1. Что понимается под экосистемой? Энергетические потоки в экосистеме
Экосистема - основное понятие экологии. Это совокупность сосуществующих видов растений, животных, грибов, микроорганизмов, взаимодействующих между собой и с окружающей их средой обитания таким образом, что такое сообщество может сохраняться и функционировать на протяжении длительного периода геологического времени. Сообщества взаимодействующих живых организмов представляют собой не случайный набор видов, а вполне определенную систему, достаточно устойчивую, связанную многочисленными внутренними связями, с относительно постоянной структурой и взаимообусловленным набором видов. Такие системы принято называть биотическими сообществами, или биоценозами (от лат. - "биологическое сообщество"), а системы, включающие совокупность живых организмов и среду их обитания, - экосистемами. Термин "биогеоценоз", также обозначает совокупность биологического сообщества и среды его обитания, но в несколько ином контексте. Биотическое сообщество состоит из сообщества растений, сообщества животных, сообщества микроорганизмов. Все организмы Земли и среда их обитания также представляют собой экосистему высшего ранга - биосферу. Биосфера также обладает устойчивостью и другими свойствами экосистемы.
Экология рассматривает взаимодействие живых организмов и неживой природы. Это взаимодействие, во-первых, происходит в рамках определенной системы (экологической системы, экосистемы) и, во-вторых, оно не хаотично, а определенным образом организовано, подчинено законам. Экосистемой называют совокупность продуцентов, консументов и детритофагов, взаимодействующих друг с другом и с окружающей их средой посредством обмена веществом, энергией и информацией таким образом, что эта единая система сохраняет устойчивость в течение продолжительного времени. Таким образом, для естественной экосистемы характерны три признака:
1) экосистема обязательно представляет собой совокупность живых и неживых компонентов
2) в рамках экосистемы осуществляется полный цикл, начиная с создания органического вещества и заканчивая его разложением на неорганические составляющие;
3) экосистема сохраняет устойчивость в течение длительного времени, что обеспечивается определенной структурой биотических и абиотических компонентов.
Примерами природных экосистем являются озеро, пещера, лес, пустыня, тундра, океан, биосфера. Как видно из примеров, более простые экосистемы входят в состав более сложно организованных. При этом реализуется иерархия организации систем, в данном случае экологических. Таким образом, устройство природы следует рассматривать как системное целое, состоящее из вложенных одна в другую экосистем, высшей из которых является уникальная глобальная экосистема - биосфера.
Организмы в экосистеме связаны общностью энергии и питательных веществ, которые необходимы для поддержания жизни. Главным источником энергии для подавляющего большинства живых организмов на Земле является Солнце. Фотосинтезирующие организмы (зеленые растения, цианобактерии, некоторые бактерии) непосредственно используют энергию солнечного света. При этом из углекислого газа и воды образуются сложные органические вещества, в которых часть солнечной энергии накапливается в форме химической энергии. Органические вещества служат источником энергии не только для самого растения, но и для других организмов экосистемы. Высвобождение заключенной в пище энергии происходит в процессе дыхания. Продукты дыхания - углекислый газ, вода и неорганические вещества - могут вновь использоваться зелеными растениями. В итоге вещества в данной экосистеме совершают бесконечный круговорот. При этом энергия, заключенная в пище, не совершает круговорот, а постепенно превращается в тепловую энергию и уходит из экосистемы. Поэтому одним из условием существования экосистемы является постоянный приток энергии извне (рис.1).
Рис. 1 - Суммарный поток энергии (темные стрелки) и круговорот веществ (светлые стрелки) в экосистеме
Но, тем не менее, основой любой экосистемы, ее фундаментом являются пищевые (трофические) и сопутствующие им энергетические связи. В них постоянно происходит перенос Вещества и энергии, которые заключены в пище, созданной преимущественно растениями. Перенос потенциальной энергии пищи, созданной растениями, через ряд организмов путем поедания одних видов другими называется цепью питания или пищевой цепью, а каждое ее звено - трофическим уровнем (рис. 2).
Рис. 2 - Цепи питания в африканской саванне
Первый трофический уровень образуют продуценты (растения), второй - первичные консументы (растительноядные животные), третий - вторичные консументы (плотоядные животные и паразиты). Поскольку каждый организм имеет несколько источников питания и сам является объектом питания для других организмов из одной и той же пищевой цепи или даже из разных (всеядные организмы, например человек, медведь, воробей, потребляют как продуцентов, так и консументов, т. е. живут на разных трофических уровнях), цепи питания многократно разветвляются и переплетаются в сложные пищевые сети (рис.3).
Рис. 3 - Сети питания в экологической системе
Существуют два основных типа пищевых цепей - пастбищные (цепи выедания, или цепи потребления) и детритные (цепи разложения). Пастбищные цепи начинаются с продуцентов: клевер ->кролик -> волк; фитопланктон (водоросли) -> зоопланктон (простейшие) ->плотва -> щука -> скопа.
Детритные цепи начинаются от растительных и животных остатков, экскрементов животных - детрита; идут к микроорганизмам, которые ими питаются, а затем к мелким животным (детритофагам) и к их потребителям - хищникам. Детритные цепи наиболее распространены в лесах, где большая часть (более 90%) ежегодного прироста биомассы растений не потребляется непосредственно растительноядными животными, а отмирает, подвергаясь разложению (сапротрофными организмами) и минерализации. Типичным примером детритной пищевой связи наших лесов является следующий: листовая подстилка -> дождевой червь -> черный дрозд-> ястреб-перепелятник. Кроме дождевых червей, детритофагами являются мокрицы, клеши, ногохвостки, нематоды и др.
Экологические пирамиды. Пищевые сети внутри каждого биогеоценоза имеют хорошо выраженную структуру. Она характеризуется количеством, размером и общей массой организмов - биомассой - на каждом уровне цепи питания. Для пастбищных пищевых цепей характерно увеличение плотности популяций, скорости размножения и продуктивности их биомасс. Снижение биомассы при переходе с одного пищевого уровня на другой обусловлено тем, что далеко не вся пища ассимилируется консументами. Так, например, у гусеницы, питающейся листьями, в кишечнике всасывается только половина растительного материала, остальное выделяется в виде экскрементов. Кроме того, большая часть питательных веществ, всасываемых кишечником, расходуется на дыхание и лишь 10-15% в конечном счете используется на построение новых клеток и тканей гусеницы. По этой причине продукция организмов каждого последующего трофического уровня всегда меньше (в среднем в 10 раз) продукции предыдущего, т. е. масса каждого последующего звена в цепи питания прогрессивно уменьшается. Эта закономерность получила название правило экологической пирамиды (рис.4).
Рис. 4 - Упрощенная экологическая пирамида
Различают три способа составления экологических пирамид:
1.Пирамида численностей отражает численное соотношение особей разных трофических уровней экосистемы. Если организмы в пределах одного или разных трофических уровней сильно различаются между собой по размерам, то пирамида численностей дает искаженные представления об истинных соотношениях трофических уровней. Например, в сообществе планктона численность продуцентов в десятки и сотни раз больше численности консументов, а в лесу сотни тысяч консументов могут питаться органами одного дерева - продуцента.
