Программа имитационного моделирования работы банка
Содержание
Имитационное моделирование на ЭВМ процесса функционирования автоматизированной системы управления работой банка позволяет получить численное решение поставленной задачи. Суть рассматриваемого приближенного метода решения состоит в проведении ряда случайных испытаний вероятностной модели исследуемой системы и получении совокупности реализаций случайных процессов изменения состояния.
В результате многократной реализации случайных процессов определяются оценки вероятности тех или иных событий и средние значения случайных величин. Имитационное моделирование связано с необходимостью воспроизведения случайных событий и величин, распределенных по произвольному закону. Существует несколько способов генерации случайных величин и формирования их распределений. Модель системы управления работой банка включает в себя:
· Приход клиентов в банк ;
· Время обслуживания клиентов у касс .
По условию поставленной задачи приход клиентов в банк описывается пуассоновским потоком с интенсивностью r. Для лучшего понимания сути распределения Пуассона необходимо знать основные определения:
Интенсивность потока - среднее число событий, которое появляется в единицу времени.
Поток - последовательность событий, которые наступают в случайные моменты времени.
Закон распределения Пуассона выражается формулой (1.1).
Будем моделировать интервал времени между двумя последовательно зашедшими в банк клиентами методом Монте-Карло с датчиком случайных чисел на интервале [0 - 1].
Совокупность независимых случайных событий, образующих полную группу, характеризуется вероятностями появления каждого из событий , причем . Для моделирования этой совокупности случайных событий используется генератор случайных чисел, равномерно распределенных в интервале [0 - 1]. При делении отрезка [0 - 1] на n частей, численно равных , возникновение события устанавливается путем определения нахождения случайного числа Х в пределах интервала при проверке условия , где изменяется от нуля до n. При имеем ; при имеем и так далее. При подстановке в формулу (1.1) получим:
;
;
и так далее.
Причем (мин.) - максимальное количество ожидания клиентов.
Так как опыт проводится многократно, то, очевидно, что частота попадания случайных чисел на каждый из отрезков, определяющихся их длиной, и соответствует полученным вероятностям.
Моделирование времени обслуживания клиентов у касс происходит по экспоненциальному закону распределения, формула которого представлена выше (формула (1.2)).
Время обслуживания клиентов , как и любая иная случайная величина, описывается функцией распределения , определяемая как вероятность случайного события, заключающегося в том, что время обслуживания клиентов меньше некоторого заданного времени :
Эта вероятность рассматривается как функция во всем диапазоне возможных значений величины . Функция распределения любой случайной величины является неубывающей функцией времени . Примерный вид функции дан на рисунке 3.
Рис. 3 - «Функция распределения экспоненциального закона»
Так как значения не могут быть отрицательными, то . При величина стремится к единице. Таким образом, функция распределения времени обслуживания клиентов:
(1.3)
где - параметр распределения (среднее время обслуживания клиентов у кассы).
Соответственно плотность распределения:
(1.4)
Для моделирования времени обслуживания клиента у кассы проинтегрируем функцию распределения :
(1.5)
От датчика случайных чисел равномерно распределенных на интервале [0 - 1] получаем очередное число Х, которое подставляем в формулу (1.5) и вычисляем :
(1.6)
Из соотношения (1.6) найдем соответствующее Х, которое будем принимать за случайное число, обозначающее время обслуживания данной кассой.
Программа имитационного моделирования работы банка расположена по следующему адресу:
С:П - 00 - 51К&FBank.exe
На запрос программы:
« Введите количество касс : »
Вводим предполагаемое (данное) количество касс обслуживающих клиентов.
На запрос программы:
« Введите интенсивность потока r: »
Вводим r - интенсивность потока, равную среднему числу событий, которые появляются в единицу времени.
На запрос программы:
« Введите параметр распределения lambda: »
Вводим равное среднему времени обслуживания клиентов у кассы.
На запрос программы:
« Введите максимальное время ожидания клиента: »
Вводим k равное максимальному времени в минутах ожидания клиентов.
Контрольная работа | Концепция информатизации Российской Федерации |
Контрольная работа | Причины агрессивного поведения. Методы работы с агрессивными детьми |
Контрольная работа | Алгоритм выбора и реализации предпринимательской идеи |
Контрольная работа | Системы управления взаимоотношения с клиентами |
Контрольная работа | Учет материальных затрат в бухгалтерском учете |
Контрольная работа | Геополитическое положение России |
Контрольная работа | Особенности вознаграждения работников в организации |
Контрольная работа | Виды запасов |
Контрольная работа | Психоанализ |
Контрольная работа | Экономико-географическая характеристика Печорского угольного бассейна 2 |
Контрольная работа | Эволюция государственной власти в средневековом Казахстане |
Контрольная работа | Значение и задачи энергетического хозяйства |
Контрольная работа | Тепловые эффекты химических реакций |
Контрольная работа | Криминалистика |
Контрольная работа | Оцінка фінансового стану комерційного банку |