Содержание
Введение
Общая часть
Характеристика объекта
Определение количества потребителей теплоты. График годового расхода теплоты
Система и принципиальная схема теплоснабжения
Расчет тепловой схемы котельной
Выбор оборудования котельной
Подбор и размещение основного и вспомогательного оборудования
Тепловой расчет котлоагрегата
Аэродинамический расчет теплодутьевого тракта
Спецчасть.
2. Разработка блочной системы подогревателей.
2.1 Исходные данные водоснабжения
2.2 Выбор схемы приготовления воды
2.3 Расчет оборудования водоподогревательной установки
2.4 Расчет сетевой установки
3. Технико-экономическая часть
3.1 Исходные данные
3.2 Расчет договорной стоимости строительно-монтажных работ
3.3 Определение годовых эксплуатационных расходов
3.4 Определение годового экономического эффекта
4. ТМЗР
Монтаж секционных водонагревателей
5. Автоматика
Автоматическое регулирование и теплотехнический контроль котлоагрегата КЕ-25-14с
6. Охрана труда в строительстве
6.1 Охрана труда при монтаже энергетического и технологического оборудования в котельной
6.2 Анализ и предотвращение появления потенциальных опасностей
6.3 Расчет стропов
7. Организация, планирование и управление строительством
7.1 Монтаж котлоагрегатов
7.2 Условия начала производства работ
7.3 Производственная калькуляция затрат труда и заработной платы
7.4 Расчет параметров календарного плана
7.5 Организация стройгенплана
7.6 Расчет технико-экономических показателей
8. Организация эксплуатации и энергоресурсосбережения
Список использованной литературы
Введение.
В наше сложное время, с больной кризисной экономикой строительство новых промышленных объектов сопряжено с большими трудностями, если вообще строительство возможно. Но в любое время, при любой экономической ситуации существует целый ряд отраслей промышленности без развития которых невозможно нормальное функционирование народного хозяйства, невозможно обеспечение необходимых санитарно-гигиенических условий населения. К таким отраслям и относится энергетика, которая обеспечивает комфортные условия жизнедеятельности населения как в быту так и на производстве.
Последние исследования показали экономическую целесообразность сохранения значительной доли участия крупных отопительных котельных установок в покрытии общего потребления тепловой энергии.
Наряду с крупными производственными, производственно-отопительными котельными мощностью в сотни тонн пара в час или сотни МВт тепловой нагрузки установлены большое количество котельных агрегатами до 1 мвт и работающих почти на всех видах топлива.
Однако как раз с топливом и существует самая большая проблема. За жидкое и газообразное топливо, у потребителей часто не хватает средств расплатиться. Поэтому и необходимо использовать местные ресурсы.
В данном дипломном проекте разрабатывается реконструкция производственно-отопительной котельной завода РКК «Энергия», которая использует в качестве топлива местный добываемый уголь. В перспективе предусматривается перевод котлоагрегатов на сжигание газа от дегазации газовых выбросов шахты, которая находится на территории обогатительной фабрики. В существующей котельной установлены два паровых котлоагрегата КЕ_25_14, служившие для снабжения паром предприятия завода РКК «Энергия», и водогрейные котлы ТВГ-8 (2 котла) для отопления, вентиляции и горячего водоснабжения административно-бытовых зданий и жилого поселка.
В связи с сокращением добычи угля снизились производственные мощности угледобывающего предприятия, что привело к сокращению в потребности пара. Это вызвало реконструкцию котельной, которая заключается в использовании паровых котлов КЕ-25 не только для производственных целей, но и для производства горячей воды на отопление, вентиляцию и горячее водоснабжение в специальных теплообменниках.
1. ОБЩАЯ ЧАСТЬ
1.1. ХАРАКТЕРИСТИКА ОБЪЕКТА
Проектируемая котельная находится на территории завода РКК «Энергия»
Планировка, размещение зданий и сооружений на промплощадке обогатительной фабрики выполнены в соответствии с требованиями СНиП.
Размер территории промплощадки в границах ограждений - 12,66 га, площадь застройки 52194 м2.
Транспортная сеть района строительства представлена железными дорогами общего пользования и автодорогами местного значения.
Рельеф местности равнинный, с небольшими подъемами, в почве преобладает суглинок.
Источником водоснабжения является фильтровальная станция и канал Северский Донец-Донбасс. Предусмотрено дублирование водовода.
1.2.
1.3. Определение количества потребилетей теплоты. График годового расхода теплоты.
Расчетные расходы теплоты промышленными предприятиями определяются по удельным нормам теплопотребления на единицу выпускаемой продукции или на одного работающего по вида.м теплоносителя (вода, пар). Расходы теплоты на отопление, вентиляцию и технологические нужды приведены в таблице 1.2. тепловых нагрузок.
Годовой график расхода теплоты строится в зависимости от продолжительности стояния наружных температур, которая отражена в таблице 1.2. данного дипломного проекта.
Максимальная ордината годового графика расхода теплоты соответствует расходу тепла при наружной температуре воздуха -23 С.
Площадь, ограниченная кривой и осями ординат, дает суммарный расход теплоты за отопительныф период, а прямоугольник в правой части графика - расход теплоты на горячее водоснабжение в летнее время.
На основании данных таблицы 1.2. расчитываем расходы теплоты по потребителям для 4-х режимов: максимально-зимний (tр. о. =-23C;); при средней температуре наружного воздуха за отопительный период; при температуре наружного воздуха +8C; в летний период.
Расчет ведем в таблице 1.3. по формулам:
- тепловая нагрузка на отопление и вентиляцию, МВт
QОВ=QРОВ*(tвн-tн)/(tвн-tр.о.)
- тепловая нагрузка на горячее водоснабжение в летний период, МВт
QЛГВ=QРГВ*(tг-tхл)/(tг-tхз)*
где: QРОВ- расчетная зимняя тепловая нагрузка на отопление и вентиляцию при расчетной температуре наружного воздуха для проектирования системы отопления. Принимаем по табл. 1.2.
tВН - внутренняя температура воздуха в отапливаемом помещении, tВН =18С
QРГВ - расчетная зимняя тепловая нагрузка на горячее водоснабжение ( табл. 1.2);
tн- текущая температура наружного воздуха ,°С;
tр.о.- расчетно отопительная температура наружного воздуха,
tг- температура горячей водя в системе горячего водоснабжения,tг=65°С
tхл , tхз - температура холодной воды летом и зимой,tхл =15°С,tхз =5°С;
- поправочный коэффициент на летний период, =0,85
Таблица 1.2
Тепловые нагрузки
Вид тепловой |
Расход тепловой нагрузки, МВт |
Характеристика |
||
Нагрузки |
Зимой |
Летом |
Теплоносителя |
|
1.Отопление и вентиляция |
15,86 |
- |
Вода 150/70 С Пар Р=1,4 МПа |
|
2.Горячее водоснабжение |
1,36 |
По расчету |
||
3.Технологические нужды |
11,69 |
1,24 |
Пар Р=1,44МПа |
|
ВСЕГО |
28,91 |
1,24 |
- |
|
Таблица 1.3.
Расчет годовых тепловых нагрузок
№ п/п |
Вид нагрузки |
Обозначение |
Значение тепловой нагрузки при температуре МВт |
||||
tр.о=-23 С |
tсро.п.=-1,8С |
tр.о=8С |
Летний |
||||
1. |
Отопление и вентиляция |
QОВ |
15,86 |
7,66 |
3,87 |
- |
|
2. |
Горячее водоснабжение |
QГВ |
1,36 |
1,36 |
1,36 |
0,963 |
|
3. |
Итого |
QОВ+ГВ |
17,22 |
9,02 |
5,23 |
0,963 |
|
4. |
Технология |
QТЕХ |
11,69 |
11,69 |
1,24 |
1,24 |
|
5. |
Всего |
Q |
28,91 |
20,71 |
6,47 |
2,203 |
|
По данным табл. 1.1. и 1.3. строим график годовых расходов тепловой нагрузки, представленный на рис .1.1.
1.4. СИСТЕМА И ПРИНЦИПИАЛЬНАЯ СХЕМА ТЕПЛОСНАБЖЕНИЯ
Источником теплоснабжения является реконструируемая котельная шахты. Теплоноситель - пар и перегретая вода. Питьевая вода используется только для систем горячего водоснабжения. Для технологических нужд используется пар Р=0,6МПа. Для приготовления перегретой воды с температурой 150-70С предусматривается сетевая установка, для приготовления воды с t=65°С - установка горячего водоснабжения.
Система теплоснабжения - закрытая. Вследствии отсутствия непосредственного водоразбора и незначительной утечки теплоносителя через неплотности соединений труб и оборудования закрытые системы отличаются высоким постоянством количества и качества циркулируемой в ней сетевой воды.
В закрытых водяных системах теплоснабжения воду из тепловых сетей используют только как греющую среду для нагревания в подогревателях поверхностного типа водопроводной воды, поступающей затем в местную систему горячего водоснабжения. В открытых водяных системах теплоснабжения горячая вода к водоразборным приборам местной системы горячего водоснабжения поступает непосредственно из тепловых сетей.
На промплощадке трубопроводы теплоснабжения прокладываются по мостам и галереям и частично в непроходных лотковых каналах типа Кл. Трубопроводы прокладывают с устройством компенсации за счет углов поворотов трассы и П-образных компенсаторов.
Трубопроводы приняты из стальных электросварных труб с устройством теплоизоляции.
На листе 1 графической части дипломного проекта показан генплан промплощадкп с разводкой тепловых сетей к объектам потребления .
1.5. РАСЧЁТ ТЕПЛОВОЙ СХЕМЫ КОТЕЛЬНОЙ
Принципиальная тепловая схема характеризует сущность основного технологического процесса преобразования энергии и использования в установке теплоты рабочего тела. Она представляет собой условное графическое изображение основного и вспомогательного оборудования, объединенного линиями трубопроводов рабочего тела в соответствии с последовательностью его движения в установке.
Основной целью расчета тепловой схемы котельной является:
- определение общих тепловых нагрузок, состоящих из внешних нагрузок и расходов тепла на собственные нужды, и распределением этих нагрузок между водогрейной и паровой частями котельной для обоснования выбора основного оборудования;
- определение всех тепловых и массовых потоков, необходимых для выбора вспомогательного оборудования и определения диаметров трубопроводов и арматуры;
- определение исходных данных для дальнейших технико-экономических расчетов (годовых выработок тепла, годовых расходов топлива и др.).
Расчет тепловой схемы позволяет определить суммарную теплопроизводительность котельной установки при нескольких режимах ее работы.
Тепловая схема котельной приведена на листе 2 графической части дипломного проекта.
Исходные данные для расчета тепловой схемы котельной приведены в таблице 1.4, а сам расчет тепловой схемы приведен в таблице 1.5.
Таблица 1.4
Исходные данные для расчета тепловой схемы отопительно-производственной котельной с паровыми котлами КЕ-25-14с для закрытой системы теплоснабжения.