2. Пирамида биомасс показывает количество живого вещества, или биомассы, на каждом трофическом уровне. В большинстве наземных экосистем биомасса продуцентов, т. е. суммарная масса растений наибольшая, а биомасса организмов каждого последующего трофического уровня меньше предыдущего. Однако в некоторых сообществах биомасса консументов I порядка бывает больше биомассы продуцентов. Например, в океанах, где основными продуцентами являются одноклеточные водоросли с высокой скоростью размножения, их годовая продукция в десятки и даже сотни раз может превышать запас биомассы. Вместе с тем, вся образованная водорослями продукция так быстро вовлекается в цепи питания, что накопление биомассы водорослей мало, но вследствие высоких темпов размножения небольшой их запас оказывается достаточным для поддержания скорости воссоздания органического вещества. В связи с этим в океане пирамида биомасс имеет обратное соотношение, т. е. «перевернута». На высших трофических уровнях преобладает тенденция к накоплению биомассы, так как длительность жизни хищников велика, скорость оборота их генераций, наоборот, мала, и в их теле задерживается значительная часть вещества, поступающего по цепям питания.
3. Пирамида энергии отражает величину потока энергии в цепи питания. На форму этой пирамиды не влияют размеры особей, и она всегда будет иметь треугольную форму с широким основанием внизу, как это диктуется вторым законом термодинамики. Поэтому пирамида энергии дает наиболее полное и точное представление о функциональной организации сообщества, о всех обменных процессах в экосистеме. Если пирамиды чисел и биомасс отражают статику экосистемы (количество и биомассу организмов в данный момент), то пирамида энергии - динамику прохождения массы пищи через цепи питания. Таким образом, основание в пирамидах чисел и биомасс может быть больше или меньше, чем последующие трофические уровни (в зависимости от соотношения продуцентов и консументов в различных экосистемах). Пирамида энергии всегда суживается кверху. Это обусловлено тем, что энергия, затраченная на дыхание, не передается на следующий трофический уровень и уходит из экосистемы. Поэтому каждый последующий уровень всегда будет меньше предыдущего. В наземных экосистемах уменьшение количества доступной энергии обычно сопровождается снижением численности и биомассы особей на каждом трофическом уровне. Вследствие таких больших потерь энергии на построение новых тканей и дыхание организмов цепи питания не могут быть длинными; обычно они состоят из 3-5 звеньев (трофических уровней).
Знание законов продуктивности экосистем, возможность количественного учета потока энергии имеют важное практическое значение, поскольку продукция природных и искусственных сообществ является основным источником запасов пищи для человечества. Точные расчеты потока энергии и масштабов продуктивности экосистем позволяют регулировать в них круговорот веществ таким образом, чтобы добиваться наибольшего выхода необходимой для человека продукции.
2. Связи и взаимоотношения организмов в экосистеме (перечислить и указать их значение)
Ни один организм в природе не существует вне экосистем. И проявляется это в первую очередь в наличии огромного количества взаимосвязей данного организма с другими организмами и с абиотическими факторами. Эти связи - основное условие жизни организмов и их сообществ. Через эти связи реализуются механизмы круговорота биогенных веществ, механизмы передачи энергии, механизмы устойчивости экосистем. Эти связи настолько отточены ходом эволюционного процесса, что нарушение хотя бы одной из них может повлечь за собой цепь необратимых последствий вплоть до гибели экосистемы, точнее, вплоть до коренной перестройки ее структуры или замене другой экосистемой, как правило, более бедной. Это обязательно должен помнить человек, вмешиваясь в природу своей производственной деятельностью. Согласно третьему закону Коммонера, любое такое вмешательство, как правило, неблагоприятно для природы. Поэтому мы должны знать, что, преобразуя природу, мы очень часто выступаем в роли “убийц надсистем”, которые в некоторых случаях по сложности связей намного превышают сложность организации любого живого организма (в общепринятом понимании этого термина).
Взаимосвязи между организмами можно разделить на межвидовые и внутривидовые. Внутривидовые связи мы будем рассматривать более подробно при изучении динамики популяций. Здесь же мы остановимся на межвидовых отношениях, которые оказывают наибольшее влияние на организацию экосистем. Эти взаимосвязи обычно классифицируются по “интересам”, на базе которых организмы строят свои отношения:
1) пищевые (трофические) связи - формируют трофическую структуру экосистемы, которую мы уже рассмотрели ранее; помимо отношений, когда одни организмы служат пищей другим, сюда же можно отнести отношения между растениями и насекомыми-опылителями цветов, конкурентные отношения из-за похожей пищи и др.; это самый распространенный тип связей;
2) топические связи (от греческого слова топос - место) - основаны на особенностях местообитания, например, отношения между деревьями и гнездящимися на них птицами, живущими на них насекомыми, отношения между организмами и их паразитами и т.п.;
3) форические связи (от латинского слова форас - наружу) - отношения по распространению семян, плодов и т.п.;
4) фабрические связи (от латинского слова фабрикато - изготовление) - использование растений, пуха, шерсти для постройки гнезд, убежищ и т.п.
Воздействие популяций двух видов друг на друга теоретически можно выразить в виде следующих комбинаций символов: (0,0), (-,-), (+,+), (+,0), (-,0), (+,-). Здесь “0” - отсутствие какого-либо воздействия; “+” - положительное воздействие одного вида на другой; “- “ - отрицательное воздействие. В результате мы получаем следующие основные виды взаимодействий.
(+,+) - симбиоз (протокооперация и мутуализм)
Эти отношения взаимовыгодны для обоих партнеров. Подобные ассоциации между разными видами очень распространены в природе и играют крайне важную роль в эволюции разрозненного сообщества живых организмов в целостную надсистему вплоть до единого живого организма. Именно в этих отношениях формируется наибольшее количество синергетических эффектов, перерастающих в конечном итоге в ярко выраженные эмерджентные свойства надсистемы.
В симбиозе оба партнера оказываются взаимозависимыми друг от друга. Степень этой взаимозависимости может быть самой разной: от протокооперации, когда каждый из партнеров вполне может существовать самостоятельно при разрушении симбиоза, до мутуализма, когда оба партнера настолько взаимозависимы, что удаление одного из партнеров приводит к неминуемой гибели их обоих.
Примером протокооперации могут служить отношения крабов и кишечнополостных, которые прикрепляются к крабам, маскируя и защищая их своими стрекательными клетками. В то же время они используют крабов как транспортные средства и поглощают остатки их пищи.
Ярким примером мутуализма являются лишайники. Долгое время было непонятно, относить ли лишайники к грибам или к водорослям. Оказалось, что лишайник - это симбиотическая система гриба и водоросли, функциональная и морфологическая связь которых настолько тесна, что их можно рассматривать как особого рода организм, не похожий ни на один из слагающих его компонентов. Поэтому лишайники обычно классифицируют не как симбиозы двух видов, а как отдельные виды живых организмов. Водоросль поставляет грибу продукты фотосинтеза, а гриб, будучи редуцентом, поставляет для водоросли минеральные вещества и, кроме того, является субстратом, на котором она живет. Это позволяет существовать лишайникам в крайне суровых условиях.
Случаи мутуализма чаще всего встречаются у организмов именно с разными потребностями. Очень часто, например, такие отношения возникают между автотрофами и гетеротрофами. При этом они как бы взаимодополняют друг друга. То есть в мутуализме наиболее полно проявляется принцип дополнительности, как наиболее фундаментальный закон природы. Ущербная в каком-то отношении биосистема стремится найти партнера, способного “закрыть” эту ущербность, но по-своему тоже ущербного, чья ущербность закрывается первым партнером. Это еще не мутуализм, а протокооперация. Совместная эволюция таких партнеров способствует более узкой специализации каждого из них, при этом их изначальная ущербность становится еще более явной. Но это энергетически более выгодно для системы в целом, поэтому такая система приобретает большую жизнеспособность. Однако каждый из компонентов в отдельности становится крайне уязвимым.
Подобные механизмы в природе не редкость. Протон объединяется с электроном, обнуляя тем самым общий электрический заряд получаемого в результате атома водорода. Атомы двух разных химических элементов сливаются в молекулу, объединяя свои внешние электронные оболочки, чтобы создать одну общую оболочку с полным комплектом электронов. Мужчина и женщина, являясь полными противоположностями друг другу, объединяются в семью, которая, как правило, гораздо более гармонична, чем каждый из людей в отдельности (“посему оставит человек отца и мать и прилепится к жене своей, и будут два одною плотью, так что они уже не двое, но одна плоть” [Мф 19:5-6]). В таких системах количество взаимодействий с внешним миром гораздо меньше, чем в разобщенном состоянии. То есть такие системы более независимы от внешнего мира. Именно минимум напряжений в отношениях с внешним миром отличает состояние гармонии, то есть наиболее устойчивое состояние, энергетически наиболее выгодное. Таким образом, объединение противоположных в каких-то отношениях живых существ в симбиозы есть прямое следствие принципа оптимальности.
Именно по пути укрепления симбиозов эволюционировали многие исходные формы жизни, прежде чем они становились едиными живыми организмами. Например, микроорганизмы, населяющие пищевой тракт жвачных животных, вовсе не являются частью организма коровы. Но только они способны образовывать из клетчатки, съеденной коровой, жирные кислоты, которые корова может ассимилировать. Непосредственно клетчатку коровы переваривать не могут, и поэтому они погибнут от голода , если стерилизовать их пищевой тракт, даже если кругом изобилие трав. Бактерии в свою очередь в пищевом тракте коровы обеспечиваются стабильной средой с постоянной температурой.
Очень богаты симбиотическими отношениями экосистемы. Общеизвестны, например, отношения мутуализма между корнями деревьев и грибницей (микроза), без которого не может быть северного леса (этот пример мы рассматривали раньше). Такая мутуалистическая система, как сосна-микроза, способна выжить даже на почвах, разрушенных интенсивным возделыванием сельскохозяйственных монокультур. Особо сложные симбиотические отношения сложились во влажных тропических лесах, что делает практически невозможным их восстановление после сплошных рубок, например, в бассейне Амазонки.
(+,0) - комменсализм
Это слово произошло от французского слова комменсал - сотрапезник. Отношения комменсализма положительны для одного партнера и безразличны для другого. Частные случаями комменсализма:
1) нахлебничество - один организм питается остатками пищи другого, например, взаимоотношения львов и гиен, акул и рыб-прилипал и т.п.;
2) сотрапезничество - потребление разных частей или веществ одной и той же пищи или последовательная переработка одного и того же вещества; примером могут служить отношения между сапротрофами, разлагающими органику до минеральных веществ, и высшими растениями, которые потребляют эти вещества; другими примером являются копрофаги, питающиеся экскрементами других животных;
3) квартирантство (сожительство) - одни организмы используют другие как убежища или транспорт, например, рыба горчак откладывает икру в мантию двустворчатого моллюска, не принося ему вреда, многие насекомые обитают в гнездах птиц и норах грызунов, и т.п.
Комменсализм является наиболее простым типом положительных взаимодействий, являющимся, по-видимому, первым шагом к симбиозу.
(+,-) - хищничество и паразитизм
Эти отношения положительны для одного вида и отрицательны для другого. Несмотря на кажущиеся отличия между хищниками и паразитами, их объединяет главное - они на кого-то отрицательно воздействуют, получая от этого выгоду. Отличия состоят лишь в том, что в отношениях хищник-жертва оба организма постоянно совершенствуются, а в отношениях паразит-хозяин адаптации паразита часто направлены на упрощение внутренней организации и приспособление к конкретному местообитанию на теле или в теле хозяина. Наверное, поэтому хищники нам более симпатичны, чем паразиты, но суть их одна и та же. Сам человек поставил себя в роли хищника по отношению практически ко всем видам живых организмов, но по отношению к биосфере в целом человек является, по-видимому, типичным паразитом (чем выше развитие цивилизации, тем более деградирует сам человек, “высокоцивилизованный” человек “один на один” с природой не выживет).
Понятие хищник в экологии гораздо шире, чем в общепринятом понимании. По большому счету, любого консумента можно отнести к хищникам. В частности растительноядные животные являются хищниками в отношении растений. Поэтому взаимоотношения эти очень разнообразны. Например, одним из частных случаев подобных отношений является аллелопатия, или антибиоз, когда одна популяция продуцирует вещества - ингибиторы, подавляющие жизнедеятельность конкурирующей популяции. Так кусты черной смородины выделяют летучие вещества, подавляющие рост вишни, которая способна затенить и лишить влаги черную смородину, что случается, если высадить молодые смородиновые кусты в вишневые заросли. Однако сильные заросли черной смородины настолько сильно воздействуют на вишневые деревья, что они даже изгибаются в обратную сторону. Типичным примером антибиоза среди микроорганизмов является образование пенициллина плесневыми грибками, являющегося бактериальным ингибитором.
Хищничество и паразитизм играют важную роль в жизни экосистем, регулируя плотность соответствующих популяций на достаточно низком уровне, сдерживая катастрофические вспышки из численности, одновременно не подавляя их полностью. Обычно в системе отношений хищник-жертва со временем устанавливаются постоянные незатухающие колебания численности хищников и жертв. Отсутствие хищника для какой-либо популяции может вызвать “взрыв” численности популяции “жертв”, который подрывает кормовую базу данной популяции и вызывает к жизни какие-то иные механизмы корректировки численности, чаще всего в виде болезней или таких поведенческих механизмов, которые связаны с пренебрежением к жизни каждой отдельной особи. Подробней об этом будем говорить при изучении динамики популяций.
Действие принципа оптимальности приводит к тому, что со временем отрицательные взаимодействия ослабевают, достигая некоторого устойчивого равновесия, соответствующего минимуму внутренних напряжений. Наиболее разрушительные последствия возникают лишь там, где контакт жертв и хищников установлен сравнительно недавно, что в последнее время вызвано в первую очередь с деятельностью человека, перемещающего различные виды организмов с одного континента или острова на другой (достаточно вспомнить катастрофическую вспышку численности колорадского жука на наших картофельных полях, поначалу уничтожавших практически весь урожай картофеля, пока человек не взял на себя роль хищника по отношению к данному насекомому). Рано или поздно эти отношения стабилизируются, но иногда экосистема вынуждена полностью перестроиться. Например, заболевание американского каштана, который ранее был важным компонентом лесов на востоке Северной Америки, паразитическим грибом, привезенным случайно из Китая, привело к гибели все крупные деревья, в силу чего каштан утратил свое доминирующее положение в этих лесах.
В ходе эволюции отношения хищник-жертва, а особенно паразит-хозяин, часто перерастают в мутуалистические отношения, которые энергетически наиболее выгодны по сравнению с хищничеством. Так в случае лишайников, гриб изначально был паразитом по отношению к водоросли. У некоторых более примитивных лишайников гриб фактически проникает в клетки водорослей, паразитируя на них. У более развитых видов мицелий гриба не проникает в клетки водоросли и оба организма живут в полной гармонии.
Отношения хищник-жертва привели к образованию скотоводства, которое также является примером симбиоза. В природе подобные случаи также нередки, например, отношения муравьев и тлей.
(-,-) - конкуренция
Эти взаимоотношения невыгодны обоим партнерам. Они возникают обычно между организмами, претендующими на один и тот же ресурс. То есть конкуренция абсолютно противоположна симбиозу, возникающему, как правило, на почве противоположных потребностей. Конкуренция может возникать по поводу пространства, пищи или биогенных элементов, света, зависимости от хищников, подверженности болезням и т.д.
Любая конкуренция приводит к тому, что в виду одинакового взаимного неприятия партнеров, они стремятся отдалиться друг от друга.
Особенно сильна внутривидовая конкуренция, так как особи одного и того же вида максимально близки друг к другу. Эти противоречия частично снимаются внутривидовыми механизмами, подробнее о которых будем говорить при изучении динамики популяций. Внутривидовая конкуренция способствует расширению сферы жизни вида (разбегание).
Отличие межвидовой конкуренции состоит в том, что ввиду специфической индивидуальности отношений каждого вида к факторам среды, популяции разных видов, населяющих одну экосистему, наоборот, стремятся сузить диапазон своего местообитания до зоны оптимальных условий, в которых он обладает какими-либо преимуществами по сравнению с конкурентами. Если же межвидовая конкуренция выражена слабо, то под влиянием внутривидовой конкуренции данный вид будет стремиться к экспансии как можно большего жизненного пространства.
Тенденция к экологическому разделению видов получила название принципа конкурентного исключения Г.Ф.Гаузе: если два вида с близкими требованиями к среде вступают в конкурентные отношения, то один из них должен либо погибнуть, либо изменить свой образ жизни.
Если близкородственные виды живут в одном месте, то они, как правило, либо используют разные ресурсы, например, питаются в разных ярусах леса, либо активны в разное время. В любом случае их жизнедеятельность не должна пересекаться.
Поэтому случаи жесткой конкуренции в природе крайне редки и непродолжительны.
Как и в случае хищничества, конфронтация видов характерна для экосистем только в переходные периоды, когда, например, по воле человека или каким-то другим причинам в экосистему внедряется новый вид, претендующий на кем-то используемые уже ресурсы.
В этом случае выживает, как правило, только один из конкурирующих видов, лучше удовлетворяющий требованиям данного местообитания, проигравший либо погибает, либо мигрирует из данной экосистемы (если, конечно, вмешательство человека не даст дополнительные преимущества менее приспособленному виду).
Есть еще один выход, по которому часто идет природа: переадаптация, изменение своих требований, например, переход на новый вид пищи.
Таким путем обычно создаются новые виды. Иногда достаточно просто сменить время питания или найти новое местообитание.
В любом случае острота конкуренции обязательно снимается, то есть экосистема опять приходит в гармоничное состояние, характеризующееся минимумом конфронтаций.
(-,0) - аменсализм
Слово аменсализм происходит от латинского слова «аменс»- безрассудный. Эти отношения отрицательны для одного вида, который угнетается другими видом, для которого эти отношения безразличны. Примером могут служить отношения между светолюбивыми растениями, случайно попавшими под полог елового леса, растение может погибнуть, деревьям же такое соседство безразлично.
(0,0) - нейтрализм
Это такой вид отношений, когда организмы практически не влияют друг на друга, например, отношения белок и лосей в лесу. По большому счету, чистого нейтрализма в природе не бывает, так как все в природе взаимосвязано и все мы косвенно как-то влияем друг на друга.
Экологическая ниша
Любой вид организмов приспособлен для определенных условий существования и не может произвольно менять среду обитания, пищевой рацион, время питания, место размножения, убежища и т.п. Весь комплекс отношений к подобным факторам определяет место, которое природа выделила данному организму, и роль, которую он должен сыграть во всеобщем жизненном процессе. Все это объединяется в понятии экологической ниши.
Под экологической нишей понимают место организма в природе и весь образ его жизнедеятельности, его жизненный статус, закрепленный в его организации и адаптациях.
В разное время понятию экологической ниши приписывали разный смысл. Сначала словом “ниша” обозначалась основная единица распределения вида в пределах пространства экосистемы, диктуемого структурными и инстинктивными ограничениями данного вида. Например, белки живут на деревьях, лоси - на земле, одни виды птиц гнездятся на ветвях, другие в дуплах и т.д. Здесь понятие экологическая ниша трактуется в основном как местообитание, или пространственная ниша. Позднее термину “ниша” был придан смысл “функционального статуса организма в сообществе”. В основном это касалось места данного вида в трофической структуре экосистемы: вид пищи, время и место питания, кто является хищником для данного организма и т.д. Теперь это называют трофической нишей. Затем было показано, что нишу можно рассматривать как некий гиперобъем в многомерном пространстве, построенном на базе факторов среды обитания. Этот гиперобъем ограничивал диапазон факторов, в котором может существовать данный вид (гиперпространственная ниша).
То есть в современном понимании экологической ниши можно выделить по крайней мере три аспекта: физическое пространство, занимаемое организмом в природе (местообитание), его отношение к факторам среды и к соседствующим с ним живым организмам (связи), а также его функциональную роль в экосистеме. Все эти аспекты проявляются через строение организма, его адаптации, инстинкты, жизненные циклы, жизненные “интересы” и т.п. Право организма выбирать свою экологическую нишу ограничено довольно узкими рамками, закрепленными за ним от рождения. Однако его потомки могут претендовать на другие экологические ниши, если в них произошли соответствующие генетические изменения.
С использованием концепции экологической ниши правило конкурентного исключения Гаузе можно перефразировать следующим образом: два разных вида не могут длительное время занимать одну экологическую нишу и даже входить в одну экосистему; один из них должен либо погибнуть, либо измениться и занять новую экологическую нишу. Кстати сказать, внутривидовая конкуренция часто сильно уменьшается именно потому, что на разных стадиях жизненного цикла многие организмы занимают разные экологические ниши. Например, головастик - растительноядное животное, а взрослые лягушки, обитающие в том же пруду, - хищники. Другой пример: насекомые на стадии личинки и взрослой особи.
На одной территории в экосистеме может жить большое количество организмов разных видов. Это могут быть близкородственные виды, но каждый из них обязан занять свою уникальную экологическую нишу. В этом случае данные виды не вступают в конкурентные отношения и в определенном смысле становятся нейтральными друг к другу. Однако зачастую экологические ниши разных видов могут перекрываться по крайней мере по одному из аспектов, например, по местообитанию или по питанию. Это приводит к межвидовой конкурентной борьбе, которая обычно не носит жесткого характера и способствует четкости разграничения экологических ниш.
Таким образом, в экосистемах реализуется закон, аналогичный принципу запрета Паули в квантовой физике: в данной квантовой системе в одном и том же квантовом состоянии не может находиться более одного фермиона (частиц с полуцелым спином, типа электронов, протонов, нейтронов и т.п.). В экосистемах также происходит квантование экологических ниш, которые стремятся четко локализоваться по отношению к другим экологическим нишам. Внутри данной экологической ниши, то есть внутри популяции, которая занимает эту нишу, продолжается дифференциация на более частные ниши, которые занимает каждая конкретная особь, определяющая статус данной особи в жизни данной популяции.
Происходит ли подобная дифференциация на более низких уровнях системной иерархии, например, на уровне многоклеточного организма? Здесь также можно выделить различные “виды” клеток и более мелких “телец”, строение которых определяет их функциональное назначение внутри организма. Некоторые из них неподвижны, их колонии образуют органы, назначение которых имеет смысл только в отношении организма в целом. Имеются и подвижные простейшие организмы, живущие, казалось бы, своей “личной” жизнью, которая тем не менее полностью удовлетворяет потребностям всего многоклеточного организма. Так например, красные кровяные тельца делают только то, что они “умеют”: в одном месте связывают кислород, а в другом месте его высвобождают. Это их “экологическая ниша”. Жизнедеятельность каждой клетки организма построена таким образом, что, “живя для себя”, она одновременно трудится на благо всего организма. Подобный труд вовсе не утомляет, так же как нас не утомляет процесс приема пищи, или занятие любимым делом (если, конечно, все это в меру). Клетки устроены так, что по-другому они жить просто не могут, так же как пчела не может жить, не собирая с цветов нектар и пыльцу (наверное, это приносит ей какое-то наслаждение).
Таким образом, вся природа “снизу доверху” похоже пронизана идеей дифференциации, которая в экологии оформилась в понятие экологической ниши, которая в определенном смысле аналогична органу или подсистеме живого организма. Сами эти “органы” формируются под действием внешней среды, то есть их формирование подчинено требованиям надсистемы, в нашем случае - биосферы.
Так известно, что в аналогичных условиях формируются подобные друг другу экосистемы, имеющие одинаковый набор экологических ниш, даже если эти экосистемы расположены в разных географических областях, разделенных непреодолимыми препятствиями. Наиболее яркий пример в этом отношении демонстрирует живой мир Австралии, долгое время развивавшийся обособленно от остального мира суши. В экосистемах Австралии можно выделить функциональные ниши, эквивалентные соответствующим нишам экосистем на других материках. Эти ниши оказываются занятыми теми биологическими группами, которые имеются в фауне и флоре данной области, но аналогичным образом специализированными на такие же функции в экосистеме, которые характерны для данной экологической ниши. Такие виды организмов называются экологически эквивалентными. Например, крупные кенгуру Австралии эквивалентны бизонам и антилопам Северной Америки (на обоих континентах сейчас этих животных замещают в основном коровы и овцы).
Подобные явления в теории эволюции носят название параллелизма. Очень часто параллелизм сопровождается конвергенцией (схождением) многих морфологических (от греческого слова морфе -форма) признаков. Так несмотря на то, что весь мир завоевали планцетарные животные, в Австралии по каким-то причинам практически все млекопитающие являются сумчатыми, за исключением нескольких видов животных, привезенных гораздо позднее, чем окончательно оформился живой мир Австралии. Однако здесь встречается и сумчатый крот, и сумчатая белка, и сумчатый волк и т.д. Все эти животные не только функционально, но и морфологически подобны соответствующим животным наших экосистем, хотя никакого родства между ними нет.
Все это свидетельствует в пользу наличия некой “программы” формирования экосистем в данных конкретных условиях. В качестве “генов”, хранящих эту программу, может выступать вся материя, каждая частица которой голограммно хранит в себе информацию о всей Вселенной. Эта информация реализуется в актуальном мире в форме законов природы, которые способствуют тому, что различные природные элементы могут складываться в упорядоченные структуры вовсе не произвольным образом, а единственно возможным, или по крайней мере несколькими возможными способами. Так, например, молекула воды, получаемая из одного атома кислорода и двух атомов водорода, имеет одну и ту же пространственную форму, независимо от того, произошла ли реакция у нас, или в Австралии, хотя по расчетам Айзека Азимова при этом реализуется всего один шанс из 60 миллионов. Вероятно, нечто подобное происходит и в случае формирования экосистем.
Таким образом, в любой экосистеме присутствует определенный набор строго увязанных друг с другом потенциально возможных (виртуальных) экологических ниш, призванных обеспечить целостность и устойчивость экосистемы. Эта виртуальная структура и есть своего рода “биополе” данной экосистемы, содержащее “эталон” ее актуальной (вещественной) структуры. И по большому счету, даже не важно, какова природа этого биополя: электромагнитная, информационная, идеальная или какая-то другая. Важен сам факт его существования.
В любой сформировавшейся естественным образом экосистеме, не испытавшей на себе воздействие человека, все экологические ниши оказываются заполненными. Это называется правилом обязательности заполнения экологических ниш. Его механизм строится на свойстве жизни плотно заполнять собой все доступное ей пространство (под пространством в данном случае понимается гиперобъем факторов среды). Одним из главных условий, обеспечивающих выполнение этого правила, является наличие достаточного видового разнообразия.
Количество экологических ниш и их взаимоувязка подчинена единой цели функционирования экосистемы как единого целого, имеющего механизмы гомеостаза (устойчивости), связывания и высвобождения энергии и круговорота веществ. По сути дела, подсистемы любого живого организма ориентированы на те же самые цели, что лишний раз говорит о необходимости пересмотра традиционного понимания термина “живое существо”. Так же как живой организм не может нормально существовать без того или иного органа, так и экосистема не может быть устойчивой, если не заполнены все ее экологические ниши.
Поэтому данное выше общепринятое определение экологической ниши, по-видимому, не совсем корректно. Оно исходит из жизненного статуса конкретного организма (редукционистский подход), в то время как на первое место надо ставить потребности экосистемы в реализации ее жизненно важных функций (холистический подход). Конкретные виды организмов могут лишь заполнить данную экологическую нишу, если она соответствует их жизненному статусу. Другими словами, жизненный статус - это лишь “запрос” на экологическую нишу, но еще не сама ниша. Таким образом, под экологической нишей следует, по-видимому, понимать структурную единицу экосистемы, характеризующуюся определенной функцией, необходимой для обеспечения жизнеспособности экосистемы, и которая для этого должна быть обязательно заполнена организмами с соответствующей морфологической специализацией.
3. В чем смысл нормирования качества окружающей природной среды?
Экологическое нормирование предполагает учет так называемой допустимой нагрузки на экосистему. Допустимой считается такая нагрузка, под воздействием которой отклонение от нормального состояния системы не превышает естественных изменений и, следовательно, не вызывает нежелательных последствий у живых организмов и не ведет к ухудшению качества среды. К настоящему времени известны лишь некоторые попытки учета нагрузки для растений суши и для сообществ водоемов рыбохозяйственного назначения.
Как экологическое, так и санитарно-гигиеническое нормирование основаны на знании эффектов, оказываемых разнообразными факторами воздействия на живые организмы. Одним из важных понятий в токсикологии и в нормировании является понятие вредного вещества.
