобно использовать накопители с интерфейсом USB -
новый тип внешнего носителя информации для компьютера, появившийся благодаря широкому распространению интерфейса USB (универсальной шины) и преимуществам микросхем Flash памяти. Достаточно большая емкость при небольших размерах, энергонезависимость, высокая скорость передачи информации, защищённость от механических и электромагнитных воздействий, возможность использования на любом компьютере - всё это позволило USB Flash Drive заменить или успешно конкурировать со всеми существовавшими ранее носителями информации.
Флэш-память наиболее известна применением в USB флэш-носителях. В основном применяется NAND тип памяти, которая подключается через USB по интерфейсу USB. Данный интерфейс поддерживается всеми ОС современных версий.
Благодаря большой скорости, объёму и компактным размерам USB флэш-носители полностью вытеснили с рынка дискеты.
Они компактны, лёгко перезаписывают файлы и имеют большой объём памяти (от 32 Мб до 128 Гб).
Сейчас активно рассматривается возможность замены жёстких дисков на флэш_память. В результате компьютер будет включаться мгновенно, а отсутствие движущихся деталей увеличит срок службы. Распространение ограничивает высокая цена за Гб и меньший срок годности, чем у жёстких дисков из-за ограниченного количества циклов записи.
2.5 Другие устройства накопления и хранения информации
Кроме вышеперечисленных основных устройств накопления и хранения информации существуют некоторые другие, по разным причинам менее популярные.
К таким устройствам относятся:
- магнитооптические диски;
- бернулли-диски;
- устройства резервирования данных;
- некоторые другие устройства.
Все эти устройства имеют разные емкости, скорости доступа к информации, свои минусы и плюсы, а также разную цену. У них есть свои ограничения, но есть и несомненные достоинства. Одно у них всех есть общее - эти устройства были созданы для хранения, накопления и резервирования данных.
Заключение
Таким образом в ходе работы удалось:
1. исследовать основные технологии организации систем долговременного хранения информации.
2. провести анализ технических характеристик устройств
В ходе исследования были проанализированы технические характеристики внешних запоминающих устройств, начиная от накопителей на магнитных лентах и заканчивая самыми современными ВЗУ на сегодняшний день - Blu-ray Disc, которые являются наиболее перспективными в наши дни. Широкое использование современных ВЗУ говорит об их приемлемой цене за 1 Гб памяти, что делает их все более доступными для российского покупателя, говорит об удобстве эксплуатации, транспортизации. Одним из наиболее интересных и приковывающих к себе внимание ВЗУ является жесткий диск, который, располагаясь внутри компьютера, одновременно является внешним запоминающим устройством. Современные технологии записи информации продолжают стремительно развиваться. Особенно в последние годы. Прогресс движется в сторону увеличения ёмкости, увеличения скорости и надёжности систем сохранения информации. Те решения, которые ещё вчера были приемлемы только для серверов, сегодня становятся нормальными для обычных домашних рабочих станций или даже с трудом удовлетворяющими их потребностям. Это вполне нормально, т.к. производительность процессоров стремительно растет, а программы наделяются всё большими и большими способностями. Всё это сопровождается постоянным снижением цен, что делает новейшую технику сравнительно доступной.
Хотя технология устройств DVD с перезаписью воспринимается как следующий "большой скачок", на горизонте уже появились другие технологии. Например, технология записи с близким расположением головки к поверхности обещает достижение высокой плотности записи -- до 20 Гбайт данных на диск со временем доступа 15 мс, что почти соответствует быстродействию жестких дисков.
Из всего этого можно извлечь следующий урок: рынок оптических устройств хранения данных всегда будет находиться в состоянии изменения, а каждые 4--5 лет нас ожидает радикальная смена технологий. Таким образом, с точки зрения покупателей, оптические запоминающие устройства не отличаются от любой другой компьютерной технологии, и разобраться в них будет не сложнее, но и не легче.
Список используемых источников:
1. www.5ballov.ru.
2. www.Wikipedia.org
3.Журнал “Хакер” №10(70) за окт. 2004г.
4. Журнал «MegaPlus», 2007 г.
5. Журнал «CHIP», январь 2008 г.
6. Журнал «КомпьютерПресс», март 2008 г.
7. Журнал «КомпьютерПресс», апрель 2008 г.
8. Журнал «PC World» №4, 2008 г.
9. Леонтьев В.П. Новейшая энциклопедия персонального компьютера 2003. - М.: ОЛМА-ПРЕСС, 2003
10. Глушаков С.В. «Персональный компьютер» 2007. - Издательство «АСТ»
11. «Энциклопедия персонального компьютера», 2008 г.
! | Как писать курсовую работу Практические советы по написанию семестровых и курсовых работ. |
! | Схема написания курсовой Из каких частей состоит курсовик. С чего начать и как правильно закончить работу. |
! | Формулировка проблемы Описываем цель курсовой, что анализируем, разрабатываем, какого результата хотим добиться. |
! | План курсовой работы Нумерованным списком описывается порядок и структура будующей работы. |
! | Введение курсовой работы Что пишется в введении, какой объем вводной части? |
! | Задачи курсовой работы Правильно начинать любую работу с постановки задач, описания того что необходимо сделать. |
! | Источники информации Какими источниками следует пользоваться. Почему не стоит доверять бесплатно скачанным работа. |
! | Заключение курсовой работы Подведение итогов проведенных мероприятий, достигнута ли цель, решена ли проблема. |
! | Оригинальность текстов Каким образом можно повысить оригинальность текстов чтобы пройти проверку антиплагиатом. |
! | Оформление курсовика Требования и методические рекомендации по оформлению работы по ГОСТ. |
→ | Разновидности курсовых Какие курсовые бывают в чем их особенности и принципиальные отличия. |
→ | Отличие курсового проекта от работы Чем принципиально отличается по структуре и подходу разработка курсового проекта. |
→ | Типичные недостатки На что чаще всего обращают внимание преподаватели и какие ошибки допускают студенты. |
→ | Защита курсовой работы Как подготовиться к защите курсовой работы и как ее провести. |
→ | Доклад на защиту Как подготовить доклад чтобы он был не скучным, интересным и информативным для преподавателя. |
→ | Оценка курсовой работы Каким образом преподаватели оценивают качества подготовленного курсовика. |
Курсовая работа | Деятельность Движения Харе Кришна в свете трансформационных процессов современности |
Курсовая работа | Маркетинговая деятельность предприятия (на примере ООО СФ "Контакт Плюс") |
Курсовая работа | Политический маркетинг |
Курсовая работа | Создание и внедрение мембранного аппарата |
Курсовая работа | Социальные услуги |
Курсовая работа | Педагогические условия нравственного воспитания младших школьников |
Курсовая работа | Деятельность социального педагога по решению проблемы злоупотребления алкоголем среди школьников |
Курсовая работа | Карибский кризис |
Курсовая работа | Сахарный диабет |
Курсовая работа | Разработка оптимизированных систем аспирации процессов переработки и дробления руд в цехе среднего и мелкого дробления Стойленского ГОКа |