Контрольная работа по предмету "Информатика, программирование"


Анализ и моделирование цифровых и аналоговых схем

Министерство образования республики Беларусь


Учреждение образования "Полоцкий государственный университет"


Кафедра конструирования и технологии РЭС


Контрольная работа


По курсу " Теоретические основы САПР "


Выполнил


Номер зачетной книжки


Проверил


Новополоцк 2008


Задача №1. Оценка статического риска сбоя


Задание:
для заданной схемы оценить риск статического сбоя по всем выходным переменным для заданного варианта изменения вектора входных переменных.


Исходные данные:


Схема:



Заданный вариант изменения вектора входных переменных:


X=(a,b,c) c (0,0,1) на (1,1,1)


Решение:


Для оценки риска статического сбоя необходимо разработать синхронную модель цифровой схемы в трехзначной логике. Математическая модель заданной схемы имеет вид:



При анализе трехзначных моделей значения всех переменных – входных и выходных вычисляются трижды:


1. Исходное значение вектора входных переменных X=(a,b,c) задано заданием; исходное значение вектора выходных переменных Y=(e,g) вычисляется по правилам двоичной логики;


2. Окончательное значение вектора входных переменных X=(a,b,c) задано заданием; окончательное значение вектора выходных переменных Y=(e,g) вычисляется по правилам двоичной логики;


3. Промежуточные значения входных
переменных X=(a,b,c) определяются по следующему правилу: если исходное значение входной переменной совпадает с окончательным, то промежуточное равно исходному и окончательному. Если исходное значение входной переменной не совпадает с окончательным, т.е. имеет место переключение входного сигнала в течение такта модельного времени, то промежуточное равно 2 (неопределенное состояние переключения). Промежуточные значения выходных
переменных Y=(e,g) рассчитываются по правилам трехзначной логики. Статический риск сбоя по выходной переменной имеет место в случае, если сочетание значений этой переменной в исходном, промежуточном и окончательном состоянии имеют вид 0-2-0 или 1-2-1.


Правила выполнения основных логических операций И, ИЛИ, НЕ в двоичной и трехзначной логике для произвольных переменных а
и b
приведены в таблице 1:


Таблица 1

























































a 0 1 2 0 1 2 0 1 2
b 0 0 0 1 1 1 2 2 2
0 0 0 0 1 2 0 2 2
0 1 2 1 1 1 2 1 2
1 0 2 1 0 2 1 0 2

Результат анализа трехзначной модели заданной схемы приведен в таблице 2.


Таблица 2

































Значения переменных входные выходные
a b c e g
Исходное 0 0 1 1 1
Промежуточное 2 2 0 2 2
Окончательное 1 1 1 0 1

Таким образом, результат расчета по выходным переменным e
и g
показывает наличие статистического риска сбоя.


Задача №2. Анализ цифровых схем по методу простой итерации и событийному методу


Задание:
выполнить анализ заданной схемы по методу простой итерации и событийному методу для заданного изменения вектора входных переменных.


Исходные данные:


Схема:



Заданный вариант изменения вектора входных переменных:


X=(a,b,c,d,e) меняет свое значение с 00100 на 11101


Решение:


Для выполнения анализа схемы необходимо разработать ее синхронную модель в двоичной логике. Математическая модель заданной схемы имеет вид:




Для реализации анализа по методу простой итерации необходимо задать начальное приближение для вектора выходных переменных Y0
=(f,g,h,p,q). Для расчета начальных приближений вектора выходных переменных воспользуемся начальным значением вектора входных переменных X=(a,b,c,d,e)=(00100), предварительно расположив уравнения в порядке прохождения сигналов по схеме:



Y0
=(f,g,h,p,q)=( 1,0,1,1,1).


Метод простой итерации
состоит в выполнении итераций по формуле:


Yi
=

y
(Yi-1
, X),


где Yi

- значение вектора Y
на i
-й итерации, т.е. при вычислении Y1
в правые части уравнений модели поставляются значения выходных переменных из начального приближения Y0
, при вычислении Y2
– значения из результата первой итерации Y1
и так далее. Если Yi
=Yi-1

, то решение найдено; если


Yi

¹
Yi-1

, то выполняется новая итерация; если итерационный процесс не сходится, то это свидетельствует об ошибках проектирования схемы устройства, вызывающих неустойчивость его состояния.


Результат анализа заданной схемы по методу простой итерации приведен в таблице 3.


Таблица 3

























итерации


Начальное приближение Y0
g p f h q
0 1 1 1 1

1


2


0


0


1


1


0


0


1


1


1


1



Из таблицы 3 видно, что потребовалось два раза обращаться к каждому из пети уравнений модели, прежде чем результат второй итерации, совпадающий с результатом первой итерации, показал, что решение найдено.