В специальной литературе принято называть вредными все вещества, воздействие которых на биологические системы может привести к отрицательным последствиям. Кроме того, как правило, все ксенобиотики (чужеродные для живых организмов, искусственно синтезированные вещества) рассматривают как вредные.
Установление нормативов качества окружающей среды и продуктов питания основывается на концепции порогового воздействия. Порог вредного действия - это минимальная доза вещества, при воздействии которой в организме возникают изменения, выходящие за пределы физиологических и приспособительных реакций, или скрытая (временно компенсированная) патология. Таким образом, пороговая доза вещества (или пороговое действие вообще) вызывает у биологического организма отклик, который не может быть скомпенсирован за счет гомеостатических механизмов (механизмов поддержания внутреннего равновесия организма).
Нормативы, ограничивающие вредное воздействие, устанавливаются и утверждаются специально уполномоченными государственными органами в области охраны окружающей
природной среды, санитарно-эпидемиологического надзора и совершенствуются по мере развития науки и техники с учетом международных стандартов. В основе санитарно-гигиенического нормирования лежит понятие предельно допустимой концентрации.
Предельно допустимые концентрации (ПДК) - нормативы, устанавливающие концентрации вредного вещества в единице объема (воздуха, воды), массы (пищевых продуктов, почвы) или поверхности (кожа работающих), которые при воздействии за определенный промежуток времени практически не влияют на здоровье человека и не вызывают неблагоприятных последствий у его потомства.
Таким образом, санитарно-гигиеническое нормирование охватывает все среды, различные пути поступления вредных веществ в организм, хотя редко отражает комбинированное действие (одновременное или последовательное действие нескольких веществ при одном и том же пути поступления) и не учитывает эффектов комплексного (поступления вредных веществ в организм различными путями и с различными средами - с воздухом, водой, пищей, через кожные покровы) и сочетанного воздействия всего многообразия физических, химических и биологических факторов окружающей среды. Существуют лишь ограниченные перечни веществ, обладающих эффектом суммации при их одновременном содержании в атмосферном воздухе.
Анализ того, как изменяются с течением времени значения предельно допустимых концентраций, свидетельствует об их относительности, вернее - об относительности наших знаний о безопасности или опасности тех или иных веществ. Достаточно вспомнить о том, что в пятидесятые годы ДДТ считался одним из безопаснейших для человека инсектицидов и широко рекламировался для использования в быту. Для веществ, о действии которых не накоплено достаточной информации, могут устанавливаться временно допустимые концентрации (ВДК) - полученные расчетным путем нормативы, рекомендованные для использования сроком на 2-3 года.
Подчеркнем, что в соответствии с Постановлением № 1 от 06.02.92 Госкомитета санитарно-эпидемиологического надзора РФ на территории России до принятия соответствующих нормативных актов РФ действуют санитарные правила, нормы и гигиенические нормативы, утвержденные бывшим Министерством здравоохранения СССР, в части, не противоречащей санитарному законодательству Российской Федерации.
Санитарно-гигиенические и экологические нормативы определяют качество окружающей среды по отношению к здоровью человека и состоянию экосистем, но не указывают на источник воздействия и не регулируют его деятельность. Требования, предъявляемые собственно к источникам воздействия, отражают научно-технические нормативы. К научно-техническим нормативам относятся нормативы выбросов и сбросов вредных веществ (ПДВ и ПДС), а также технологические, строительные, градостроительные нормы и правила, содержащие требования по охране окружающей природной среды. В основу установления научно-технических нормативов положен следующий принцип: при условии соблюдения этих нормативов предприятиями региона содержание любой примеси в воде, воздухе и почве должно удовлетворять требованиям санитарно-гигиенического нормирования.
Научно-техническое нормирование предполагает введение ограничений деятельности хозяйственных объектов в отношении загрязнения окружающей среды, иными словами, определяет предельно допустимые потоки вредных веществ, которые могут поступать от источников воздействия в воздух, воду, почву. Таким образом, от предприятий требуется не собственно обеспечение тех или иных ПДК, а соблюдение пределов выбросов и сбросов вредных веществ, установленных для объекта в целом или конкретных источников, входящих в его состав. Зафиксированное превышение величин ПДКв или ПДКмр в окружающей среде само по себе не является нарушением со стороны предприятия, хотя, как правило, служит сигналом невыполнения установленных научно-технических нормативов (или свидетельством необходимости их пересмотра).
Биосфера, весьма динамическая планетарная экосистема, во все периоды своего эволюционного развития постоянна изменялась под воздействием различных природных ресурсов. В результате длительной эволюции биосфера выработала способность к саморегуляции и нейтрализации негативных процессов. Достигалось это посредством сложного механизма круговорота веществ. Главным событием эволюции биосферы признавалось приспособление организмов к изменившимся внешним условиям путём изменения внутривидовой информации. Гарантом динамической устойчивости биосферы в течении миллиардов лет служила естественная биота в виде сообществ и экосистем в необходимом объёме. Однако по мере возникновения, совершенствования и распространения новых технологий (охота, земледелие, промышленная революция) планетарная экосистема, адаптированная к воздействию природных факторов, всё в большей степени стала испытывать влияние новых небывалых по силе, мощности и разнообразию воздействий. Вызваны они человеком, а потому называются антропогенными. Под антропогенными воздействиями понимают деятельность, связанную с реализацией экономических, военных, культурных и других интересов человека, вносимую физические, химические, биологические и другие изменения в окружающую среду.
Известный эколог Б.Коммонер выделил пять, по его мнению, основных видов вмешательства человека в экологические процессы:
· упрощение экосистемы и разрыв биологических циклов;
· концентрация рассеянной энергии в виде теплового загрязнения;
· рост ядовитых отходов от химических производств;
· введение в экосистему новых видов;
· появление генетических изменений в организмах растений и животных.
Подавляющая часть антропогенных воздействий носит целенаправленный характер, т.е. осуществляется человеком сознательно во имя достижения конкретных целей. Существуют и антропогенные воздействия стихийные, непроизвольные, имеющие характер после действия. Например, к этой категории воздействий относятся процессы подтопления территории, возникающие после застройки. Анализ экологических последствий позволяет разделить все их виды на положительные и отрицательные. К положительным воздействиям человека на биосферу можно отнести:
· воспроизводство природных ресурсов;
· восстановление запасов подземных вод;
· полезащитное лесоразведение, и т.д.
Отрицательное воздействие человека на биосферу пр оявляется в самых разнообразных и масштабных акциях:
· вырубке леса на больших площадях;
· истощении запасов пресных подземных вод;
· засолении и опустынивания земель;
· резком сокращении численности и видов животных и растений и т.д.
Но главнейшим и наиболее распространённым видом отрицательного воздействия человека на биосферу является загрязнения. Загрязнением называют поступление в окружающую природную среду любых твёрдых, жидких и газообразных веществ, микроорганизмов и энергии (звуков, шумов, излучений) в количествах, вредных для здоровья человека, животных, состояния растений и экосистем.
По объектам загрязнения различают загрязнения поверхностных и подземных вод, загрязнения атмосферного воздуха, загрязнения почв и т.д. В последние годы актуальными стали и проблемы, связанные с загрязнением околоземного космического пространства.
Источниками антропогенного загрязнения, наиболее опасно для популяций любых организмов, являются промышленные предприятия (химические, металлургические, целлюлозно-бумажные, строительных материалов и др.) теплоэнергетика, транспорт, сельскохозяйственное производство и др. технологии. По видам загрязнений выделяют: химическое, физическое и биологическое. А по своим масштабам и распространению: локальным, региональным и глобальным.
5. Задача 1
Определить годовое количество и вес люминесцентных ртутьсодержащих ламп, подлежащих замене и утилизации в офисных помещениях или уличном освещении, для следующих условий:
Назначение освещения |
Тип ламп |
Количество используемых ламп |
Срок службы лампы |
Число работы лампы в году |
Вес одной лампы |
|
n |
q |
t |
m |
|||
шт. |
час. |
час. |
кг. |
|||
Уличное освещение |
ДНАТ-250 |
160 |
14000 |
2650 |
0,25 |
|
Разработать мероприятия по складированию и утилизации отработанных люминесцентных ламп.
При разработке мероприятий по утилизации отработанных люминесцентных ламп необходимо учесть следующее:
§ отработанные лампы должны складироваться в закрытых картонных коробках в специально отведенном помещении;
§ отработанные лампы должны ежегодно сдаваться на переработку специализированной организации после заключения соответствующего договора.
Решение:
1.Годовое количество люминесцентных ртутьсодержащих ламп (N), подлежащих замене и утилизации в офисных помещениях или уличном освещении, находится из выражения
, шт/год
где n - количество ламп, используемых в офисных помещениях, шт;
q - срок службы лампы, час;
t - число часов работы лампы в году, час.
N= (160/14000)*2650 ? 30 шт./год
Общий вес ламп (М), подлежащих замене и утилизации, подсчитывается так
, кг
т - вес одной лампы, кг
М= 30*0,25= 7,5 кг.
2.Мероприятия по складированию и утилизации отработанных люминесцентных ламп.
Ртуть и ее соединения относятся к веществам I класса опасности, согласно ГОСТ -12.1.005-88. В каждой газоразрядной лампе, по условиям её работы, находится дозированная капелька химически чистой ртути, весом 0,06 до 0,15 грамм в зависимости от мощности лампы.
Пары металлической ртути и соли ртути могут привести к тяжелому отравлению организма, поэтому отходы ртутьсодержащих ламп, так же, относятся к первому классу опасности, что предполагает особый контроль за их транспортировкой, хранением и утилизацией.
Хранение ртутьсодержащих ламп должно быть сосредоточено в специальных складах, закрепленных за ответственным лицом и обеспечивающих их полную сохранность.
Перед приемом на склад ртутьсодержащих ламп требуется:
- проверить правильность и целостность упаковки
- при разгрузке следить за соблюдением мер предосторожности от возможных ударов и бросков.
Учёт ртутьсодержащих ламп должен осуществляться с отметкой в журнале, при сдаче на утилизацию указывать количество ламп и организацию, куда сдаются лампы.
Количество, поступающих в организацию ламп определяется с учётом среднегодового расхода ламп. Приём поступающих ламп осуществляется персоналом выполняющим ремонт и тех. обслуживание освещения. Количество поступивших ламп по типам фиксируется в «Журнале приема новых люминесцентных и ртутных ламп». Количество выданных ламп и приёма отработанных фиксируется в «Журнале учета выдачи новых и приема отработанных ртутных и люминесцентных ламп. Ответственным за ведение журналов является мастер участка, выполняющей ремонт и тех. обслуживание сетей освещения.
Вновь поступившие лампы хранятся в заводской упаковке в соответствии с рекомендациями завода - изготовителя, не более 60 штук в одной коробке. Лампы хранятся в установленном месте. Ключ от помещения находится у ответственного лица.
Отработанные лампы упаковываются в заводскую упаковку и временно накапливаются в отдельном специально оборудованном помещении. Планировка, устройство, оборудование, отопление, вентиляция, водоснабжение и канализация должна соответствовать требованиям, изложенным в санитарных правилах «Порядок сбор, учета и контроля отработанных ртутьсодержащих ламп» ГОСТ 6825-91 «Лампы люминесцентные трубчатые для общего освещения». Помещения должны иметь планировку, позволяющую организовать эффективное проветривание, уборку помещений и демеркуризацию. Поверхность стен и потолка склада должны быть ровными и гладкими. В помещениях с выделением в воздух ртути запрещается применение алюминия качестве конструктивного материала.
Допустимое количество накопленных отработанных ртутьсодержащих ламп определяется ПНООЛР («проектом нормативов образования отходов и лимитов на их размещение») и размерами товарной партии для вывоза. Нахождение газоразрядных ламп в неупакованном виде или в не установленных местах запрещается.
При накоплении товарной партии и передаче на утилизацию составляется акт приема- передачи с указанием типа и количества отработанных ламп. Информация о количестве накопленных отработанных ламп по типам поквартально передается инженеру по ООС.
Контроль за правильностью учета и хранения ламп раз в квартал осуществляется записью в «Журнале выдачи новых и приема отработанных ламп».
6. Задача 2
Определить годовой объем, вес и периодичность вывоза твердых бытовых отходов, образующихся в местах проживания людей, согласно приводимым исходным данным:
Тип жилого здания |
Количество жителей |
Среднегодовая норма накопления отходов на одного жителя для г. Иркутска |
Плотность отходов |
Объём контейнера |
Количество контейнеров на площадке |
|
N |
a |
p |
V |
с |
||
чел. |
м3/год |
т/м3 |
м3 |
шт. |
||
5-и этажный 40-ка квартирный дом |
125 |
1,29 |
0.3 |
2 |
3 |
|
Разработать мероприятия по сбору и вывозу твердых бытовых отходов из мест проживания людей.
При разработке мероприятий по сбору и вывозу твердых бытовых отходов из мест проживания людей необходимо учесть следующее
§ Отходы от жилых зданий должны собираться в металлические мусорные контейнера, располагаемые на специальных площадках с ограждением;
§ Отходы должны регулярно вывозиться на полигон ТБО по заключенным договорам.
§ К площадкам с мусорными контейнерами должен быть свободный подъезд специализированной техники.
Решение:
1. Объем, вес и периодичность вывоза отходов, образующихся в местах проживания людей, рассчитывается по территориальным нормам:
Объем отходов , м?/год
Вес отходов , т/год.
Периодичность вывоза отходов
, дн.
где - средняя норма накопления твердых бытовых отходов на одного жителя (исключая крупногабаритные отходы), м?/год;
- количество жителей, проживающих в жилых зданиях с общим накоплением твердых бытовых отходов, чел;
- плотность отходов, т/м?;
V - Объем контейнера, м?;
с - количество контейнеров на площадке, шт.
а) Объём отходов
Q=1.29*125=161.25 м3/год
б) Вес отходов
G= 2*0.3= 0.6 т/год
в) Периодичность вывоза отходов
Т= ?14 дней
2. Мероприятия по сбору и вывозу твердых бытовых отходов из мест проживания людей.
Рост современных годов приводит к ухудшению экологических условий проживания людей, особенно в крупных городах, в которых происходит наиболее интенсивное накопление твёрдых бытовых отходов (ТБО). Ежегодный прирост ТБО, подлежащих сбору, вывозу и утилизации, в среднем на городского жителя составляет 1-3%. В месте с тем, при неправильном несвоевременном удалении ТБО могут серьёзно загрязнять окружающую среду.
Проблема экологической безопасности при санитарной очистке городов затрагивает все стадии обращения с ТБО: сбор, транспортировку, обезвреживание и переработку.
Организация рациональной системы сбора, временного хранения, регулярного вывоза твёрдых и жидких бытовых отходов должна удовлетворять требованиям «Санитарных правил содержания территорий населённых мест».
При временном хранении отходов в дворовых сборниках должна быть исключена возможность их загнивания и разложения. Поэтому срок хранения в холодное время года (при температуре -5о и ниже) должен быть не более 3х суток, в тёплое время (при температуре +5о и выше) не более суток.
На территории домовладений должны быть выделены специальные площадки для размещения контейнеров с удобными подъездами для транспорта. Площадка должна быть открытой, с водонепроницаемым покрытием и желательно огражденной зелеными насаждениями.
Для определения числа устанавливаемых мусоросборников (контейнеров) следует исходить из численности населения, пользующегося мусоросборниками, нормы накопления отходов, сроков хранения отходов. Расчетный объем мусоросборников должен соответствовать фактическому накоплению отходов в периоды наибольшего их образования.
Для сбора твердых бытовых отходов следует применять в благоустроенном жилищном фонде стандартные металлические контейнеры. В домовладениях, не имеющих канализации, допускается применять деревянные или металлические сборники. Металлические сборники отходов в летний период необходимо промывать (при "несменяемой" системе не реже одного раза в 10 дней, "сменяемой" - после опорожнения), деревянные сборники - дезинфицировать (после каждого опорожнения).
Площадки для установки контейнеров должны быть удалены от жилых домов, детских учреждений, спортивных площадок и от мест отдыха населения на расстояние не менее 20 м, но не более 100 м. Размер площадок должен быть рассчитан на установку необходимого числа контейнеров, но не более 5.
Размещение мест временного хранения отходов, особенно на жилой территории необходимо согласовать с районным архитектором и районными санэпидстанциями.
7. Задача 3
Определить годовое количество загрязняющих веществ, выбрасываемых в атмосферу, при движении автомобилей по дорогам.
В качестве загрязняющих веществ принять угарный газ (СО), углеводороды: несгоревшее топливо (СН), окислы азота (NO2), сажу (С) и сернистый газ (SO2).
Исходные данные для расчета:
Марка автомобиля |
Тип двигателя внутреннего сгорания (ДВС) |
Число дней работы в году |
Суточный пробег автомобиля |
||
Холодный период (Х) |
Тёплый период (Т) |
||||
Тх |
Тm |
L |
|||
дн. |
дн. |
км. |
|||
ЗИЛ-130 |
бензиновый |
200 |
100 |
150 |
|
Пробеговые выбросы загрязняющих веществ грузовыми автомобилями отечественного производства:
Тип автомобиля |
Тип ДВС |
Удельные выбросы загрязняющих веществ , г/км |
||||||||||
СО |
СН |
NOх |
C |
SO2 |
||||||||
|
||||||||||||
Т |
Х |
Т |
Х |
Т |
Х |
Т |
Х |
Т |
Х |
|||
ЗИЛ 130 |
Б |
29,7 |
37,3 |
5,5 |
6,9 |
0,8 |
0,8 |
- |
- |
0,15 |
0,19 |
|
Решение:
Годовое количество загрязняющих веществ при движении автомобилей по дорогам рассчитывается отдельно для каждого наименования (СО, СН, NO2, С и SO2) по формуле:
где - пробеговые выбросы загрязняющих веществ при движении автомобилей в теплый и холодный периоды года, г/км. Значения принимаются в соответствии с данными
L - суточный пробег автомобиля, км;
- количество рабочих дней в году в теплый и холодный периоды года соответственно, дн.
МСО2 = (29,7*100+37,3*200)*150*10-6 = 1564500*10-6 = 1,5645 т/год
МСН = (5,5*100+6,9*200)*150*10-6 = 169500*10-6 = 0,1695 т/год
МNO2 = (0.8*100+0.8*200)*150*10-6 = 3600*10-6 = 0,0036 т/год
MSO2 = (0.15*100+0.19*200)*150*10-6 = 7950*10-6 = 0,00795 т/год
8. Задача 4
Определить годовое количество пыли, выбрасываемой в атмосферу при погрузке горной породы в автосамосвал БеЛАЗ-548.
Исходные данные для расчета:
Влажность горной массы |
Скорость ветра в районе работ |
Высота разгрузки горной массы |
Часовая производительность |
Время смены |
Число смен в сутки |
Количество рабочих дней в году |
|
? |
V |
Н |
Q |
|
|||
% |
м/с |
м |
т/ч |
час |
шт |
дн |
|
4,2 |
4,5 |
1 |
920 |
8 |
2 |
210 |
|
Решение:
Годовое количество пыли, выделяющейся при работе экскаваторов, рассчитывается по формуле:
, т/год
где - коэффициент, учитывающий влажность перегружаемой горной породы (принимается по табл.1);
- коэффициент, учитывающий скорость ветра в районе ведения экскаваторных работ (принимается по табл.2);
- коэффициент, зависящий от высоты падения горной породы при разгрузке ковша экскаватора в автомобиль (принимается по табл.3);
- удельное выделение пыли с тонны перегружаемой горной породы, принимается равной 3,5 г/т;
Q - часовая производительность экскаватора, т/час;
- время смены, час;
- количество смен в сутки, шт;
- количество рабочих дней в году, дн.
Таблица 1 - Зависимость величины коэффициента К1 от влажности горной породы
Влажность породы (?), % |
Значение коэффициента К1 |
|
3,0 - 5,0 |
1,2 |
|
Таблица 2 - Зависимость величины коэффициента К2 от скорости ветра
Скорость ветра (V), м/с |
Значение коэффициента К2 |
|
2-5 |
1,2 |
|
Таблица 3 - Зависимость величины коэффициента К3 от высоты разгрузки горной породы
Высота разгрузки горной породы (Н), м |
Значение коэффициента К3 |
|
1,5 |
0,6 |
|
Мn = 1,2*1,2*0,6*3,5*920*8*2*210*10-6 = 9347788,8*10-6 = 9,3477888 т/год
Ответ: Годовое количество пыли, выделяющейся при работе экскаваторов равна 9347788,8*10-6, т/год.
Контрольная работа | Концепция информатизации Российской Федерации |
Контрольная работа | Причины агрессивного поведения. Методы работы с агрессивными детьми |
Контрольная работа | Алгоритм выбора и реализации предпринимательской идеи |
Контрольная работа | Современные методы арт-терапии |
Контрольная работа | Системы управления взаимоотношения с клиентами |
Контрольная работа | Учет материальных затрат в бухгалтерском учете |
Контрольная работа | Геополитическое положение России |
Контрольная работа | Особенности вознаграждения работников в организации |
Контрольная работа | Виды запасов |
Контрольная работа | Психоанализ |
Контрольная работа | Правове регулювання охорони навколишнього природного середовища |
Контрольная работа | Бизнес-план (финансовый раздел) |
Контрольная работа | Трудовое воспитание дошкольников |
Контрольная работа | Развитие и размешение нефтяной промышленности России |
Контрольная работа | Государственные внебюджетные фонды |