Конспект лекций по предмету "Физические явления"


Электронный парамагнитный резонанс

| следующая статья ==>





В основе магнитного резонанса лежит резонансное (избирательное) поглощение радиочастотного излучения атомными частицами, помещенными в постоянное магнитное поле. Большинство элементарных частиц, подобно волчкам, вращаются вокруг собственной оси. Если частица обладает электрическим зарядом, то при ее вращении возникает магнитное поле, т.е. она ведет себя подобно крошечному магниту. При взаимодействии этого магнитика с внешним магнитным полем происходят явления, позволяющие получить информацию о ядрах, атомах или молекулах, в состав которых входит данная элементарная частица.
Метод магнитного резонанса представляет собой универсальный инструмент исследований, применяемый в столь различных областях науки, как биология, химия, геология и физика.
Различают магнитные резонансы двух основных видов: электронный парамагнитный резонанс и ядерный магнитный резонанс.
Электронный парамагнитный резонанс (ЭПР) был открыт Евгением Константиновичем Завойским в Казанском Университете в 1944 году. Он заметил, что монокристалл , помещенный в постоянное магнитное поле (4 мТл) поглощает микроволновое излучение определенной частоты (около 133 МГц).
Суть данного эффекта заключается в следующем. Электроны в веществах ведут себя как микроскопические магниты. Если поместить вещество в постоянное внешнее магнитное поле и воздействовать на него радиочастотным полем, то в разных веществах они будут переориентироваться по-разному и поглощение энергии будет избирательным. Возврат электронов к исходной ориентации сопровождается радиочастотным сигналом, который несет информацию о свойствах электронов и их окружении.
Расщепление Зеемана соответствует радиочастотному диапазону. Ширина линий спектра расщеплённого состояния определяется взаимодействием спинов электронов с их орбитальными моментами. Это определяет время релаксационных колебаний атомов как результат их взаимодействия с окружающими атомами. Поэтому ЭПР может служить средством исследования структуры внутреннего строения кристаллов и молекул, механизма кинетики химических реакций и других задач.

Рис. 1.7 Прецессия магнитного момента (М) парамагнетика в постоянном магнитном поле ().
Приведенный рисунок иллюстрирует явление прецессии электрона в магнитном поле. Под действием вращательного момента, создаваемого полем (), магнитный момент совершает круговые вращения по образующей конуса с ларморовской частотой (). При наложении переменного магнитного поля, вектор напряженности () совершает круговое движение с ларморовской частотой в плоскости, перпендикулярной вектору (). При этом происходит изменение угла прецессии, приводящее к опрокидыванию магнитного момента (М). Увеличение угла прецессии () сопровождается поглощением энергии электромагнитного поля, уменьшение угла () - излучением с частотой ().
Практически удобнее использовать момент наступления резкого поглощения энергии внешнего поля при постоянной частоте и изменяемой индукции магнитного поля.

Рис. 1.8 Зависимость поглощающей способности энергии внешнего поля веществом от величины его вязкости.
Чем сильнее взаимодействие между атомами, молекулами тем шире спектр ЭПР. Это позволяет судить о подвижности молекул, вязкости среды (>).
, , (1.8)
, (1.9)
где - гиромагнитное отношение.
Например, при частота электромагнитного воздействия должна находиться в пределах .
Данный метод, представляющий собой один из видов спектроскопии, применяется при исследовании кристаллической структуры элементов, химии живых клеток, химических связей в веществах и т.д.
На рис. 1.9 представлена структурная схема ЭПР-спектрометра. Принцип его работы основан на измерении степени резонансного поглощения веществом проходящего через него электромагнитного излучения при изменяющейся напряженности внешнего магнитного поля.

Рис. 1.9 Схема спектрометра ЭПР (а) и распределение силовых линий магнитного и электрического полей в резонаторе (б).
1 – генератор микроволнового излучения, 2 – волновод, 3- резонатор, 4 – магнит, 5 – детектор микроволнового излучения, 6 – усилитель сигнала ЭПР, 7 – регистрирующие устройства (ЭВМ или осциллограф).
Открытие ЭПР послужило основой для разработки ряда других методов изучения строения веществ, таких как акустический парамагнитный резонанс, ферро- и антиферромагнитный резонанс, ядерный магнитный резонанс. При явлении акустического парамагнитного резонанса переходы между подуровнями инициируются наложением высокочастотных звуковых колебаний; в результате возникает резонансное поглощение звука.
Применение метода ЭПР дало ценные данные о строении стекол, кристаллов, растворов; в химии этот метод позволил установить строение большого числа соединений, изучить цепные реакции и выяснить роль свободных радикалов (молекул, обладающих свободной валентностью) в появлении и протекании химических реакций. Тщательное изучение радикалов привело к решению ряда вопросов молекулярной и клеточной биологии.
Метод ЭПР – очень мощный исследовательский инструмент, он практически незаменим при изучении изменений в структурах, в том числе и в биологических. Чувствительность метода ЭПР очень высока и составляет парамагнитных молекул. На применении ЭПР основан поиск новых веществ для квантовых генераторов; явление ЭПР используется для генерации сверхмощных субмиллиметровых волн.

| следующая статья ==>


Не сдавайте скачаную работу преподавателю!
Данный конспект лекций Вы можете использовать для создания шпаргалок и подготовки к экзаменам.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем конспект самостоятельно:
! Как написать конспект Как правильно подойти к написанию чтобы быстро и информативно все зафиксировать.