Таким образом, искомое значение вектора выходных переменных при изменении X=(a,b,c,d,е) с 00100 на 11101 для заданной схемы равно:


Y=(e,g,p,f,h,q)=(0,1,0,1,1).


При использовании событийного метода
вычисления на каждой итерации выполняются только по уравнениям активизированных
элементов, т.е. элементов, у которых хотя бы на одном входе произошло событие (изменилась входная переменная). В алгоритме событийного метода на каждом шаге вычислительного процесса имеется своя группа активизированных элементов.


В заданном варианте изменения вектора входных переменных изменяются только значения переменных а, b
и е
, следовательно, на первой итерации при реализации событийного алгоритма анализа должны быть пересчитаны только выходные переменные f
и h
, в правые части уравнений которых входят аргументами b
и d
. Если по результатам вычисления значения f
и h
совпадут с начальным приближением, то решение будет найдено, если хотя бы одна из этих переменных изменится, то на второй итерации должны быть пересчитаны те выходные переменных, в правые части уравнений которых входят изменившиеся в результате первой итерации переменные. Процесс продолжается до тех пор, пока в результате очередной итерации значения рассчитываемых переменных не совпадут с их предыдущими значениями, т.е. до выполнения условия Yi
=Yi-1

.


Результат анализа заданной схемы по методу простой итерации приведен в таблице 4.


Таблица 4








































итерации


Начальное приближение Y0 Изменяющиеся переменные Активизированные уравнения
e g p f h q
0 0 1 1 1 0

0


1


2


3


4


5


6


0

0


1


1


1


0


1


0


1


1


0




0


1


1


b, d


f


g


h


q


p


-


4 и 5


2


5


6


3


6


-


Результат 0 1 0 0 0 1

Как видно из таблицы 4, на 6-ой итерации результат расчета переменной q
совпал с ее предыдущим значением, следовательно решение найдено.


Таким образом, искомое значение вектора выходных переменных при изменении X=(a,b,c,d) с 0110 на 0011 при расчете по событийному методу для заданной схемы совпадает с результатом анализа по методу простой итерации и равно:


Y=(e,g,p,f,h,q)=(0,1,0,0,0,1).


Однако, при вычислении по методу простой итерации, потребовалось на каждой итерации вычислять все выходные переменные, т.е. объем вычислений составил 6×6=36 операций. Тот же результат при использовании событийного метода потребовал значительно меньшего объема вычислений, а именно выполнения 8 операций. Таким образом, трудоемкость событийного метода значительно меньше.


Задача №3. Анализ цифровых схем по методам Зейделя


Задание:
выполнить анализ заданной схемы по методам Зейделя для заданного изменения вектора входных переменных.


Исходные данные:


Схема:



Заданный вариант изменения вектора входных переменных:


X=(a,b,c,d,e) меняет свое значение с 00100 на 11101


Математическая модель заданной схемы имеет вид:




При реализации анализа по методу Зейделя при вычислении очередного из элементов вектора Yi

в правую часть уравнений системы там, где это возможно, подставляются не элементы вектора Yi-1

, а те элементы вектора Yi

, которые уже вычислены к данному моменту, т.е. итерации выполняются по формуле: Yi
=

y
(Yi
,Yi-1
, X).


Результат вычислений по методу Зейделя без ранжирования, для исходного произвольного порядка уравнений модели представлен в таблице 5. Для организации вычислений использовалось значение начального приближения вектора выходных переменных Y0
, полученное в задаче 2.


Таблица 5

























итерации


Начальное приближение Y0
g p f h q
0 1 1 1 1

1


2


0


0


1


1


0


0


1


1


1


1




Задача №4. Моделирование аналоговых схем (метод узловых потенциалов)


Цель:
освоение метода узловых потенциалов моделирования аналоговых схем.


Задание:
для заданного варианта схемы задачи №6 разработать модель топологии с использованием метода узловых потенциалов: построить матрицу «узел-ветвь», записать топологические уравнения в общем виде; в развернутой матричной форме; в виде системы уравнений по законам Кирхгофа.