№№ пп |
Наименование |
Обоз- |
Ед. |
Расчетные режимы |
Примечание |
||||
позиц. исход. данных |
величин |
начение |
изм. |
Максимально зимний |
При средней температуре наиболее холодного периода |
При темпера туре наружного воздуха в точке излома температурного графика |
Летний |
||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
|
01 |
Температура наружного воздуха |
tн |
C |
-24 |
-10 |
- |
- |
I |
|
02 |
Температура воздуха внутри отапливаемых зданий |
tвн |
C |
18 |
18 |
18 |
18 |
||
03 |
Максимальная температура прямой сетевой воды |
t1макс |
C |
150 |
- |
- |
- |
||
04 |
Минимальная температура прямой сетевой воды в точке излома температурного графика |
t1.изл |
C |
- |
- |
70 |
- |
||
05 |
Максимальная температура обратной сетевой воды |
t2макс |
C |
70 |
- |
- |
- |
||
06 |
Температура деаэрированной воды после деаэратора |
Tд |
C |
104,8 |
104,8 |
104,8 |
104,8 |
||
07 |
Энтальпия деаэрированной воды |
iд |
КДж/кг |
439,4 |
439,4 |
439,4 |
439,4 |
Из таблиц насыщенного пара и воды при давлении 1.2Мпа |
|
08 |
Температура сырой воды на входе в котельную |
T1 |
C |
5 |
5 |
5 |
15 |
||
09 |
Температура сырой воды перед химводоочисткой |
TЗ |
C |
25 |
25 |
25 |
25 |
||
10 |
Удельный объем воды в системе тепловодоснабжения в т. на 1 МВт суммарного отпуска тепла на отопление, вентиляцию и горячее водоснабжение |
qсист |
Т/ МВт |
30,1 |
30,1 |
30,1 |
30,1 |
Для промышленных предприятий |
|
Параметры пара, вырабатываемого котлами (до редукционной установки) |
|||||||||
11 |
Давление |
P1 |
МПа |
1,4 |
1,4 |
1,4 |
1,4 |
Из таблиц насы- |
|
12 |
Температура |
1 |
C |
195 |
195 |
195 |
195 |
щенного пара и |
|
13 |
Энтальпия |
i1 |
КДж/кг |
2788,4 |
2788,4 |
2788,4 |
2788,4 |
воды при давлении 1,4 МПа |
|
Параметры пара после редукционной установки: |
|||||||||
14 |
Давление |
P2 |
МПа |
0,7 |
0,7 |
0,7 |
0,7 |
Из таблиц насы- |
|
15 |
Температура |
2 |
C |
165 |
165 |
165 |
165 |
щенного пара и |
|
16 |
Энтальпия |
i2 |
КДж/кг |
2763 |
2763 |
2763 |
2763 |
воды при давлении 0,7 МПа |
|
Параметры пара, образующегося в сепараторе непрерывной продукции: |
|||||||||
17 |
Давление |
P3 |
МПа |
0,17 |
0,17 |
0,17 |
0,17 |
Из таблиц насы- |
|
18 |
Температура |
3 |
C |
115,2 |
115,2 |
115,2 |
115,2 |
щенного пара и |
|
19 |
Энтальпия |
i3 |
КДж/кг |
2700 |
2700 |
2700 |
2700 |
воды при давлении 0,17 Мпа |
|
Параметры пара, поступающего в охладитель выпара из деаэратора: |
|||||||||
20 |
Давление |
P4 |
МПа |
0,12 |
0,12 |
0,12 |
0,12 |
Из таблиц насы- |
|
21 |
Температура |
4 |
C |
104,8 |
104,8 |
104,8 |
104,8 |
щенного пара и |
|
22 |
Энтальпия |
i4 |
КДж/кг |
2684 |
2684 |
2684 |
2684 |
воды при давлении 0,12 Мпа |
|
Параметры конденсатора после охладителя выпара: |
|||||||||
23 |
Давление |
P4 |
МПа |
0,12 |
0,12 |
0,12 |
0,12 |
Из таблиц насы- |
|
24 |
Температура |
4 |
C |
104,8 |
104,8 |
104,8 |
104,8 |
щенного пара и |
|
25 |
Энтальпия |
i5 |
КДж/кг |
439,4 |
439,4 |
439,4 |
439,4 |
воды при давлении 0,12 Мпа |
|
Параметры продувочной воды на входе в сепаратор непрерывной продувки: |
|||||||||
26 |
Давление |
P1 |
Мпа |
1,4 |
1,4 |
1,4 |
1,4 |
Из таблиц насы- |
|
27 |
Температура |
1 |
C |
195 |
195 |
195 |
195 |
щенного пара и |
|
28 |
Энтальпия |
i7 |
КДж/кг |
830,1 |
830,1 |
830,1 |
830,1 |
воды при давлении 1,4 Мпа |
|
Параметры продувочной воды на выходе из сепаратора непрерывной продувки: |
|||||||||
29 |
Давление |
P3 |
Мпа |
0,17 |
0,17 |
0,17 |
0,17 |
Из таблиц насы- |
|
30 |
Температура |
3 |
C |
115,2 |
115,2 |
115,2 |
115,2 |
щенного пара и |
|
31 |
Энтальпия |
i8 |
КДж/кг |
483,2 |
483,2 |
483,2 |
483,2 |
воды при давлении 0,17 Мпа |
|
32 |
Температура продувочной воды после охлаждения продувочной воды |
tпр |
C |
40 |
40 |
40 |
40 |
||
33 |
Температура конденсата от блока подогревателей сетевой воды |
tкб |
C |
80 |
80 |
80 |
80 |
Принимается |
|
34 |
Температура конденсата после пароводяного подогревателя сырой воды |
t2 |
C |
165 |
165 |
165 |
165 |
Принимается |
|
35 |
Энтальпия конденсата после пароводяного подогревателя сырой воды |
i6 |
КДж/кг |
697,1 |
697,1 |
697,1 |
697,1 |
Из таблиц насыщенного пара и воды при давлении 0,7 Мпа |
|
36 |
Температура конденсата, возвращаемого с производства |
tкп |
C |
80 |
80 |
80 |
80 |
||
37 |
Величина непрерывной продувки |
П |
% |
4,6 |
4,6 |
4,6 |
4,6 |
Принимается из расчета химводоочистки |
|
38 |
Удельные потери пара с выпаром из деаэратора питательной воды в т на 1т деаэрированной воды |
dвып |
т/т |
0,002 |
0,002 |
0,002 |
0,002 |
Принимается по рекомендациям ЦКТИ |
|
39 |
Коэффициент собственных нужд химводоочистки |
Кснхво |
- |
1,2 |
1,2 |
1,2 |
1,2 |
||
40 |
Коэффициент внутрикотельных потерь пара |
Кпот |
- |
0,02 |
0,02 |
0,02 |
0,02 |
Принимается |
|
41 |
Расчетный отпуск тепла из котельной на отопление и вентиляцию |
Qмаксов |
МВт |
15,86 |
- |
- |
- |
Табл. 1.2. |
|
42 |
Расчетный отпуск тепла на горячее водоснабжение за сутки наибольшего водопотребления |
Qсргв |
МВт |
1,36 |
- |
- |
- |
Табл. 1.2. |
|
43 |
Отпуск тепла производственным потребителям в виде пара |
Дотр |
кг/с |
4,98 |
4,98 |
4,98 |
0,53 |
||
44 |
Возврат конденсата от производственных потребителей (80%) |
Gпотр |
=кг/с |
3,98 |
3,98 |
3,98 |
0,42 |
=0,8 |
|
Таблица 1.5
Расчет тепловой схемы отопительно-производственной котельной с паровыми котлами КЕ-25-14с для закрытой системы теплоснабжения.
dвып*Gд |
0,002*13,44= 0,027 |
0,002*15,53= 0,03 |
0,002*9,02= 0,018 |
0,002*2,07= 0,004 |
|||||
Р25 |
Количество умягченной воды, поступающей в деаэратор |
Gхво |
кг/с |
(Дпотр-Gпотр)+ +Gпр+Дпот+Двып +Gут |
2,498 |
2,64 |
2,44 |
0,96 |
|
Р26 |
Количество сырой воды, поступающей на химводоочистку |
Gс.в |
кг/с |
Кс.н.хво*Gхво |
1,2*2,498= 3,2 |
1,2*2,64= 3,17 |
1,2*2,44= 2,93 |
1,2*0,96= 1,15 |
|
Р27 |
Расход пара для подогрева сырой воды |
Дс |
кг/с |
Gсв*(Т3-Т1)*С/(i2-i6)*0.98 |
0.13 |
0.13 |
0.12 |
0.024 |
|
Р28 |
Количество конденсата от подогревателей сырой воды, поступающей в деаэратор |
Gс |
кг/с |
Дс |
0,13 |
0,13 |
0,12 |
0,024 |
|
Р29 |
Суммарный вес потоков, поступающих в деаэратор (кроме греющего пара) |
G |
кг/с |
Gк+Gхво+Gс+Дпр-Двып |
13,89 |
15,95 |
10,07 |
2,01 |
|
Р30 |
Доля конденсата от подогревателей сетевой воды и с производства в суммарном весе потоков, поступающих в деаэратор |
Gк/ G |
0,8 |
0,82 |
0,68 |
0,4 |
|||
Р31 |
Удельный расход пара на деаэратор |
dд |
кг/кг |
Рис.11 [ ] |
0,0525 |
0,052 |
0,056 |
0,0753 |
|
Р32 |
Абсолютный расход пара на деаэратор |
Д*g |
кг/с |
dд* G |
0.75 |
||||
Р33 |
Расход пара на деаэратор питательной воды и для подогрева сырой воды |
- |
кг/с |
(Дg+Дс)* |
0,75+0,13= 0,88 |
0,82+0,13= 0,95 |
0,56+0,12= 0,88 |
0,15+0,024= 0,179 |
|
Р34 |
Паровая нагрузка на котельную без учета внутрикотельных потерь |
Д* |
кг/с |
Д+(Дg+Дс) |
12,12+0,88= 13,00 |
14,11+0,9= 15,06 |
7,91+0,68= 8,59 |
0,96+0,179= 1,13 |
|
Р35 |
Внутрикотельные потери пара |
Дпот |
кг/с |
Д * (Кпот/(1-Кпот)) |
0,26 |
0,3 |
0,17 |
0,023 |
|
Р36 |
Суммарная паровая нагрузка на котельную |
Д*сум |
кг/с |
Д+Дпот |
13,26 |
15,36 |
8,76 |
1,153 |
|
Р37 |
Количество продувочной воды, поступающей в сепаратор непрерывной продувки |
Gпр |
кг/с |
n/100*Dсум |
0,61 |
0,71 |
0,42 |
0,055 |
|
Р38 |
Количество пара на выходе из сепаратора непрерывной продувки |
Dпр |
кг/с |
Gпр*(i7*0,98-i8)/ (i3-i8) |
0,091 |
0,104 |
0,06 |
0,008 |
|
Р39 |
Количество продувочной воды на выходе их сепаратора непрерывной продувки |
Gпр |
кг/с |
Gпр-Dпр |
0,519 |
0,606 |
0,36 |
0,047 |
|
Р40 |
Количество воды на питание котлов |
Gпит |
кг/с |
Dсум+Gпр |
13,87 |
16,07 |
9,18 |
1,208 |
|
Р41 |
Количество воды на выходе из деаэратора |
Gg |
кг/с |
Gпит+Gут |
14,59 |
17,157 |
9,90 |
1,93 |
|
Р42 |
Выпар из деаэратора |
Dвып |
кг/с |
dвып*Gg |
0,029 |
0,034 |
0,02 |
0,004 |
|
Р43 |
Количество умягченной воды, поступающее в деаэратор |
Gхво |
кг/с |
(Dпотр-Gпотр)-Gпр+ Dпот+Dвып+Gут |
2,72 |
2,48 |
0,98 |
||
Р44 |
Количество сырой воды, поступающей на химводоочистку |
Gс.в |
кг/с |
Kс.н.хво*Gхво |
1,2*2,57= 3,08 |
1,2*2,72= 3,24 |
1,2*2,48= 2,98 |
1,2*0,98= 1,12 |
|
Р45 |
Расход пара для подогрева сырой воды |
Dc |
кг/с |
Gс.в.*(T3-T1)*C/ (i2-i8)*0,98 |
0,068 |
0,14 |
0,12 |
0,02 |
|
Р46 |
Количество конденсата поступающего в деаэратор от подогревателей сырой воды |
Gc |
кг/с |
Dc |
0,068 |
0,14 |
0,12 |
0,02 |
|
Р47 |
Суммарный вес потоков поступающих в деаэратор (кроме греющего пара) |
G |
кг/с |
Gk+Gхво+Gc+Dпр-Dвып |
13,9 |
16,04 |
9,78 |
1,96 |
|
Р48 |
Доля конденсата от подогревателей |
кг/с |
Gk/ G |
11,12/13,90= 0,797 |
13,11/16,04= 0,82 |
0,736 |
0,486 |
||
Р49 |
Удельный расход пара на деаэратор |
dg |
кг/кг |
Рис.11 |
0,0525 |
0,052 |
0,056 |
0,0753 |
|
Р50 |
Абсолютный расход пара на деаэратор |
Dg |
кг/с |
dg* G |
0,765 |
0,835 |
0,55 |
0,15 |
|
Р51 |
Расход пара на деаэрацию питательной воды и подогрев сырой воды |
- |
кг/с |
(Dg+Dc) |
0,833 |
0,975 |
0,67 |
0,17 |
|
Р52 |
Паровая нагрузка на котельную без учета внутрикотельных потерь |
Д1 |
кг/с |
D+(Dg+Dc) |
12,12+0,87= 12,9 |
14,11+0,87= 15,07 |
7,91+0,67= 8,58 |
0,96+0,17= 1,13 |
|
Р53 |
Суммарная паровая нагрузка на котельную |
Dсум |
кг/с |
Д1+Dпот |
13,21 |
15,385 |
8,75 |
1,153 |
|
Р54 |
Процент расхода пара на собственные нужды котельной (деаэрация подогрев сырой воды) |
Кс.н. |
% |
(Дg+Дс)/Dсум*100 |
6,3 |
6,34 |
7,66 |
14,74 |
|
Р55 |
Количество работающих котлов |
Nк.р. |
Шт. |
Dсум/Dкном |
2 |
2 |
2 |
1 |
|
Р56 |
Процент загрузки работающих паровых котлов |
Кзат |
% |
Dсум/Dкном*Nк.р.* *100% |
95,17 |
110,84 |
63 |
16,6 |
|
Р57 |
Количество воды, пропускаемое помимо подогревателей сетевой воды (через перемычку между трубопроводами прямой и обратной сетевой воды) |
Gсет.п. |
кг/с |
Gсет*(tmax1-t1)/ /(tmax1-t3) |
0 |
40,22 |
49,52 |
7,03 |
|
Р58 |
Количество воды пропускаемое через подогреватели сетевой воды |
Gсет.б. |
кг/с |
Gсет- Gсет.п. |
51,37 |
94,13-40,22= 53,91 |
66,56-49,52= 17,04 |
9,20-7,03= 2,17 |
|
Р59 |
Температура сетевой воды на входе в пароводяные подогреватели |
t4 |
C |
[t1max(i6-tк.б.с.)+ t3(i2-i6)]/(i2- tк.б.с.) |
81,6 |
71,2 |
57,4 |
58,6 |
|
Р60 |
Температура умягченной воды на выходе из охладителя продувочной воды |
Т4 |
C |
T3+Gпр/Gхво*(i8/c --tпр) |
33,6 |
32,1 |
31,1 |
37,2 |
|
Р61 |
Температура умягченной воды поступающей в деаэратор из охладителя пара |
Т5 |
C |
T4+Dвып/Gхво*(i4-i5)/c |
37,8 |
35,6 |
34,4 |
39,2 |
|
На принципиальной тепловой схеме указывается главное оборудование (котлы, насосы, деаэраторы, подогреватели) и основные трубопроводы.
1. Описание тепловой схемы.
Насыщенный пар из котлов с рабочим давлением Р = 0,8 МПа поступает в общую паровую магистраль котельной, из которой часть пара отбирается на оборудование установленное в котельной, а именно на: подогреватель сетевой воды; подогреватель горячей воды; деаэратор. Другая часть пара направляется на производственные нужды предприятия.
Конденсат от производственного потребителя самотёком возвращается, в размере 30% при температуре 80 оС, в конденсатосборник и далее конденсатным насосом направляется в бак горячей воды.
Подогрев сетевой воды, также как и подогрев горячей воды, производится паром в последовательно включённых двух подогревателях, при этом подогреватели работают без конденсатоотводчиков, отработанный конденсат направляется в деаэратор.
В деаэратор, также поступает химически очищенная вода из ХВО, восполняющая потери конденсата.
Насосом сырой воды вода из городского водопровода направляется на ХВО и в бак горячей воды.
Периодическая продувка из котлов в размере 2 % направляется в барботер.
Деаэрированная вода с температурой около 104 оС питательным насосом нагнетается в экономайзеры и далее поступает в котлы.
Подпиточная вода для системы теплоснабжения забирается подпиточным насосом из бака горячей воды.
Основной целью расчёта тепловой схемы являются:
1. определение общих тепловых нагрузок, состоящих из внешних нагрузок и расхода пара на собственные нужды,
2. определение всех тепловых и массовых потоков необходимых для выбора оборудования,
3. определение исходных данных для дальнейших технико-экономических расчётов (годовых выработок тепла, топлива и т.д.).
Расчёт тепловой схемы позволяет определить суммарную паропроизводительность котельной установки при нескольких режимах её работы. Расчёт производится для 3-х характерных режимов:
1. максимально-зимнего,
2. наиболее холодного месяца,
3. летнего.
2. Исходные данные для расчёта тепловой схемы.
Физическая величина |
Обозна-чение |
Обоснование |
Значение величины при характерных режимах работы котельной. |
|||
Макси-мально - зимнего |
Наиболее холодного месяца |
летнего |
||||
Расход теплоты на производственные нужды, Гкал/ч. |
Qт |
Задан |
4,2 |
4,2 |
4,2 |
|
Расход теплоты на нужды отопления и вентиляции, Гкал/ч. |
Qо.в. |
Задан |
5,3 |
--- |
--- |
|
Расход воды на горячие водоснабжение, т/ч. |
Gг.в. |
Задан |
11,5 |
11,5 |
11,5 |
|
Температура горячей воды, оС |
t3 |
СНиП 2.04.07-86. |
60 |
60 |
60 |
|
Расчётная температура наружного воздуха для г. Якутска, оС: |
|
|||||
- при расчёте системы отопления: |
tр.о. |
СНиП 23-01-99 |
-54 |
-45 |
--- |
|
- при расчёте системы вентиляции: |
tр.в. |
-45 |
--- |
--- |
||
Возврат конденсата производственным потребителем, % |
в |
Задан |
30 |
30 |
30 |
|
Энтальпия насыщенного пара давлением 0,8 Мпа, Гкал/т. |
iп |
Таблица водяных паров |
0,6616 |
|||
Энтальпия котловой воды, Гкал/т. |
iкот |
» |
0,1719 |
|||
Энтальпия питательной воды, Гкал/т. |
iп.в. |
» |
0,1044 |
|||
Энтальпия конденсата при t = 80 оС, Гкал/т. |
iк |
» |
0,08 |
|||
Энтальпия конденсата с “пролётным” паром, Гкал/т. |
i|к |
» |
0,1562 |
|||
Температура конденсата возвращаемого из производства, оС |
tк |
Задана |
80 |
|||
Температура сырой воды, оС |
tс.в. |
СП 41-101-95 |
5 |
5 |
15 |
|
Продувка периодическая, % |
спр |
Принята |
2 |
|||
Потери воды в закрытой системе теплоснабжения, % |
Кут. |
Принят |
2 |
|||
Расход пара на собственные нужды котельной, % |
Кс.н |
Принят |
5 |
|||
Потери пара в котельной и у потребителя, % |
Кпот. |
Принят |
2 |
|||
Коэффициент расхода сырой воды на собственные нужды ХВО. |
Кхво |
Принят |
1,25 |
|||
3. Расчёт тепловой схемы.
1. Расход пара на производство, т/ч:
Qт - расход теплоты на производственные нужды, Гкал/ч;
iп - энтальпия пара, Гкал/т;
iп - энтальпия конденсата, Гкал/т;
з - КПД оборудования производственного потребителя.
2. Коэффициент снижения расхода теплоты на отопление и вентиляцию для режима наиболее холодного месяца:
tвн - внутренняя температура отапливаемых зданий, оС;
tн - текущая температура наружного воздуха, оС;
tр.о - расчётная температура наружного воздуха, оС.
3. Расход воды на подогреватель сетевой воды т/ч:
Qо.в. - расход теплоты на отопление и вентиляцию, т/ч;
t1 - расчётная температура воды в подающей линии тепловой сети, оС;
t2 - расчётная температура воды в обратной линии тепловой сети, оС;
Св - теплоёмкость воды, Гкал/т· оС.
4. Температура воды в подающей линии тепловой сети, для режима наиболее холодного месяца, оС (можно также определить по графику регулирования):
5. Температура воды в обратной линии тепловой сети, для режима наиболее холодного месяца, оС (можно также определить по графику регулирования):
6. Расход пара на подогреватель сетевой воды, т/ч:
- энтальпия конденсата с пролётным паром, Гкал/т;
з - КПД подогревателя сетевой воды.
7. Расход подпиточной воды на восполнение утечек в системе теплоснабжения, т/ч:
Кут - потери воды в закрытой системе теплоснабжения, %.
8. Возврат конденсата от технологического потребителя, т/ч:
в - возврат конденсата производственным потребителем, %.
9. Расход сырой воды на бак горячей воды, т/ч:
Gгв. - расход воды на горячие водоснабжение, т/ч.
10. Средняя температура воды в баке горячей воды, оС:
tк - температура конденсата от производственного потребителя, оС;
tcв.- температура сырой водопроводной воды, оС;
11. Расход пара на подогреватель горячей воды, т/ч:
t3 - температура горячей воды, оС
з - КПД подогревателя ГВС.
12. Расход пара внешними потребителями, т/ч:
13. Расход пара на собственные нужды котельной, т/ч:
Кс.н. - расход пара на собственные нужды котельной, %.
14. Суммарная паропроизводительность котельной, т/ч,:
15. Потери пара у потребителя, т/ч:
Кпот. - потери пара в котельной и у потребителя, %.
16. Расход воды на периодическую продувку, т/ч:
спр. - продувка периодическая, %.
17. Расход химически очищенной воды на деаэратор, т/ч:
18. Расход сырой воды на ХВО, т/ч:
Кхво - коэффициент расхода сырой воды на собственные нужды ХВО.
19. Расход сырой воды, т/ч:
20. Средняя температура потоков воды, вошедших в деаэратор, оС:
iхов - энтальпия химически очищенной воды, Гкал/т;
21. Расход греющего пара на деаэратор, т/ч:
22. Действительная паропроизводительность котельной, т/ч:
23. Невязка с предварительно принятой паропроизводительностью котельной, %:
Если невязка получится меньше 3 %, то расчёт тепловой схемы считается законченным. При большей невязке расчёт следует повторить, изменив расход пара на собственные нужды.
Расчёт тепловой схемы сведён в таблицу №1.
Таблица №1: “Расчёт тепловой схемы”. |
|||||
Физическая величина |
Обозна-чение |
Значение величины при характерных режимах работы котельной. |
|||
|
Максимально - зимнего |
Наиболее холодного месяца |
летнего |
||
1. Расход пара на производство, т/ч: |
Dт |
7,23 |
7,23 |
7,23 |
|
2. Коэффициент снижения расхода теплоты на отопление и вентиляцию для режима наиболее холодного месяца: |
Ко.в. |
1 |
0,875 |
--- |
|
3. Расход воды на подогреватель сетевой воды т/ч: |
G |
212 |
212 |
--- |
|
4. Температура воды в подающей линии тепловой сети, оС: |
t1 |
95 |
85,4 |
--- |
|
5. Температура воды в обратной линии тепловой сети, оС: |
t2 |
70 |
63,5 |
--- |
|
6. Расход пара на подогреватель сетевой воды, т/ч: |
Dп.с.в. |
10,7 |
9,4 |
--- |
|
7. Расход подпиточной воды на восполнение утечек в системе теплоснабжения, т/ч: |
Gут. |
4,24 |
4,24 |
--- |
|
8. Возврат конденсата от технологического потребителя, т/ч: |
|
2,2 |
2,2 |
2,2 |
|
9. Расход сырой воды на бак горячей воды, т/ч: |
|
13,57 |
13,57 |
9,3 |
|
10. Средняя температура воды в баке горячей воды, оС: |
t4 |
15,3 |
15,3 |
27,4 |
|
11. Расход пара на подогреватель горячей воды, т/ч: |
Dп.г.в. |
1 |
1 |
0,76 |
|
12. Расход пара внешними потребителями, т/ч: |
Dвн |
18,93 |
17,66 |
8 |
|
13. Расход пара на собственные нужды котельной, т/ч: |
Dс.н. |
0,947 |
0,883 |
0,4 |
|
14. Суммарная паропроизводительность котельной, т/ч,: |
|
19,9 |
18,543 |
8,4 |
|
15. Потери пара у потребителя, т/ч: |
Dпот. |
0,4 |
0,371 |
0,17 |
|
16. Расход воды на периодическую продувку, т/ч: |
Gпер.пр. |
0,4 |
0,371 |
0,17 |
|
17. Расход химически очищенной воды на деаэратор, т/ч: |
Gхов |
8,03 |
7,97 |
7,57 |
|
18. Расход сырой воды на ХВО, т/ч: |
10,04 |
9,9 |
9,5 |
||
19. Расход сырой воды, т/ч: |
Gс.в. |
23,61 |
23,44 |
18,8 |
|
20. Средняя температура потоков воды, вошедших в деаэратор, оС: |
tд |
95 |
90,6 |
27,9 |
|
21. Расход греющего пара на деаэратор, т/ч: |
Dд |
0,33 |
0,57 |
1,16 |
|
22. Действительная паропроизводительность котельной, т/ч: |
Dк |
19,65 |
17,37 |
9,34 |
|
23. Невязка с предварительно принятой паропроизводительностью котельной, %: |
ДD |
1,3 |
0,3 |
10,2 |
|
24. Уточнённый расход пара на деаэратор, т/ч: |
--- |
--- |
1,17 |
||
25. Уточнённая паропроизводительность котельной |
--- |
--- |
9,36 |
||
Центральное качественное регулирование заключается в регулировании отпуска теплоты путём изменения температуры теплоносителя на входе в прибор, при сохранении постоянным количество теплоносителя подаваемого в регулирующую установку.
Температура воды в тепловой сети является функцией относительной нагрузки, которую находят по формуле:
Относительная нагрузка может принимать значение от 0 до 1. Значение текущих температур в подающем и обратном трубопроводах в зависимости от относительной нагрузки определяется по формулам:
и - расчётные температуры воды в подающем и обратном трубопроводе.
Расчёт графика центрального качественного регулирования сведён в таблицу №2.
Таблица №2 |
||||
tн, оС |
|
, оС |
, оС |
|
+ 8 |
0,162 |
32,2 |
28,1 |
|
+ 5 |
0,203 |
35,2 |
30,1 |
|
0 |
0,27 |
40,3 |
33,5 |
|
- 5 |
0,338 |
45,3 |
36,9 |
|
- 10 |
0,405 |
50,4 |
40,3 |
|
- 15 |
0,473 |
55,5 |
43,6 |
|
- 20 |
0,541 |
60,5 |
47 |
|
- 25 |
0,608 |
65,6 |
50,4 |
|
- 30 |
0,676 |
70,7 |
53,8 |
|
- 35 |
0,743 |
75,7 |
57,2 |
|
- 40 |
0,811 |
80,8 |
60,5 |
|
- 45 |
0,878 |
85,9 |
63,9 |
|
- 50 |
0,946 |
91 |
67,3 |
|
- 54 |
1 |
95 |
70 |
|
График годового расхода пара рассчитывается и строится аналогично графику годового расхода тепла, только в формулах вместо соответствующей тепловой нагрузки (Q) подставляется соответствующий расход пара (D).
Нагрузки для расчёта графика:
т/ч,
т/ч,
т/ч,
т/ч,
Основные расчётные зависимости:
1. Минимальная паровая нагрузка на отопление и вентиляцию при температуре наружного воздуха +8 оС:
т/ч;
2. Минимальная паровая нагрузка необходимая внешним потребителям при tн = +8 оС:
т/ч;
3. Максимальная паровая нагрузка необходимая внешним потребителям при tн = +54 оС:
т/ч;
Часовой расход топлива, определяется по формуле, м3/ч:
Dрасч. - максимальный часовой расход пара вырабатываемый котлом, кг/ч,
Dрасч = 19650 кг/ч.
Gпр. - максимальный часовой расход продувочной воды, кг/ч,
Gпр = Dрасч ?0,01?спр. = 19650?0,01?2 = 393 кг/ч
спр - процент на периодическую продувку, %,
Дi - разность энтальпий между питательной водой и вырабатываемым паром, ккал/кг:
ккал/кг.
iп - энтальпия насыщенного пара, ккал/кг,
iп.в. - энтальпия питательной воды, ккал/кг,
iпр. - энтальпия котловой воды, ккал/кг,
- низшая теплота сгорания топлива, ккал/м3,
зк - КПД котла,
м3/ч.
Годовой расход топлива, определяется по формуле, м3/год:
- расчётный годовой расход пара, кг/год:
- годовой расход пара на подогреватель сетевой воды, кг/год:
Dп.с.в.- максимальный расход пара на подогреватель сетевой воды, кг/ч,
tвн - средняя внутренняя температура отапливаемых помещений, оС,
tн - расче тная температура наружного воздуха, оС,
tср.от - средняя температура наружного воздуха за отопительный период, оС,
nо - продолжительность отопительного периода,
кг/год.
- годовой расход пара на подогреватель горячей воды, кг/год:
- расход пара на подогреватель горячей воды в максимально-зимний период, кг/ч,
- расход пара на подогреватель горячей воды в летний период, кг/ч,
nг.в. - число дней в году работы системы горячего водоснабжения (350),
кг/год.
- годовой расход пара на производство, кг/год:
кг/год.
кг/год - годовой расход пара на деаэратор,
- годовые потери пара, кг/год:
- потери пара у потребителя, %.
кг/год.
кг/год.
кг/год.
м3/год.
Котлы.
В соответствии со СНиП “Котельные установки” расчётная мощность котельной определяется суммой мощностей требующихся потребителям на технологические процессы, отопление, вентиляцию и горячие водоснабжение при максимально-зимнем режиме.
При определении мощности котельной должны также учитываться мощности расходуемые на собственные нужды котельной и покрытия потерь в котельной и тепловых сетях.
Потребители тепла по надёжности теплоснабжения относятся:
1. К первой категории - потребители, нарушение теплоснабжение, которых связано с опасностью для жизни людей и со значительным ущербом народному хозяйству.
2. Ко второй категории - остальные потребители.
Перечень потребителей первой категории утверждает Министерство и Ведомство.
Котельные по надёжности отпуска тепла потребителям относятся:
1. К первой категории - котельные являющиеся единственным источником тепла системы теплоснабжения и обеспечивающие потребителей Й категории не имеющих индивидуальных резервных источников тепла.
2. Ко второй категории - остальные котельные.
Все котельные сооружаемые в северной строительной климатической зоне относятся к Й категории независимо от категории потребителей тепла.
Количество и единичную производительность котлоагрегата устанавливаемых в котельной следует выбирать по расчётной производительности котельной, проверяя режим работы котлоагрегатов для тёплого периода года, при этом в случае выхода из строя наибольшего по производительности котла котельной Й категории оставшиеся должны обеспечивать отпуск тепла потребителям Й категории:
1. на технологическое теплоснабжение и системы вентиляции в количестве определяемом минимальной допустимой нагрузкой.
2. на отопление и ГВС в количестве определяемом режимом наиболее холодном месяце.
В котельной ГУП ФАПК установлены следующие типы котлов:
1. ДКВР 10-13 - 2 шт.
2. ДЕ 10-14ГМ - 1 шт.
Техническая характеристика котлов:
1. Номинальная производительность: 10 т/ч,
2. Температура пара: насыщенный,
3. Температура питательной воды: 100 оС,
4. Площадь поверхности нагрева:
– радиационная: 47,9 м2, (39,02 м2),
– конвективная: 229,1 м2, (110 м2),
– общая котла: 277 м2, (149,02 м2),
5. Объём: - паровой: 2,63 м3,
- водяной: 9,11 м3,
6. Запас воды в котле при видимых колебаниях уровня в водоуказательном стекле 80 мм.: - 1,07 м3,
- 5,8 мин,
7. Видимое напряжение парового объёма: 545 м3/(м3?ч),
8. Живое сечение для прохода газов: - в котельном пучке: 1,28 м3,
9. Температура газов за котлом: - газ: 295 оС, (273 оС),
- мазут: 320 оС, (310 оС),
10. Расчётное КПД: - газ: 91,8 %, (92,1 %),
- мазут: 89,5 %, (90,99 %),
11. Расчётное газовое сопротивление: - газе и мазуте при номинальной нагрузке: 300 Па, (1,96 кПа),
- газе и мазуте при повышенной на 30 % нагрузке: 500 Па,
12. Длина цилиндрической части барабана: - верхнего: 6325 мм,
- нижнего: 3000 мм,
13. Расстояние между осями барабанов: 2750 мм,
14. Диаметр и толщина стенки передних опускных труб: 159х4,5 мм,
15. Количество труб экранов: - боковых: 29х2 = 58 шт,
- фронтового: 20 шт,
- заднего: 20 шт,
16. Количество кипятильных труб: - по оси барабана 27 + 1 шт,
- по ширине котла 22 шт,
17. Общее количество кипятильных труб: 594 шт.
18. Габаритные размеры:
– длина котла в тяжёлой обмуровке: 6860 мм, (6530 мм),
– ширина котла в тяжёлой обмуровке: 3830 мм, (4300 мм),
– высота котла от пола до оси верхнего барабана: 5715 мм,
– высота котла от пола до патрубков на верхнем барабане 6315 мм, (5050 мм),
19. Масса котла в объёме заводской поставки: 15,9 ч 18,8 т, (13,62 т).
Примечание: в скобках технические характеристики котла марки ДЕ 4-14.
При летнем режиме теплоснабжения потребителей будет обеспечено одним котлом, который будет загружен на 96 % (9,56 т/ч). При режиме наиболее холодного месяца в работе находятся два котла, вырабатывая 18,48 т. пара в час, при этом один котёл находится в резерве и в случаи выхода из строя одного из работающих котлов его можно использовать для пароснабжения потребителей.
Насосы.
Питательные насосы. Питание котлов водой должно быть надёжным. При снижении уровня воды ниже допустимых пределов кипятильные трубы могут оголиться и перегреться, что в свою очередь может привести к взрыву котла. Котлы с давлением выше 0,07 МПа с паропроизводительностью 2 т/ч и выше должны иметь автоматические регуляторы питания.
Для питания котлов устанавливают не менее двух насосов, из которых один должен быть с электроприводом, а другой - с паровым приводом. Производительность одного насоса с электроприводом должна составлять не менее 110 % номинальной производительности всех рабочих котлов. При установке нескольких насосов с электроприводами их общая производительность должна составлять также не менее 110 %.
Производительность насосов с паровым приводом должна быть не менее 50 % номинальной производительности котлов. Можно устанавливать все питательные насосы только с паровым приводом, а при двух или нескольких источниках питания электроэнергией - только с электрическим приводом. Насосы с паровым приводом потребляют от 3 до 5 % вырабатываемого пара, поэтому их используют как резервные.
Выхлопной пар поршневого прямодействующего насоса удаляется в атмосферу. Если этим паром подогревают воду в особом теплообменнике, то конденсат выбрасывают. В котёл его возвращать нельзя, так как он загрязнён маслом, а плёнка масла на трубках ухудшает теплопередачу. В крупных установках используют паротурбонасосы, конденсат их выходного пара маслом не загрязнён, поэтому его можно направлять в котёл. Инжекторы для питания котлов в отопительно-производственных котельных непригодны, так как они плохо засасывают горячую воду.
Производительность насосов определяется по формуле, т/ч:
z - число котлов, шт,
k - коэффициент запаса (1,1 для насосов с электроприводом и 0,5 с паровым приводом).
Dмакс - максимальный расход питательной воды, т/ч,
Dк - расход пара при номинальной нагрузке, т/ч,
Gп.р. - количество продувочной воды при номинальной нагрузке, т/ч,
т/ч,
т/ч.
Напор насоса, м. вод. ст.:
Рк - избыточное давление в котле, кгс/см2,
Рд - избыточное давление в деаэраторе, кгс/см2,
Нэ -сопротивление экономайзера по воде, м. вод. ст.,
Нг - геометрическая разность уровней воды в барабане котла и деаэратора, м.
м. вод. ст.
В данной котельной установлены 3 подпиточных насоса марки ЦНСГ-38, два из которых являются резервными. Данный насос установлен на нулевой отметке котельной (2 этаж), который подаёт питательную воду с температурой около 104 оС из деаэратора установленного на отметке 6.000 м (третий этаж).
Техническая характеристика насоса ЦНСГ-38:
1. Производительность: 38 м3/ч,
2. Напор: 198 м. вод. ст.,
3. Электродвигатель: - мощность: 37 кВт,
- частота: 3000 об/мин,
4. Температура рабочей среды: 105 оС,
5. Габаритные размеры: 1407х430х420 мм,
6. Масса: 321 кг.
Конденсатный насос. Производительность конденсатного насоса равна часовому расходу конденсата от технологического потребителя. К этому расходу следует прибавить расход конденсата от сетевого подогревателя отопления, так как в случаи повышения жёсткости конденсат сбрасывают в конденсатный бак на нужды ГВС. Повышение жёсткости может быть вызвано разрывом нескольких латунных трубок в самом подогревателе и вследствие чего попадания сетевой воды с довольно большой жёсткостью (0,7 ч 1,5 мг-экв/кг) в конденсат. Такой конденсат нельзя направлять в деаэратор, где требуется жёсткость равная 0,02 мг-экв/кг.
т/ч.
Напор конденсатного насоса определяется геодезической заразностью конденсатного насоса и бака горячей воды, а также сопротивлением сети (всасывающих и нагнетательных линий). В случае ели конденсат направлялся бы в деаэратор, то нужно учесть избыточное давление в деаэраторе:
м. вод. ст.
В котельной установлен один конденсатный насос марки К50-32-125. Данный насос установлен на отметке -4,600 м (первый этаж) и подаёт конденсат в бак горячей воды установленный на отметке 6 м (третий этаж).
Техническая характеристика насоса К50-32-125:
1. Производительность: 12,5 м3/ч,
2. Напор: 20 м. вод. ст.,
3. Электродвигатель: - мощность: 2,2 кВт,
- частота: 2900 об/мин,
4. Габаритные размеры: 792х300х315 мм,
5. Масса: 80 кг.
Сетевой насос системы отопления и вентиляции. Этот насос служит для циркуляции воды в тепловой сети. Его выбирают по расходу сетевой воды из расчёта тепловой схемы. Сетевые насосы устанавливаются на обратной линии тепловой сети, где температура сетевой воды не превышает 70 оС.
Gс.н. = 212 т/ч
Согласно правилам Госгортехнадзора РФ, в котельной должно быть установлено не менее 2-х сетевых насосов.
Напор развиваемый сетевым насосом выбирается в зависимости от требуемого напора у потребителя и сопротивлением сети.
В котельной установлено два сетевых насоса марки 6НДВ-60, один из которых резервный.
Техническая характеристика насоса 6НДВ-60:
1. Производительность: 250 м3/ч,
2. Напор: 54 м. вод. ст.,
3. Электродвигатель: - мощность: 41 кВт,
- частота: 1450 об/мин,
4. Габаритные размеры: 1400х525х450мм,
Подпиточный насос. Предназначены для восполнения утечки воды из системы теплоснабжения, количество воды необходимое для покрытия утечек определяется в расчёте тепловой схемы. Производительность подпиточных насосов выбирается равной удвоенной величине полученного количества воды для восполнения возможной аварийной подпитки:
т/ч
Необходимый напор подпиточных насосов определяется давлением воды в обратной магистрали и сопротивлением трубопроводов и арматуры на линии подпитки, число подпиточных насосов должно быть не менее 2-х, один из которых резервный.
В котельной установлено три подпиточных насоса марки К50-32-125, два из которых резервные. Насосы установлены на нулевой отметке и подают подпиточную воду из бака горячей воды в обратную линию тепловой сети.
Техническая характеристика насоса К50-32-125:
1. Производительность: 12,5 м3/ч,
2. Напор: 20 м. вод. ст.,
3. Электродвигатель: - мощность: 2,2 кВт,
- частота: 2900 об/мин,
4. Габаритные размеры: 792х300х315 мм,
5. Масса: 80 кг.
Циркуляционный насос ГВС. Служит для подачи требуемого расхода и обеспечения требуемого напора горячей воды у потребителя. Его выбирают по расходу горячей воды и необходимому напору:
Gг.в.= 11,5 т/ч
В котельной установлено два насоса ГВС марки К50-32-125, один из которых резервный. Насос установлен на отметке 6,000 м (3 этаж) и подаёт сырую воду из бака горячей воды в пароводяные теплообменники.
1. Производительность: 12,5 м3/ч,
2. Напор: 20 м. вод. ст.,
3. Электродвигатель: - мощность: 2,2 кВт,
- частота: 2900 об/мин,
4. Габаритные размеры: 792х300х315 мм,
5. Масса: 80 кг.
Насос сырой воды. Служит для обеспечения требуемого напора сырой воды перед ХВО и подачи хим. очищенной воды в деаэратор, а также подачи сырой воды в бак горячей воды. Производительность насоса определяют из расчёта тепловой схемы: Gc.в.= 23,61 т/ч
Нс.в.= 50 м. вод. ст.
В котельной установлен один насос сырой воды марки К80-50-200. Данный насос расположен на отметке 0,000 (1 этаж) и установлен на линии сырой воды.
Техническая характеристика насоса К80-50-200:
1. Производительность: 50 м3/ч,
2. Напор: 50 м. вод. ст.,
3. Электродвигатель: - мощность: 15 кВт,
- частота: 2900 об/мин,
4. Габаритные размеры: 1127х458х485 мм,
Масса: 250 кг.
1.6. ПОДБОР И РАЗМЕЩЕНИЕ ОСНОВНОГО И ВСПОМОГАТЕЛЬНОГО ОБОРУДОВАНИЯ
На основании результатов полученных при расчете тепловой схемы котельной (таб. 1.5) производим выбор основного и вспомогательного оборудования.
1.6.1. Выбор паровых котлоагрегатов
Выбор типа, количества и единичной производительности котлоагрегатов зависит главным образом от расчетной тепловой производительности котельной, где они будут установлены; от вида теплоносителя, отпускаемого котельной.
На основании вышеизложенного и в связи с тем, что для технологических потребностей нербходим пар, в котельной установлены два паровых котлоагрегата КЕ-25-14 единичной производительностью по пару D =6,94кг/с, что в сумме дает 13,88 кг/с. А из расчета тепловой схемы максимальная суммарная паровая нагрузка котельной Dсум=15,377 кг/с (табл.1.5 п.53), что позволяет использовать котлоагрегаты КЕ-25-14 с небольшой перегрузкой в один из режимов.
1.6.2. Подбор сетевых насосов
Сетевые насосы выбирают по расходу сетевой воды . Расход сетевой воды принимаем из табл. 1.5 позиция .
GЗ СЕТ=93,13 кг/с = 338,87 т/ч
Необходимая производительность сетевых насосов, приведенная к плотности В=1000кг/м3, м/ч
GСН=GЗ СЕТ/В70=338,87/0,978=346,49
Напор сетевых насосов выбирается из условия преодоления гидравлического сопротивления теплотрассы при расчетном максимальном расходе воды, сопротивления котельной и соединительных трубопроводов с 10%-м запасом.
HC P=1,1 Н (1.2)
Иэ данных гидравлического расчета тепловой сети
Н = 0,7 МПа
Тогда
HC P=1,1*0,7=0,77 МПа
К установае принимаем блок сетевых насосов БСН-1801420, состоящий из 2-х насосов Д400/80, один из которых резервный, электродвигатель А02_82_2, N=100кВт, n=3000-1, Q=400м3/ч, H=0,650,85 Мпа
1.6.3. Подбор питательных насосов
В котельных с паровыми котлами устанавливаются питательные насосы числом не менее двух с независимым приводом.
Питательные насосы подбирают по производительности и напору.
Производительность всей котельной, кг/с
QПИТ=1,1*DСУМ (1.3)
где DСУМ -суммарная паропроизводительность котельной
из табл.1.5 п.53: DСУМ=15,377 кг/с
QПИТ=1,1*15,377 = 16,91 кг/с=60,89 т/ч
Напор, который должны создавать питательные насосы для паровых котлоагрегатов, МПа
НПИТ=1,15*(Рб-Рд)+НСЕТ (1.4)
где Рб - наибольшее возможное избыточное давление в котлоагрегате,
Рб =1,3 МПа
Рд - избыточное давление в деаэраторе ,Рд=0,12МПа
НСЕТ- соиротивление всасывающего и нагнетающего трубопроводов.
Принимаегл НСЕТ=0,15МПа
ННАС= 1,15(1,3-0,12)+0,15 = 1,51 МПа
Из табл. 15.3 [3] принимаем к установке 2 питательных насоса ПЭ-65-40, один из которых резервный: электродвигатель А2-92-2, подача 65 м3/ч напор 4,41 МПа, частота вращения 3000-1.
1.6.4. Подбор конденсатного насоса
Конденсатные насосы перекачивают конденсат из баков, куда он поступает с производства или из пароводяных подогревателей, в деаэратор.
Производительность конденсатного насоса, м3/ч(кг/с)
QК НАС= К(табл.1.5. п.18)=13,11 кг/с=47,2 м3/ч
Напор развиваемый конденсатным насосом, МПа
Нкон=2,3 Мпа
По табл. 15.6. [3] принимаем к установке 2 насоса Кс-50-55-1 один из которых резервный: электродвигатель 4А160М4, подача 50м3/ч,напор 5,5 МПа,частота вращения 1450-1.
1.6.5. Подбор подпиточных насосов
Для восполнения утечки воды из закрытых систем теплоснабжения устанавливают подпиточные насосы.
Подача подпиточного насоса принимается иэ табл.1.5
Gподп=0,72 кг/с=2,592 м3/ч
Давление, создаваемое подпиточным насосом, должно обеспечить невскипание воды на выходе из котельной
Нпод=0,4 МПа
Пo табл.15.6. [3] принимаем к установке 2 подпиточных насоса Кс-12-50 один иэ которых резервный: электродвигатель 4А100 2, подача 12 м3/ч напор 0,5 МПа, частота вращения 2900 -1
1.6.6. Подбор деаэратора
В новых производственных и производственно-отопительных котельных с паровыми котлоагрегатами предусматривается установка атмосферных деаэраторов типа ДА.
Подбираем деаэратор по его производительности ,т/ч(кг/с)
GД=17,157 кг/с=61,76 т/ч (табл.1.5п. 41)
Принимаем к установке деаэратор DА-100( табл. 3 ):
производительность, т/ч - 100
давление ,МПа - 0,12
емкость деаэраторного бака.м3 - 25
поверхность охладителя
выпара, м2 - 8
1.7. Тепловой расчет котлоагрегата
Котел KЕ-25-14c предназначен для производства насыщенного пара, идущего на технологические нужды промышленных предприятий, в системы отопления, вентиляции и горячего водоснабжения.
Топочная камера котла шириной 272 мм полностью экранирована (степень экранирования Нл/ ст =0,8) трубами d=51х2,5мм. Трубы всех экранов приварены к верхним и нижним камерам d219x8мм. Топочная камера по глубине разделена на два объемных блока. Каждый из боковых экранов (правый и левый) переднего и заднего топочных блоков образует самостоятельный циркуляционный контур. Верхние камеры боковых экранов в целях увеличения проходного сечения на входе в пучок расположены ассиметрично отпосительно оси котла. Шаг труб боковых и фронтового экранов - 55 мм, шаг труб заднего экрана - 100 мм, трубы заднего экрана выделяют из топочного объма камеру догорания, на наклонном участке труб уложен слой огнеупорного кирпича толщиной 65мм. Объем топочной камеры -61,67 м3.
Для улучшения циркуляционных характеристик фронтового экрана на нем устанавливаются три рециркуляцинные трубы d89х4мм. Площадь лучевоспринимающей поверхности нагрева - 92,10м2.
Третьим блоком котла является блок конвективного пучка с двумя барабанами (верхним и нижним) внутренним диаметром 1000мм. Длина верхнего барабана 7000мм, нижнего - 5500мм. Толщина стенки барабана котла - 13мм, материал - сталь 16ГС. Ширина конвективного пучка по осям крайних труб 2320мм. В таком пучке отсутствуют пазухи для размещения пароперегревателя, что существенно улучшает омывание конвективного пучка.
Конвективный пучок выполнен из труб d51x2,5мм. Поперечный шаг в пучке составляет 110 мм, продольный - 90мм. Площадь поверхности нагрева конвективного пучка равна 417,8м2. Первые три ряда труб на входе в пучок имеют шахматное расположение с поперечным шагом S =220мм. Удвоение величины шага по сравнению с остальными рядами позволяет увеличить проходное сечение на входе в пучок, частично перекрытое потолком потолочной камеры.
Хвостовые поверхности состоят из одноходового по воздуху воздухоподогревателя с поверхностью нагрева 228 м2, обеспечивающего нагрев воздуха до 180 0С и установленного следом за ним по ходу газов чугунного экономайзера с поверхностью нагрева 646 м2.
Для сжигания каменных и бурых углей под котлом устанавливается механическая топка ТЧЗ-2,7/5.6. Активная площадь зеркала горения равна 13,4 м2. Решетка приводится в движение при. Помощи привода ПТ-1200, обеспечивающего 8 ступеней регулирования скорости движения в приделах 2,8 - 17,6 м/ч. Дутьевой короб под решеткой разделен на четыре воздушные зоны. Подача воздуха регулируется при помощи поворотных заслонок на воздуховодах. Котельная установка оборудована системой возврата уноса и острого дутья. Выпадающий в конвективном пучке унос оседает в четырех зольниках и возвращается в топочную камеру для дожигания при помощи воздушных эжекторов по прямым трубкам d76мм через заднюю стенку, восемь сопл острого дутья d2 мм расположены в задней стенке топки на высоте 1400мм от решетки.
1.7.1. Исходные данные и выбор коэффициента избытка воздуха
Ведем расчет котлоагрегата применительно к условиям проектируемого объекта: уголь марки ГР со следующими характеристиками
СР=55,2%, НР=3,8%, ОР=5,8%, WР=1,0%, SР=3,2%, АР=23%, NP=8%, QPH=22040КДж/кг, VГ=40%,
Величины коэффициента избытка воздуха за каждой поверхностью нагрева определяем последовательно
n=i+ (1.3)
где i - коэффициент избытка воздуха предыдущего газохода
- нормативный присос воздуха
Таблица 1.6
Коэффициенты избытка воздуха
№ п/п |
Газоход |
Коэффициент избытка воздуха за топкой. |
n |
||
1 |
Топка |
1,35 |
0,1 |
1,35 |
|
2 |
Конвективный пучок |
0,1 |
1,45 |
||
3 |
Воздухоподогреватель |
0,08 |
1,53 |
||
4 |
Водяной экономайзер |
0,1 |
1,63 |
||
1.7.2. Расчет обьемов и энтальпий воздуха и продуктов сгорания
Расчет теоретического объема воздуха
V0=0,0889*(Ср+0,375*Sрогр+к)+0,265*Нр-0,0333*Ор
V0=0,0889*(55,2+0,375*3,2)+0,265*3,8-0,0333*5*8=5,83 м3/кг
Расчет теоретических обьемов продуктов сгорания при =1 м3/кг
VORO2=1,866*(CP+0,375Sрогр+к)/100=1,866*(55,2+0,375*3,2)/100=1,0524
VONO2=0,79*V+0,08*Np=0,79*5,83+0,008*1=4,612
VOpO=0,111НР+0,0124WР+0,0161V0=0,111*3,8+0,0124*8+0,0161*5,83=0,6148
Таблица 1.7
Характеристики продуктов сгорания
№ |
Величина |
Ед. изм. |
Газоходы |
||||
1 |
3 |
4 |
5 |
6 |
7 |
||
1 |
Коэффициент избытка воздуха за топкой |
Т |
1,35 |
||||
2 |
Нормативный присос |
0,1 |
0,1 |
0,08 |
0,1 |
||
3 |
Коэффициент избытка воздуха за газоходом |
n |
1,35 |
1,45 |
1,53 |
1,63 |
|
4 |
Объем трехатомных газов. VRO2=V0RO2 |
м3/кг |
1,0524 |
1,0524 |
1,0524 |
1,0524 |
|
5 |
Объем двухатомных газов. VN2=V0N2+0.0161*V0 |
-“- |
6,943 |
7,526 |
8,109 |
8,285 |
|
6 |
Объем водяных паров VpO=V0pO+0,0161(- -1)* V0 |
-“- |
0,652 |
0,662 |
0,671 |
0,674 |
|
7 |
Суммарный объем дымовых газов VГ=VRO2+VN2+VpO |
-“- |
8,647 |
9,24 |
9,832 |
10,0114 |
|
8 |
Объемная доля трехатомных газов rRO=VRO2/VГ |
-“- |
0,122 |
0,114 |
0,107 |
0,105 |
|
9 |
Объемная доля водяных паров rpO=Vp0/VГ |
-“- |
0,197 |
0,186 |
0,176 |
0,077 |
|
10 |
Концентрация золы в дымовых газах, =Ар*ун/100*Vг |
-“- |
3,99 |
3,73 |
3,51 |
3,29 |
|
Таблица 1.8
Энтальпии теоретического объема воздуха и продуктов сгорания топлива, КДж/кг
, С |
I0=(ctв)*V0 |
I0RO2=(c)RO2* *V0RO2 |
I0N2=(c)N2*V0N2 |
I0pO=(c)pO* *V0pO |
I0 |
|
1 |
2 |
3 |
4 |
5 |
6 |
|
30 |
39*5,83=227,2 |
|||||
100 |
132*5,83=769,3 |
169*0,054= 187,13 |
4,62*130= 600,6 |
151*0,616= 92,87 |
871,596 |
|
200 |
286*5,83=1550,3 |
357*1,05= 376,3 |
260*4,62= 1201,2 |
304*0,615= 186,96 |
1764,44 |
|
300 |
403* …=2348,68 |
559* … 589,10 |
392*…1811,04 |
463*…284,75 |
2674 |
|
400 |
542*…=3158,76 |
772*…=813,69 |
527*…=2434,74 |
626*…=384,99 |
3633,42 |
|
500 |
664*…=3986,35 |
996*…=1049,78 |
664*…=3067,68 |
794*…=488,31 |
4605,89 |
|
600 |
830*…=4837,24 |
1222*…= 1287,99 |
804*…=3714,48 |
967*…=594,71 |
5597,18 |
|
700 |
979*…=5705,61 |
1461*…= 1539,89 |
946*…=4370,52 |
1147*…=705,41 |
6615,82 |
|
800 |
1130*…=6585,64 |
1704*…= 1796,02 |
1093*…= 5049,66 |
1335*…=821,03 |
766,71 |
|
900 |
1281*…=7465,67 |
1951*…= 2056,35 |
1243*…= 5742,66 |
1524*…=937,26 |
8736,27 |
|
1000 |
1436*…=8369,01 |
2202*…= 2320,91 |
1394*…= 6440,26 |
1725*…= 1060,86 |
9822,05 |
|
1200 |
1754*…=10222,31 |
2717*…= 2863,72 |
1695*…= 7890,9 |
2131*…= 1310,57 |
12005,19 |
|
1400 |
2076*…=12098,9 |
3240*…= 3414,96 |
2009*…= 9281,58 |
2558*…= 1573,17 |
14269,71 |
|
1600 |
2403*…=14004,66 |
3767*…= 3970,42 |
2323*…= 10792,28 |
3001*…= 1845,62 |
16548,3 |
|
1800 |
2729*…=15904,61 |
4303*…= 4535,36 |
2648*…= 12206,04 |
3458*…= 2126,67 |
18868,07 |
|
2000 |
3064*…=17856,9 |
4843*…= 5104,52 |
2964*…= 13963,68 |
3926*…= 8414,49 |
21212,69 |
|
Таблица 1.9
Энтальпия продуктов сгорания в газоходах
, С |
I0в, КДж/кг |
I0г, КДж/кг |
Газоходы и коэф-ты избытка воздуха |
||||
Т=1,35 |
kr=1,45 |
эк=1,53 |
вп=1,63 |
||||
Iг |
Iг |
Iг |
Iг |
||||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
|
30 |
227,2 |
||||||
100 |
871,596 |
1007,9 |
1015 |
||||
200 |
1764,44 |
1900,76 |
1964 |
||||
300 |
2674,98 |
2811,3 |
2870 |
||||
400 |
3633,42 |
3747,02 |
3754 |
||||
500 |
4605,89 |
4719,49 |
|||||
600 |
5597,18 |
5710,49 |
|||||
700 |
6615,82 |
6729,42 |
|||||
800 |
7666,71 |
7780,31 |
|||||
900 |
8736,37 |
8849,87 |
|||||
1000 |
9822,05 |
9912,93 |
9935,65 |
||||
1200 |
12005,19 |
12096,07 |
|||||
1400 |
14289,71 |
14360,59 |
|||||
1600 |
16548,3 |
16639,18 |
|||||
1800 |
18868,07 |
18958,95 |
|||||
2000 |
21212,69 |
21303,57 |
|||||
2200 |
23557,3 |
23648 |
|||||
Расчет теплового балнса котлоагрегата выполнен в табл. 1.10, а поверочный расчет поверхностей нагрева котлоагрегата приведен в табл. 1.11.
На основе результатов табл. 1.9 построена I-d- диаграмма продуктов сгорания, которая представлена на рис. 1.2.
Таблица 1.10
Расчет теплового баланса теплового агрегата
Наименование |
Обозначения |
Расчетная ф-ла, способ опр. |
Единицы измерения |
Расчет |
|
1 |
2 |
3 |
4 |
5 |
|
Распологаемая теплота |
Qpp |
Qpp=Qpн |
КДж/Кг |
22040 |
|
Потеря теплоты от мех. неполн. сгорания |
q3 |
по табл. 4.4 [4] |
% |
0,8 |
|
Потеря теплоты от мех. неполноты сгорания |
q4 |
по табл. 4.4 [4] |
% |
5 |
|
Т-ра уходящих газов |
ух |
исх.данные |
oC |
135 |
|
Энтальпия уходящих газов |
Iух |
по табл. 1.9 |
КДж/Кг |
1320 |
|
Т-ра воздуха в котельной |
tхв |
по выбору |
oC |
30 |
|
Энтальпия воздуха в котельной |
I0хв |
по табл. 1.8 |
КДж/Кг |
227,2 |
|
Потеря теплоты с уход. газами |
q2 |
% |
(1320-1,63x227)* *(100-5)/(22040)= =6,25 |
||
Потеря теплоты от нар. охлажден. |
q5 |
по рис 3.1 [4] |
% |
3,8 |
|
Потеря с физ. теплом шлаков |
q6 |
ашл*Iз*Ар/Qрн |
% |
0,15*1206* *23/22040=0,19 |
|
Сумма тепл. Потерь |
q |
% |
6,25+0,8+5+3,8+ +0,19=16,04 |
||
КПД катлоагрегата |
100-Q |
% |
100-16,04=83,96 |
||
Коэф. Сохранения теплоты |
1-q5/(+ q5) |
1-3,8/(83,96+3,8)= =0,957 |
|||
Производительность агрегата по пару |
D |
по заданию |
Кг/с |
25/3,6=6,94 |
|
Давление раб. тела |
P |
по заданию |
МПа |
1,4 |
|
Т-ра рабочего тела |
tнп |
по заданию |
oC |
195 |
|
Т-ра питательн. воды |
tпв |
по заданию |
oC |
104 |
|
Удельная энтальпия р.т. |
iнп |
по табл.vi-7[4] |
КДж/Кг |
2788,4 |
|
Удельная энт. питат. воды |
iпв |
по табл.vi-7[4] |
КДж/Кг |
439,4 |
|
Значение продувки |
n |
по задан. |
% |
4,8 |
|
Полезно исп. теплота вагрегате |
Q1 |
D*(iнп-iпв)+n* *D(Iкв-Iнп) |
кВт |
Q=6,94*(2788,4-439,4)+0,048*6,94*(830-439,4)= =16432,3 |
|
Полный расход топлива |
В |
Q1/Qрр |
Кг/с |
16432,3/0,8396* *22040=0,88 |
|
Расчетный расход |
Вр |
В*(1-q4/100) |
Кг/с |
0,88*(1-5/100)= =0,836 |
|
Таблица 1.11
Тепловой расчет котлоагрегата КЕ-25-14с
№ |
Наименование |
Обозначение |
Расчетная формула или способ определения |
Ед. изм. |
Расчет |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1 |
2 |
3 |
4 |
5 |
6 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Поверочный теплообмен в топке |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1. |
Температура холодного воздуха |
tв |
< p align="left">oC
Таблица 1.12 Сводная таблица теплового расчета котлоагрегата КЕ-25-14с
Расчетная невязка теплового баланса парогенератора, КДЖ/кг Q=Qрр*-(Qтл+Qкп+Qэк)*(1-Q4/100) Q = 22040*0,8396-(11202,9+7663,1+1241)*(1-5/100)=59,7 Q/Qрр = 59,7/22040*100 = 0,27% 0,5% 1.8. АЭРОДИНАМИЧЁСКИЙ РАСЧЕТ ТЯГОДУТЬЕВОГО ТРАКТА В условиях проектируемого объекта каждый котлоагрегат должен иметь свой дутьевой вентилятор и дымосос. Основными параметрами тягодутьевых машин являются их производительность и создаваемый напор. Дымососы и вентиляторы поставляются комплектно к котлоагрегату. Нам необходимо произвести аэродинамический расчет тягодутьевого тракта и определиться: достаточно ли будет рабочих давлений вентилятора и дымососа для преодаления аэродинамических сопротивлении тракта. В этом расчете определяются также сечения воздуховодов и газоходов. 1.8.1. АЭРОДИНАМИЧЕСКИЙ РАСЧЁТ ДУТЬЕВОГО ТРАКТА 1. Действительное количество воздуха, необходимое для полного сгорания топлива, м3/с. Vв =Vo*Вр*т*(tв+273)/273=5,83*0,836*1,35*(115+273)/273=9,35 где Вр - расчетный расход топлива. Вр=0,836 кг/с - из теплового расчета Vo - теоретический расход воздуха для сгорания 1кг топлива Vo=5,83 м3/кг - из теплового расчета т - коэффициент избытка воздуха в топке, т=1,35 2. Скорость воздуха по тракту, м/с =10 (приним аем) 3. Сечение главного тракта, м2 F=Vв/в=9,35/10 = 0,935 ахв=0,95*0,95 4. Сечение рукавов к дутьевым зонам, м2 f `=f /4 =0,935/4=0,234 ахв=0,4*0,6 5. Плотность воздуха при данной температуре, кг/м3 в=ов*273/(273+115)=1,293*273/(273+115)=0,91 6. Сумма коэффициент местных сопротивлений по тракту воздуха: патрубок забора воздуха =0,2; плавный поворот на 90°(5 шт.) =0,25*5=1,25; резкий поворот на 90° =l,l; поворот через короб f =2, направляющий аппарат =0,1; диффузор =0,1; тройник на проход - 3 шт. =0,35*3=1,05 =5,8 7. Потеря давления на местные сопротивления, Па hме=*/2* = 5,8*102/2*0,91=263,9 8. Сопротивление воздухоподогревателя, Па hвп=400 9. Аэродинамическое сопротивление топочного оборудования, Па hто=500 10. Полное аэродинамическое сопротивление воздушного тракта, Па hв=hме+hвп+hто=263,9+400+500=1163,9 11. Производительность вентилятора, м3/с (м3/ч) Qв=1,1*Vв=1,1*9,35=10,285 (37026) кг/с (м3/ч) 12. Полный напор вентилятора, Па Нв=1,2*hв=1,2*1163,9=1396,68 Тип и маркировка вентилятора выбирается из табл. 1.4.1 [3]. Принимаем дутьевой вентилятор ВДН-12,5 с характеристиками: производительность 39,10 тыс. м3/ч; полное давление 5,32 кПа, максимальный К.П.Д. 83%, мощность электродвигателя А02-92-4 N=100 кВт. 1.8.2. АЭРОДИНАМИЧЕСКОЕ СОПРОТИВЛЕНИЕ ТРАКТА ПРОДУКТОВ СГОРАНИЯ 1. Действительное количесгво продуктов сгорания, м3/с Vr=Vп*Вр=l0,0ll*0,836=8,37 где Vп - суммарный объем продуктов сгорания 1кг топлива = 10,011м3/кг(табл.1.7) 2. Температура продуктов сгорания за экономайзером, oC ух=135 oC (табл.1.10) 3. Объем продуктов сгорания перед дымососом, м3/с Vдг= Vг *(273+ух)/273=8,37*(273+135)/273=12,51 4. Плотность пропуктов сгорания при соответствующих температурах, кг/м3 =273/(273+i) - перед дымососом д=1,34*273/(273+132)=0,897 - перед дымовой трубой дт=1,34*273/(273+132)=0,903 5. Средняя скорость продуктов сгорания по тракту, м/с = 10 (принимается) 6. Сечение газоходов, м2 F=12,51/10=1,25 ахв=1,1*1,1 7. Сумма коэффициентов местных сопротивлений: - плавный поворот на 90°(2 шт.) =7*0,25=1,75; поворот на 90° через короб =2; направляющий аппарат =0,1; диффузор =0,1; поворот на 135°(3шт.) =3*1,5=4,5; тройник на проход =0,35; выход в дымовую трубу =1,1 =9.9 8. Потери напора в местных сопротивлениях, Па hме=*/2*=9,9*102/2*0.9 =445,5 9. Высота дымовой трубы, м H=8О 10. Скорость газов в дымовой трубе, м/с д=16 11. Внутренний диаметр устья трубы, м dу=SQRT(12,51*2*4/(3,14*16))=2 12. Диаметр основания трубы, м dосн=dу+0,02*Hтр=2+0,02*80=3,6 13. Средний диаметр трубы, м dср=dу+dосн=(2+3,6)/2=2,8 14. Потеря напора на трение в дымовой трубе, Пa hтр=*H/dср*2/2*=0,02*80/2,80*162/2*0,903=92,47 15. Сопротивление котлоагрегата, Па hк=1227 16. Самотяга в дымовой трубе, Па hсам=H*(в-г)*g=80(l,16-0,903)*9,8l=20l,7 Полное аэродинэмическое сопротивление тракта продуктов сгорания, Па h=hмс+hтр+hк-hсам=445,5+92, 47+1227-201,7=1563,27 18. Расчетная производительность дымососа, м3/с (М3/2) Qд=1,1*Vгд=1,1*12,51=13,81 (49702) 19. Расчетный напор дымососа, Па Hд=l,2*h=1,2*1563,27=1876 Тип и маркировка дымососа выбирается по табл. 14.4 [3]. Принимаем к установке дымосос ДН-15 с характеристиками: производительность 50 тыс. м3/ч; полное давление 2,26 кПа; максимальный К.П.Д. 82%; мощность электродвигателя А02-92-6 N= 75 кВт. 2. СПЕЦЧАСТЬ РАЗРАБОТКА БЛОЧНОЙ СИСТЕМЫ ПОДОГРЕВАТЕЛЕЙ В связи с реконструкцией котельной, которая заключается в переводе паровых котлоагрегатов КЕ-25 с производственного назначения на отопительно-производственное назначение, водогрейные котлы ТВГ-3 консервируются, а для получения тепловой энергии на отопление, вентиляцию и горячее водоснабжение административно-бытовых зданий шахтоуправлеия и жилых домов завода РКК «Энергия» в специальной части дипломного проекта разрабатывается блочная система подогревателей сетевой воды на отопление и подогревателей горячего водоснабжения, состаящая из пароводяных и водоводяных теплообменников. Надежность работы поверхностей нагрева котельных агрегатов и систем теплоснабжения зависит от качества питательной и подпиточной воды. Основной задачей подготовки воды в котельных является борьба с коррозией и накипью. Коррозия поверхностей нагрева котлов подогревателей и трубопроводов тепловых сетей вызывается кислородом и углекислотой, которые проникают в систему вместе с питательной и подпиточной водой. Качество питательной воды для паровых водотрубных котлов с рабочим давлением 1,4МПа в соответствии с нормативными документами должно быть следующим: - общая жесткость 0,02мг.экв/л, - растворенный кислород 0,03мг/л, - свободная углекислота - отсутствие. При выборе схем обработки воды и при эксплуатации паровых котлов качество котловой (продувочной) воды нормируют по общему солесодержанию (сухому остатку): величина его обуславливается конструкцией сепарационных устройств, которыми оборудован котел, и устанавливается заводом изготовителем. Солесодержание котловой воды для котлов КЕ-25-14с не должно превышать 3000 мг/л. 2. 1. ИСХОДНЫЕ ДАННЫЕ ВОДОСНАБЖЕНИЯ Источником водоснабжения котельной служит канал Северский Донец-Донбасс. Вода поступает в котельную с t=5°С в зимний период. Исходная вода имеет следующий состав, который представлен в таблице 2.1. Таблица 2.1. Анализ исходной воды
2.2. ВЫБОР СХЕМЫ ПРИГОТОВЛЕНИЯ ВОДЫ Выбор схемы обработки воды для паровых котлов проводится по трем основным показателям: - величине продувки котлов; - относительной щелочности котловой воды; - по содержанию углекислоты в паре. Сначала проверяется, допустима ли наиболее простая схема обработки воды натрий катионирования по этим показателям. Продувка котлов по сухому остатку, % определяется по формуле Рп=(Сх*Пк*100)/(Ск.в*x*Пк)=1072*0,123/(3000-1072*0,123)*100=4,6% где Сx - сухой остаток химически очищенной воды, мг/л, Cx=Св+2,96Н-10,84Н=1017+2,96*4,8+10,84*3,8=1072 мг/л Пк - суммарные потери пара; в долях паропроизводительности котельной Ск.в - сухой остаток котловой воды, принимается по данным завода изготовителя котлов Относительная щелочность котловой воды равна относительной щелочности химически обработанной воды, %, определяется по формуле Щ=40*Жк*100=40*4*100/1072=14,9% < 20% где 40 - эквивалент Щ мг/л Щi- щелочность химически обработанной воды, мг.экв/л, принимается для метода Na -катионирования, равной щелочности исходной воды (карбонатной жесткости). Количество углекислоты в паре определяется по формуле: Суг=22*Жк*0*(-")=22*4,0*0,19(0,4+0,7)=18,39 мг/л 18,39мг/л < 20мг/л где 0 - доля химически очищенной води в питательной; - доля разложения НСO3 в котле, при давлении 14кгс/см2(1,4МПа) принимается равной 0,7 - доля разложения НСO3 в котле, принимается равной 0,4 Производительность цеха водоподготовки принимаем из табл. 1.5 п.44 - количество сырой воды, поступающей на химводоочистку. Следовательно принимаем схему обработки воды путем натрий-катионирование. Gцр=Gс.в.=3,24кг/с=11,66 м3/ч 2.3. РАСЧЕТ ОБОРУДОВАНИЯ ВОДОПОДГОТОВИТЕЛЬНОЙ УСТАНОВКИ Расчет оборудования необходимо начинать с хвостовой части т.е. с натрий-катионитных фильтров второй ступени, т.к. оборудование должно обеспечить дополнительное количество воды, идущей на собственные нужды водоподготовки. 2.3.1. Натрий-катионитные фильтры второй ступени. Для сокращения количества устанавливаемого оборудования и его унификации принимают однотипные конструкции фильтров для первой и второй ступени. Для второй ступени устанавливаем дла фильтра: второй фильтр используется для второй ступени в период регенерации и одновременно является резервным для фильтров первой ступени катионирования. Принимаем к установке фильтр ФИПА 1-1, 0-6 Ду = 1000мм, Н=2м. Количество солей жесткости полдлежащих удалению определяется по формуле: Ап=24*0,1*Gцр=24*0,1*11,66=27,98 г.экв/сутки, где 0,1 - жесткость фильтрата после фильтров первой ступени катионирования, мг.экв/л Gцр - производительность натрий-катионитового фильтра, м3/ч Число регенерации фильтра в сутки: n=A/*h*E*nф=27,98/0,76*2*424*1=0,04 рег/сут. Где h - высота слоя катионита, м - площадь фильтрования натрий-катионитного фильтра, =0,76м2, табл.5 [3] n - число работающий фильтров E - рабочая обменная способность катионита,г.экв/м^ E=**Eп-0,5*g*0,1=0,94*0,82*550-0,5*7*0,1=424 г.экв/м3 где - коэффициент эффективности регенерации принимается по табл. 5-5 [5] =0,94 - коэффициент, учитывающий снижении обменной способности катионита по Са+ и Mg+ за счет частичного задержания катионов, принимается по табл. 5-6 [5] =0,82 Eп - полная обменная способность катионкта, г.экв/м3, принимается по заводским данным g - удельный расход воды на отмывку катионита м3/м3, принимается по табл. 5-4 [5] g=7 0,5 - доля умягчения отмывочной воды Межрегенерационный период работы фильтра t =1*24/0,04-2 = 598ч 2 - время регенерации фильтра, принимаем по табл. 5-4 [5] Скорость фильтрования ф=11,66/(0,76*1)=15,34м/ч Расход 100%-ной соли на одну регенерацию натрий-катионитного фильтра П ступени: QNaCl=424*0,76*2*350/1000=225,57 кг/рег где g - удельный расход соли на регенерацию фильтров, 350г.экв/м3 по табл. 5-4 [5] Объем 26%-ного насыщенного раствора соли на одну регенерацию составит: Qн.р=QNaCl*100/(1000*1,2*26)=225*57*100/(1000*1,2*26)=0,72м3 где 1,2 - удельный вес насыщенного раствора соли при t =20°С 26 - 26%-ное содержание соли NaCl в насыщенном растворе при t =20°С Расход технической соли в сутки Qтехн= QNaCl*100/93=225*57*0,04*100*1/93=9,7 кг/сут где 93 - содержание NaCl в технической соли, % Расход технической соли на регенерацию фильтров в месяц Qм=Qт*30=9,7*30=291 кг Расход воды на регенерацию натрий-катионитного фильтра слагается из: а) расхода воды на взрыхляющую промывку фильтра Вв=b*z/100=30*76*60*15/1000=2,05м3 где b - интенсивность взрыхляющей промывки фильтров л/м2 принимается по табл. 5-4 [5], b=30 л/м2 z - продолжительность взрыхляющей промывки, мин. принимается по табл. 5-4 [5], z=15 б) расхода воды на приготовление регенерационного раствора соли Врег=QNaCl*100/(1000*g*)=225,57*100/(1000*7*1,04)=3,1м3 где 100 - концентрация регенерационного раствора, принимается по табл. 5-4 [5] - плотность регенерационного раствора, принимается по табл. 15.6 [5], =1,04 кг/м3 в) расхода воды на отмывку катионита от продуктов регенерации: Вотм=q**tрег=7*0,76*2=10,64 м3 где q - удельный расход воды на отмывку катионита, принимается 7 м3/м3 по табл. 5-4 [5] Расход воды на одну регенерацию натрий-катионитного фильтра П-ой ступени с учетом использования отмывочных вод для взрыхления: Врег=2,05+3,1+(10,64-2,05)=13,74м3/рег Расход воды в сутки в среднем составит: Всут=13,74*0,04 = 0,55м3/сут Натрий-катионитные фильтры 1 ступени Принимаются к установки как и для второй ступени два фильтра = 1000мм, Н=2м. Количество солей жесткости подлежащих удалению определяется по формуле: A1=24*(К0-0,l)=24х(8,6-0,1)х11,66=2378,64 г.экв/л где Ж- общая весткость воды, поступающая в натрий-катионитные фильтры 0,1 - остаточная жесткость после первой ступени катионирования. Рабочая обменная способность сульфоугля при натрий-катионировани. Е=0,74*0,82*550-0,5*7*8,6=304 г.экв/м3 Число регенерации натрий-катионитных фильтров первой ступени: n=2378,64/(0,76*2*304*2)=2,57 рег/сут Межрегенерационный период работы каждого фильтра Т1=24*2/2,57-2=16,67 Нормальная скорость фильтрации при работе всех фильтров: ф=11,66/(0,76*2)=7,67 Максимальная скорость фильтрации (при регенерации одного из фильтров) ф=11,66/(0,76*(2-1))=15,34 м/ч Расход 100%-ной соли на одну регенерацию натрий-катионитного фильтра первой ступени QNaCl=304*0,76*2*150/1000=69,31 кг/рег Объем 26%-ного насыщенного раствора соли на одну регенерацию Q=69,31*100/(1000*1,2*26)=0,22 м3 Расход технической соли в сутки Qс=69,31*257*100*2/93=383,07 кг/сут Расход технической соли на регенерацию натрий-катионитных фильтров первой ступени в месяц Qм=30*383,07=11492 кг/мес. Расход воды на взрыхляющую промывку фильтра Впр=3*0,76*60*12/1000=2,05 м3 Расход воды на приготовление регенерационного раствора соли Врег=69,21*100/(1000*7*1,04)=0,95 м3 Расход воды на отмывку катионита Вотм=7*0,76*2=10,64 м3 Расход воды на одну регенерацию натрий-катионитного фильтра 1 ступени с учетом использования отмывочных вод для взрыхления В=2,05+0,95+(10,64-2,05)=11,59 м3/рег Расход воды на регенерацию натрий-катионитных фильтров 1 ступени в сутки Всут=11,59*2,57*2=59,57 м3/сут Среднечасовой расход воды на собственные нужды натрий-катионитных фильтров первой и второй ступени: в=59,57*0,55/24=2,51 м3/ч 2.4. РАСЧЕТ СЕТЕВОЙ УСТАНОВКИ 2.4.1. ТЕПЛОВОЙ РАСЧЕТ ВОДОВОДЯНОГО ПОДОГРЕВАТЕЛЯ Исходные данные: 1. Температура греющей воды (конденсата) на входе в подогреватель (табл. 1.4. п.34) Т1=165оС 2. Температура греющей воды (конденсата) на выходе из подогревателя (табл. 1.4 п.3З) Т2=80оС 3. Температура нагреваемой воды на входе в подогреватель (табл. 1.4 п.5) t2=70оС 4. Температура нагреваемой вода на выходе из подо- гревателя (табли.5 п.59) t1=82,34оС 5. Расчетный расход сетевой воды( табл. 1.5п .6) G=51,37кг/с РАСЧЕТ Принимаем к установке два водоводяных подогревателя. Так как в работе будут находиться две установки, то расход нагреваемой воды через одну установку составит: G1=G/2=51,37/2=25,68 кг/с Расход греющей воды определяем из уравнения теплового баланса подогревателя: G1*(t1-t2)*C=G2*(T1-T2)*C* где - коэффициент,учитывающий снижение тепловой мощности за счет потерь в окружающую среду, принимаем =0,96 G2=(25,68*(82,34-70))/((165-80)*0,96)=3,88 кг/с Средняя температура греющей воды Тср=(165+80)/2=122,5оС 7. Эквивалентный диаметр межтрубного пространства dэ=(D2-z*d2н)/(D-z*dн)=(0,2592-109*0,0162)/(0,259-109*0,016)=0,019559м 6. Скорость воды в трубках тр=G1/(тр*)=25,68/(0,01679*1000)=1,53 м/с 9. Скорость воды в межтрубном пространстве мтр=G2/(мтр*1000)=3,88/(0,03077*1000)=0,126 м/с 10. Коэффициент теплоотдачи от греющей воды к стенкам трубок 1=1,163*А1*0,8мтр/d0,2э=1,163*2567,99*1,530,8/0,0195590,2=1495,7 Вт/м2к где А1 - Температурный множитель, определяемыйп по формуле A1=1400+18*Тср-0,035*Т2ср=1400+10*122,5-0,035*122,52=3079,8 11. Коэффициент теплоотдачи от стенок трубок к нагреваемой воде 2=1,163*А2*0,8тр/d0,2э=1,163*2567,99*1,530,8/0,0140,2=9815,03 Вт/м2к где A2=1400+18*tср-0,035t2ср=1400+l8*76,17-0,035*76,172=2567,99 12. Коэффициент теплопередачи К0=1/(1/1+б/+1/2)=1/(1/1495,7+0,001/105+1/9815,03)=1283 Вт/м2к где б - толщина стенок латунных трубок - коэффициент теплопроводности латуни =105 Вт/мк при t =122оС Коэффициент теплопередачи с учетом коэффициента загрязнения поверхности нагрева: К=К0*m=1283*0,75=962,25 Вт/м2к где m - поправочный коэффициент на загрязнение и неполное омывание поверхности нагрева =0,75 13. Поверхность нагрева подогревателя Н=G1*C*(t1-t2)/(K*t)=25,68*4190*(82,34-70)*0,85/(962,25*34,44)=34,06 м2 14. Количество секций подогревателя Z=H/Fi=34,06/20,3=1,7 где Fi - поверхность нагрева одной секции водоподогревателя Принимаем 2 секции ГИДРАВЛИЧЕСКИЙ РАСЧЕТ ВОДОВОДЯНОГО ПОДОГРЕВАТЕЛЯ Потери напора воды в трубах 1. Внутренний диаметр трубок dвн=0,014м 2. Длина одного хода подогревателя: L=4м 3. Коэффициент трения / при средних значениях чисел Рейнольдса и коэффициенте шероховатости а=0,0002м принимаем равным 0,04 4. Коэффициенты местных сопротивлений для одной секции: вход в трубки - 1 выход из трубок - 1 поворот в колене - 1,7 Сумма коэффициентов местных сопротивлений =3,7 5. Потери напора воды в трубках для двух секций водоводяного подогревателя при длине хода 4м h=(*Z/dвн+)*2тр*/2=(0,04*4/0,014+3,7)*1,532*1000/2*2=354 МПа где - плотность воды, принимаем равной 1000м/м3 - количество секций подогревателя, соединенных последовательно - коэффициент трения Потери напора в межтрубном пространстве 1. Эквивалентный диаметр живого сечения межтрубного пространства dмтрэ=0,019559м 2. Коэффициент трения при средних значениях чисел Рейнольдса и коэффициенте шероховатости а=0,0002м и принимаем равным 0,04 3. Коэффициент местного сопротивления подогревателя по межтрубному пространству определяем по формуле: =13,5*мтр/п=0,03077/0,03765*13,5=11,03 где п - площадь сечения подходящего патрубка Средняя температура нагреваемой воды tср=(t1*t2)/2=(70+82,34)/2=76,17оС Среднелогарифмическая разность температур между греющей и нагре ваемой водой t=(tб-tм)/ln(tб-tм)=(82,66-10)/ln(82,66/10)=34,44оС Где tб - большая разность температур = 165-82,34 = 82,66 °С tм - меньшая разность температур = 80-70=10 °С Для сетевой установки типа БПСВ-14 к дальнейшему расчету выписываем конструктивные данные водоводяного подогревателя 140СТ 34-588-68 3 а) внутренний диаметр корпуса Двн = 259 мм б) наружный и внутренний диаметр трубок dн=16мм, dвн=14мм в) число трубок в живом сечении подогревателя Z=109 г) площадь живого сечения трубок тр=0,01679м2 д) площадь сечения межтрубного пространства мтр=0,03077м2 е) поверхность нагрева одной секции Fi=20,3м2 п=0,03765м2 мтр - площадь живого сечения межтрубного пространства принимаем м =0,03077м2 3 4. Потери напора воды в межтрубном пространстве двух секций водоводяного подогревателя hмтр=(0,04*4/0,019559+11,03)*(0,1262*1000)/2*2=305 Па где L - длина одного хода подогревателя, L=4м мтр - скорость воды в межтрубном пространстве, мтр=0,126м/с (из теплового расчета водоводяного подогревателя) =1000 - плотность воды в кг/м3 2.4.3. ТЕПЛОВОЙ РАСЧЕТ ПАРОВОДЯНОГО ПОДОГРЕВАТЕЛЯ Исходные данные: - Температура греющего пара при давлении 0,7 МПа (табл. 1.4 р.15) Т1=165°С - Температура нагреваемой воды на входе в подогреватель t2=82,34°С (табл. 1.5 п.59) - Температуру нагреваемой воды на выходе из подогревателя t1=150°С (табл. 1.4 п.3) 1. Количество теплоты расходуемое в подогревателе Q=25,68*4190*(150-82,34)*10-6=7,28 МВт где G1=25,68 кг/с - расход нагреваемой воды (из теплового расчета водоводяного подогревателя) 2. В сетевой установке БЛСВ-14 в качестве пароводяного подогревателя принят подогреватель 050СT 34-577-69. Из табл. 3 выписываем его техническую характеристику: а) поверхность нагрева Н =53,9м2 б) наружный диаметр Дн = 630мм в) длина трубок L =3м г) внутренний диаметр корпуса D =616мм д) число трубок Z=392 шт. е) диаметр латунных трубок 16мм ж) приведенное количество трубок в вертикальном ряду Zпр=17,8 шт. з) площадь живого сечения межтрубеого пространства мтр=0,219м2 и) площадь живого сечения одного хода трубок тр=0,0151м2 Скорость воды в трубках: тр=25,68/(0,0151*1000)=1,7 м/с 4. Средняя температура нагреваемой воды tср=(150+82,34)/2=116,2 оС 5. Среднелогарифмическая разность температур между паром и водой: t=(82,66-15)/(82,66/15)=39,64 оС где tб - большая разность температур tб=165-82,34=82,66 оС tм - меньшая разность температур tм=165-150=15 оС 6. Средняя температура стенок трубок tстср=(Tср+ tср)/2=(165+116,2)/2=140,6 оС 7. Коэффициент теплоотдачи от пара к стенкам трубок 1=А2*1,163/(Zпр*dн*(T-tстср))=4*8352,6*1,163/(17,8*0,016*(165-140,6))=5983 Вт/м2к где А2 - температурный множитель, определяемый по формуле А2=4320+47,54*Т-0,14*Т2=4320+47,54*165-0,14*1652=8352,6 8. Коэффициент теплоотдачи от стенок трубок кводе: 2=А1*1,163*0,8тр/d0,2вн=3019*1,163*1,70,8/0,0140,2=12602 Вт/м2к где A1 - температурный множитель ,определяемый по формуле A1 = 1400+18*tср-0,035*t2ср=1400+18*116,2-0,035*116,22=3019 9. Коэффициент теплопередачи К0=1/(1/1+0,001/+1/2)=1/(1/5983+0,001/105+1/12602)=3914 Вт/м2к Коэффициент теплопередачи с учетом коэффициента загрязнения поверхности нагрева: К=3914*0,75 = 2935,5 Вт/м2к где 0,75- поправочный коэффициент на загрязнение и неполное смывание поверхности нагрева, m = 0,75 10. Поверхность нагрева пароводяного подогревателя H=7,28*106/(2935,5*39,64)=62,56 м2 11. Количество подогревателей Z=60,4/53,9=1,16 Принимаем 2 рабочих 2.4.4. ГИДРАВЛИЧЕСКИЙ РАСЧЕТ ПАРОВОДЯНОГО ПОДОГРЕВАТЕЛЯ Потери напора в трубках пароводяного подогревателя определяются по формуле: h=hтр+hмс=(*L/dэ*Z+)*тр*/2=(0,04*3/0,014*4+13,5)*1,72*1000/2=69050 Па где hтр - потери напора на трение hмс - потери напора на местные сопротивления - коэффициент трения, принимаемый при средних значениях чисел Рейнольдса и коэффициенте шероховатости = 0,0002м равным 0,04 -плотность воды, 1000 кг/м3 L - длина одного хода пароводяного подогревателя, принимаем 3м Z - количество ходов подогревателя, в данном дипломном проекте расчитывается четырехходовой пароводяной подогреватель - сумма коэффициентов местных сопротивлений. Коэффициент местных сопротивлений для четырехходового пароводяного подогревателя вход в камеру - 1,5 вход из камеры в трубки 1х4 - 4 выход из трубок в камеру 1х4 - 4 поворот на 180o в камере - 2,5 выход из камеры - 1,5 Сумма коэффициентов местных сопротивлений для четырехходового пароводяного подогревателя марки 050СТ 34-577-68 будет составлять =13,5 3. ТЕХНИКО-ЭКОНОМИЧЕСКАЯ ЧАСТЬ В технико-экономическом разделе дипломного проекта производится сравнение использованных двух видов топлива на реконструируемой котельной: Основного - угля ГР и перспективного - газа от дегазации газовых выбросов шахт, а также определяется сметная стоимость строительных и монтажных работ. Технико-экономические расчеты производятся в гривнах с использованием переводных индексов стоимости строительно-монтажных работ в цены 1993г., коэффициентов рыночных отношений, а также индекса удорожения цен 1997г. к ценам 1995г. Тогда общий переводный индекс для строительно-монтажных работ: 80,6*1013*1,8562*10-5=1,516 и для оборудования 48,2*3452*1,8562*10-5=3,03 3.1. ИСХОДНЫЕ ДАННЫЕ 1. Годовая выработка тепловой энергии, ГДж Qвырг=Qгтп+Qсн (3.1) где Qгтп - годовая отпущенная тепловая энергия, Qсн - годовой расход тепловой энергии на обственные нужды котельной, Qсн = 15*Qот Qгтп=Qопов*nоп*3,6+Qзгв*nоп*3,6+Qлгв*(8400-nоп)*3,6+Qлтех*(8400-nоп)*3,6+Qзтех*nоп*3,6 (3.2) где nоп - число часов отопительного периода, nоп=4320( табл. 1.1) Qзгв - расчетный расход тепловой энергии в зимний период, Qзгв = 1,36 МВт (табл. 1.2) Qлгв - то же в летний период, Qлгв = 0,963 МВт (табл. 1.3) Qтех - расход тепловой энергии на технологию в зимний и летний периоды Qзтех = 11,69 МВт, Qлтех = 1,24 МВт (табл.1.3) Qопов - расход тепловой энергии за отопительный период на отопление и вентиляцию, МВт Qопов= Qров*(tвп-tсроп)/(tвп-tро)=15,86*(18+1,6)/(18+24)=7,4 Qгопт - годовая отпущенная тепловая энергия Qсн - годовой расход тепловой энергии на собственные нужды котельной Qсн=0,15*Qот Тогда: Qготп=7,4*4320*3,6+1,36*4320*3,6+0,963(8400-4320)*3,6+1,24(8400-4320)*3,6+11,69*4320*3,6 =350396 ГДж/г Qгвыр=350396+0,15*350396=402955,4 ГДж/г 2.Годовой расход топлива, т/год уголь Вг=Кптх * Qгвыр / ку * Qрн где Кпт - коэффициент, учитывающий потери топлива для угля - Кпт =1,07; для газа дегазации Кпт =1,05 ку - к.п.д. брутто котельной, для угля ку =83,96%, для газа ку =0,93 -при сгорании каменного угля Вкт=1,07*402955,4/0,8396*22040=25298 т/г -при сгорании газа от дегазации Вгт=1,05*402955,4*106/0,93*39750=11,44*106 м3/год 3.Стоимость угля по фабрике 101,6 руб за 1т Стоимость газа дегазации 84,4 руб. за 103 м3 4.Цена за воду 0,560 руб. за 1м3 для шахтных котельных 5.Цена за 1 кВт/ч потребляемой электроэнергии Сд=0,06 руб., а за 1 кВт установленной мощности Сд=0,07 руб. 6.Штатное расписание котельной при работе: на угле - 22 человека, в том числе ИТР - 3 чел., рабочих - 17 чел., механизаторы - 2 чел. на газе дегазации - 18 чел., в т.ч. ИТР - 3 чел., рабочих - 15 чел., механизатор - 1 чел. 7.Годовые амортизационные отчисления: -по зданиям и сооружениям - 5,5% -по оборудованию - 12,5% 8.Месячный фонд зароботной платы с премиями и начислениями на одного работающего по котельной. Аср=170 руб. 9.Установленная мощность котлоагрегатов. Qуст=28,91 МВт (табл. 1.3) 10.Годовой расход воды, м3 Свг=Сзсв*nоп+Слсв(8400-nоп) где Свг ,Сзсв - расход воды в зимний и летний периоды (табл. 1.5. п.44), м3/ч Свг=11,66*4320+4,03(8400-4320)=66813,6 м3/ч 11.Установленная мощность токоприемников, кВа Nу=Эуд*Qуст где Эуд - удельная установленная мощность электродвигателей, кВт/МВт. При Qуст = 28,91 МВт по табл. 10.6 для каменного угля Эуд = 12,4 кВт/МВт и для газа дегазации Эуд = 13,05 кВт/МВт Тогда установленная мощность токоприемников, кВа при сгорании каменного угля Nуу = 12,4 * 28,91 = 358,5 и при сгорании газа (метана) от дегазации Nгу = 13,05 * 28,91 = 377,28 12. Расход электроэнергии, кВт/год Эг=Nу*Ки*Т Эуг=358,5*0,7*3872=971,678*103 кВт*ч Число часов использования электрической мощности при средней нагрузке Т=Qгвых/(Qуст*3,6)=402955,4/(28,91*3,6)=3872 3.2. РАСЧЕТ ДОГОВОРНОЙ СТОИМОСТИ СТРОИТЕЛЬНО-МОНТАЖНЫХ РАБОТ В табл. 3.1 приведены капитальные затраты производственно-отопительной котельной с двумя паровыми котлоагрегатами КЕ-25 для закрытой системы теплоснабжения. Здание котельной из железобетонных панелей. В табл. 3.1 приведены цены 1984г. Таблица 3.1 Сводка затрат на строительство котельной
На основании денных таблицы 3.1 производим расчет договорной цены. В целях большей наглядности базисная стоимость строительномонтажных работ в составе договорной цены определена отдельно по каждой составляющей строительной части и монтажной. Расчет договорной цены приведен в таблице 3.2. Проект котельной предусматривает в дальнейшем перевод работы котельной с каменного угля на газ-метан от дегазации шахтных газов. При этом капитальные затраты увеличатся за счет строительства, монтажа и приобретения оборудования по дегазации: в том числе на строительно-монтажные работы - 36,4 тыс.руб.. и на оборудование - 16,2 тыс.руб.. И тогда все строительно-монтажные работы котельной при работе на газе-дегазации составят 157,04 тыс.руб., а стоимость оборудования составит 1872,92 тыс.руб. Таблица 3.2 Расчет договорной цены на строительство котельной
|
! | Как писать курсовую работу Практические советы по написанию семестровых и курсовых работ. |
! | Схема написания курсовой Из каких частей состоит курсовик. С чего начать и как правильно закончить работу. |
! | Формулировка проблемы Описываем цель курсовой, что анализируем, разрабатываем, какого результата хотим добиться. |
! | План курсовой работы Нумерованным списком описывается порядок и структура будующей работы. |
! | Введение курсовой работы Что пишется в введении, какой объем вводной части? |
! | Задачи курсовой работы Правильно начинать любую работу с постановки задач, описания того что необходимо сделать. |
! | Источники информации Какими источниками следует пользоваться. Почему не стоит доверять бесплатно скачанным работа. |
! | Заключение курсовой работы Подведение итогов проведенных мероприятий, достигнута ли цель, решена ли проблема. |
! | Оригинальность текстов Каким образом можно повысить оригинальность текстов чтобы пройти проверку антиплагиатом. |
! | Оформление курсовика Требования и методические рекомендации по оформлению работы по ГОСТ. |
→ | Разновидности курсовых Какие курсовые бывают в чем их особенности и принципиальные отличия. |
→ | Отличие курсового проекта от работы Чем принципиально отличается по структуре и подходу разработка курсового проекта. |
→ | Типичные недостатки На что чаще всего обращают внимание преподаватели и какие ошибки допускают студенты. |
→ | Защита курсовой работы Как подготовиться к защите курсовой работы и как ее провести. |
→ | Доклад на защиту Как подготовить доклад чтобы он был не скучным, интересным и информативным для преподавателя. |
→ | Оценка курсовой работы Каким образом преподаватели оценивают качества подготовленного курсовика. |
Курсовая работа | Деятельность Движения Харе Кришна в свете трансформационных процессов современности |
Курсовая работа | Маркетинговая деятельность предприятия (на примере ООО СФ "Контакт Плюс") |
Курсовая работа | Политический маркетинг |
Курсовая работа | Создание и внедрение мембранного аппарата |
Курсовая работа | Социальные услуги |
Курсовая работа | Педагогические условия нравственного воспитания младших школьников |
Курсовая работа | Деятельность социального педагога по решению проблемы злоупотребления алкоголем среди школьников |
Курсовая работа | Карибский кризис |
Курсовая работа | Сахарный диабет |
Курсовая работа | Разработка оптимизированных систем аспирации процессов переработки и дробления руд в цехе среднего и мелкого дробления Стойленского ГОКа |