Решение:


В методе узловых потенциалов в вектор базисных координат включаются потенциалы всех узлов схемы, за исключением одного узла, принимаемого за опорный. Топологические уравнения – это уравнения закона токов Кирхгофа, записанные для узлов схемы, и уравнения связи вектора напряжений ветвей U
с вектором узловых потенциалов:


A
×
I=0;


A
T

j
+U=0,


где А
– матрица «узел-ветвь»; A
T

- транспонированная матрица «узел-ветвь»; I
– вектор токов ветвей. Строки матрицы соответствуют узлам, а столбцы - ветвям схемы. В столбце i
-той ветви записываются единицы на пересечении со строками узлов, при чем +1

соответствует узлу, в который ток i
-той ветви втекает, а -1

соответствует узлу, из которого этот ток вытекает. Матрица «узел-ветвь» для схемы с введенными обозначениями узлов, полученной в задаче 6 и показанной на рисунке 10, имеет вид, представленный на рисунке 14 (узел 8 принят в качестве опорного).

















































































































С1 С2 С3 С4 С5 С6 R1 R2 R3 R4 R5 E1
1 0 0 0 0 0 0 -1 0 0 0 0 +1
2 -1 -1 0 0 0 0 +1 0 0 0 0 0
3 0 +1 0 0 0 0 0 -1 -1 0 0 0
4 0 0 -1 0 0 0 0 +1 0 0 0 0
5 0 0 0 -1 0 0 0 0 +1 -1 0 0
6 0 0 0 0 -1 0 0 0 0 +1 0 0
7 0 0 0 +1 +1 -1 0 0 0 0 -1 0

Рисунок 14


Запишем топологические уравнения по закону токов Кирхгофа


- в общем виде:


A
×
I=0;


- в развернутой матричной форм



- в виде системы уравнений, которая получена из матричной формы умножением вектора-столбца токов ветвей схемы на матрицу «узел-ветвь»:



Запишем топологические уравнения по закону напряжений через узловые потенциалы:


- в общем виде:


A
T

j
+U=0;


- в развернутой матричной форме (в транспонированной матрице столбцы соответствуют строкам исходной матрицы «узел-ветвь»):



- в виде системы уравнений, которая получена из матричной формы умножением вектора-столбца узловых потенциалов на матрицу «узел-ветвь» после приведения ее к виду U=-A
T

j
:



Таким образом, модель топологии заданной схемы получена с использованием метода узловых потенциалов в виде двух систем уравнений - по закону токов Кирхгофа и по закону напряжений через узловые потенциалы.


Задача №5. Моделирование аналоговых схем (метод переменных состояния)


Цель:
освоение метода узловых потенциалов моделирования аналоговых схем.


Теория, методы и примеры решения:
раздел 3.3.2.3 курса лекций.


Задание:
для заданного варианта схемы задачи №6 разработать модель топологии с использованием метода переменных состояния: построить граф, нормальное фундаментальное дерево и матрицу контуров и сечений. Записать топологические уравнения в общем виде; в развернутой матричной форме; в виде системы уравнений по законам Кирхгофа. Записать окончательную математическую модель схемы в виде системы уравнений, в которой ёмкостные токи и индуктивные напряжения выражены явно и заменены производными переменных состояния.


Решение:


Базисными координатами в этом методе являются переменные состояния, т.е. фазовые переменные, непосредственно характеризующие запасы энергии в элементах электрической схемы. К таким переменным относятся независимые друг от друга емкостные напряжения и индуктивные токи. Исходными топологическими уравнениями являются те же уравнения, что и в табличном методе:


Ux
+MUвд
=0; Iвд
=MТ
Ix
=0.


Матрицу М
контуров и сечений в методе переменных состояния формируют на основе построения нормального дерева графа схемы. Нормальным деревом
называют фундаментальное дерево, в которое включение ветвей производится не произвольно, а в следующем порядке: ветви источников напряжения, емкостные, резистивные, индуктивные, источников тока. Использование нормального дерева облегчает дальнейшее преобразование исходных уравнений с целью получения нормальной формы Коши.


В графе схемы, приведенной на рисунке 12, построенное фундаментальное дерево является нормальным. Топологические уравнения в общем виде и в развернутой матричной форме были получены при решении задачи 6. Топологические уравнения в виде системы уравнений по законам Кирхгофа, полученные с использованием матрицы контуров и сечений, построенной в задаче №6, имеют вид:



Для получения окончательной ММС используют компонентные уравнения. При их преобразовании стремятся получить уравнения, выражающие емкостные токи IС

и индуктивные напряжения UL

через переменные состояния. Далее, заменяя IC

и UL

производными переменных состояния, получают окончательную ММС.


Запишем компонентные уравнения (уравнения сопротивления, емкости и индуктивности) в общем виде:



В заданной схеме нет индуктивных ветвей, поэтому уравнение индуктивности нам не понадобится.


В левых частях уравнений второй системы необходимо заменить ICj

на С
j

×
dUCj
/dt

, а в правые части вместо IRi

подставить величины URi

, выраженные из уравнений первой системы путем деления на Ri

. Окончательная форма ММС по методу переменных состояния имеет вид:



Таким образом, с использованием метода переменных состояния получена окончательная полная ММС заданной схемы, объединяющая в себе компонентные и топологические уравнения схемы.



Не сдавайте скачаную работу преподавателю!
Данную контрольную работу Вы можете использовать для выполнения своих заданий.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :